
Multimedia Tools and Applications (2024) 83:72043–72062
https://doi.org/10.1007/s11042-024-18431-5

Bridging the gap: dual perception attention and local-global
similarity fusion for cross-modal image-text matching

Xiangyu Shui1 · Zhenfang Zhu1 · Yun Liu1 · Hongli Pei1 · Kefeng Li1 ·
Huaxiang Zhang2

Received: 14 November 2023 / Revised: 8 January 2024 / Accepted: 21 January 2024 /
Published online: 5 February 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Current image-text matching methods implicitly align visual-semantic segments within
images, and employ cross-modal attention mechanisms to discover fine-grained cross-modal
semantic correspondences. Although region-word pairs constitute local matches across
modalities, they may lead to inaccurate measurements of relevance when viewed from a
global perspective of image-text relationships. Additionally, cross-modal attention mech-
anisms may introduce redundant or irrelevant region-word alignments, which can reduce
retrieval accuracy and limit efficiency. To address these challenges, we propose a Dual per-
ception Attention and local-global Similarity Fusion framework(DASF). Specifically, We
combine two types of similarity matching, global and local, to establish a more accurate
correspondence between images and text by simultaneously considering global semantics
and local details during the matching process. Simultaneously, we integrate dual-perception
attention mechanisms to learn the relationship between images and text, utilizing attention
polarity to determine the degree of matching and better consider contextual and semantic
information, thereby reducing interference from irrelevant regions. Extensive experiments
on two benchmark datasets, Flickr30K andMSCOCO, demonstrate the superior effectiveness
of our DASF, achieving state-of-the-art performance.

Keywords Image-text Matching · Dual perception attention · Cross-modal

1 Introduction

Image-text matching is a foundational task with widespread applications in various domains,
such as image search in search engine, tagging and filtering on social media, product recog-
nition in e-commerce, and medical image analysis. Image-text matching aligns images with
textual descriptions to discover semantic similarity and establish meaningful connections
between the two. Common practices involve semantically aligning vision and language,
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followed bymeasuring cross-modal semantic similarity as relevance based on resulting align-
ments.

As can bee seen from Fig. 1, alignment methods can be primarily categorized into three
types: global alignment, local alignment, and global-local alignment.

Global alignmentmethods initially gained prominence in the field of image-text matching,
aiming to capture global semantic relationships and consistency to establish comprehensive
image-text correspondences and improve matching accuracy. These methods often employ
deep neural networks [1–4], including traditional networks [5, 6] and recurrent neural net-
works [7, 8], to handle global information. However, theymay overlook the local information
of images and text, thereby limiting their ability for fine-grained matching. To enhance the
accuracy of fine-grained matching, local alignment methods have received widespread atten-
tion. These methods [9–12] focus on the local regions of images and text to better handle
cases of partialmatches, ensuring effectivematching evenwhen images and text have different
lengths. Recent research [13–16] has concentrated on methods for identifying region-word
correspondences to enhance the details of matching. However, local alignment methods may
disregard overall semantic consistency, especially when there is strong global correlation
between images and text. To overcome the limitations of global and local alignment meth-
ods, global-local fusion methods [17–19] have been proposed, combining global and local
matching to consider both global and local perspectives during thematching process, enhanc-
ing the flexibility and adaptability of matching.

Both global alignment methods and local alignment methods typically rely on prede-
fined feature representations to measure the similarity between images and text. However,
these feature representations may not fully capture the semantic information of images
and text, leading to potential decreases in matching performance in certain scenarios. To
address this issue, attention-based matching methods have been proposed [20–22]. Zhang

Fig. 1 Illustration of different feature alignment architectures
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et al. [20] introduced a unified context-aware attention network that selectively focuses on
critical local segments by aggregating global context. Wang et al. [21] proposed a consensus-
aware visual-semantic embedding model that incorporates shared commonsense knowledge
between modalities into image-text matching. Zhang et al. [22] introduced an innovative
negative-aware attention framework, which explicitly considers both the positive impact of
matching segments and the negative impact of mismatched segments to jointly infer the
similarity between images and text. These attention-based matching methods help capture
fine-grained correspondences between images and text, enhance the alignment process, and
improve the performance of image-text matching tasks by selectively attending to relevant
regions or words.

To address the challenges in fine-grainedmatching tasks, including issues related to global
semantic consistency and the concentration of cross-modal attention errors, this paper intro-
duces a Dual perception Attention and local-global Similarity Fusion framework. What sets
this framework apart is its improved integration of global and local information, enabling the
system to better understand the subtle yet crucial correlations between images and text. The
primary innovations of this approach lie in the introduction of a Dual-Perception Attention
mechanism, which enhances the precision of both global and local attention, and a novel
Local-Global Similarity Fusion method, ensuring the accuracy of fine-grained matching.
By applying this framework, we achieve promising results on two datasets, Flickr30K and
MS-COCO, outperforming other methods and enhancing the performance and accuracy of
fine-grained matching tasks. This work not only offers new ideas and methods for the fine-
grainedmatching domain but also underscores the critical role of global and local information
in cross-modalmatching, serving as an inspiration for improving tasks involving thematching
of images and text. The major contributions of this work are summarized as follows.

a) It combine two types of similarity matching, global and local, to establish a more accurate
correspondence between images and text. By integrating both global and local information
during the matching process, we can better capture the semantic relationships between
the two modalities.

b) Dual perception attention mechanisms are employed to learn the relationship between
images and text, determine the degree of matching and mismatch, and leverage the influ-
ence of positive and negative attention to infer image-text similarity.

c) Extensive experiments on two benchmarks, Flickr30K and MS-COCO, show that DASF
outperforms compared methods. The Analyses also well demonstrate the superiority and
reasonableness of the proposed method.

2 Related work

In recent years, the field of image-text matching has seen significant advancements, with
research primarily falling into two categories: Firstly, global-level matching, which focuses
on learning global alignment by representing the entire image or text as a holistic feature
to measure their similarity; second, local-level matching, which emphasizes fine-grained
alignment between local segments, inferring overall image-text similarity by analyzing the
correlations between all word-region pairs. There is also a third approach that combines both
global and local matching.
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2.1 Global alignmentmethods

Global alignmentmethods aim to capture the semantic relationships and consistency between
images and text by considering the overall information. For instance, [2, 23] proposed
the global piping method, which establishes global correspondences to achieve image-text
matching. Subsequent studies [24, 25] have focused on enhancing the two-stream network
architecture to achieve improved alignment of global features. Recent global alignment-
driven approaches, as seen in a pretrain-then-finetune paradigm [26], have demonstrated the
ability to yield satisfactory outcomes. This success can be attributed to the increased scale of
pre-training data. However, the performance of the aforementioned methods that solely rely
on global alignment, such as the global piping method, is often limited due to the tendency
of smoothing fine-grained image details in the text descriptions.

2.2 Local alignmentmethods

Local alignment methods establish correspondences between regions or patches in the image
and words in the sentence, enabling finer-grained matching. They serve as a complementary
approach to global alignment, addressing its limitations and enhancing the overall perfor-
mance of image-text matching.

In image-text matching tasks, some popular approaches [9, 27] involve learning semantic
alignments between image regions and text words. However, due to the semantic complexity,
these approaches may not well catch the optimal fine-grained correspondences. For one
thing, attending to local components selectively is a solution for searching for an optimal
local alignment. Chen et al. [28] learned to associate local components with an iterative local
alignment scheme. Zhang et al. [20] noticed that an object or a word might have different
semantics under the different global contexts and proposed to adaptively select informative
local components based on the global context for the local alignment. After that, some
approaches with the same goal as the above have been successively proposed with either
designing an alignment guided masking strategy [29]. Diao et al. [18] developed an attention
filtration technique. For another thing, achieving the local correspondence in a comprehensive
manner is also a pathway to approximate an optimal local alignment. Ji et al. [30] proposed
a step-wise hierarchical alignment network that achieves the local-to-local, global-to-local
and global-to-global alignments.

Other than these, there is another type of local alignment, the relation-aware local align-
ment that can promote fine-grained alignment. Wei et al. [31] explored the intra-modal
relation for facilitating inter-modal alignment. In addition, some approaches [14, 18, 32]
model the image or text data as a graph structure with the edge conveying the relation infor-
mation, and infer relation-aware similarities with both the local and global alignments by
the graph convolutional network. The SGR module proposed by Diao et al. [18] supports the
flow of information between local and global comparisons, providing a more comprehensive
understanding of interactions and enhancing similarity predictions.

2.3 Attentionmechanism

Attention mechanisms play a crucial role in various tasks, including natural language pro-
cessing, computer vision, and machine learning. Adopting the vanilla attention mechanism
[10–12, 22, 33–35] is a trivial way to explore the semantic region/patch-word correspon-
dences. DAN [33], for instance, introduced dual attention networks, allowing focused
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attention on specific regions within images and words in text across multiple stages. Lee
et al. [10] employed stacked cross attention, enabling either image-to-text or text-to-image
attention at any given time.Wang et al. [34] proposed cross-modal adaptive message passing,
directing attention to fragments. In terms of visual relationships among regions, a recent
approach [22] propose a novel Negative-Aware Attention Framework , which explicitly
exploits both the positive effect of matched fragments and the negative effect of mismatched
fragments to jointly infer image-text similarity.

Additionally, several recent methods have extended the widely used BERT [36] architec-
ture to jointly learn visual and textual representations. These methods [37, 38] either employ
a single-stream model to fuse textual and visual data as input or opt for a two-stream model
to independently process each modality before merging them. Leveraging the self-attention
module inherent to BERT, they have achieved state-of-the-art performance.

3 Methodology

In this section, we elaborate on the Dual perception Attention and local-global Similarity
Fusion framework for Image-Text Matching into cross-modal relevance measurement. As
illustrated in Fig. 2, The proposed DASF is composed of three modules. Firstly, the way to
learn visual and textual representations and extend the semantic of detected image regions
is introduced in Section 3.1. Secondly, we perform local-global similarity matching in Sec-
tion 3.2. Thirdly, we perform dual perception attention to measure image-text similarity,
using both negative and positive effects in Section 3.3. Finally, our the objective function for
training is mentioned in Section 3.4.

Notations Formally, for image - text of(U , V ), the text feature of text representation for
word U = {

ui |i ∈ [1,m] , ui ∈ R
d
}
, the image is expressed as regional visual character-

istics V = {
v j | j ∈ [1, n] , v j ∈ R

d
}
, which m and n respectively represents the number

of words and area; d is the dimension of the feature representation.

Fig. 2 Flowchart of the proposed approach. Mainly including feature representation, global-local similarity
fusion, and dual perception attention effects
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3.1 Feature representation

Text Representation In order to capture the nuanced interplay between vision and language,
we extract text semantic information at the word level. To achieve this, we map the one-hot
encoding {w1, w2, . . . , wm} of words in the text T to distributed representations using a
learnable word embedding layer, denoted as ti = Wewi . To enrich the text representation
with contextual semantics, we employ a bidirectional GRU that encodes both forward and
backward information. This encoding process can be summarized as follows:

−→
fi = −−−→

GRU
(
ti ,

−−→
fi−1

)
, i ∈ [1,m] (1)

←−
fi = ←−−−

GRU
(
ti ,

←−−
fi+1

)
, i ∈ [1,m] (2)

where
−→
fi and

←−
fi represent the hidden states from the forward and backward GRU, respec-

tively. Moreover, the context enhanced word representation u j is defined as the mean of
bi-directional hidden states:

ui =
−→
fi + ←−

fi
2

, i ∈ [1,m] (3)

The average feature of thewhole text T can be expressed as: uav = 1
m

∑m
i=1 ui .Moreover,

under the action of the attention mechanism, uav is used as the basis for the query, and uglo
can be encoded as:

uglo =
∑m

i=1 wi ui
‖ ∑m

i=1 wi ui ‖2 (4)

where the attention weight wi is the normalized similarity between ui and the query uav .

Image representation We employ the Faster R-CNN framework [39], a deep model com-
monly used for object detection, alongwith ResNet-101, a deep convolutional neural network
widely utilized for semantic segmentation and image classification, as the underlying archi-
tecture for implementing bottom-up attention. This model enables us to detect salient regions
within an image I and encode their corresponding visual representations a j . We then trans-
form each a j into a d-dimensional vector v j using linear projection:

v j = Wva j + b j (5)

The image I can be represented as a set of visual vectors
{
v j | j = 1, 2, . . . , n

}
, where n

is the total number of regions in image I . Each visual vector v j belongs to R
d dimensional

space.
The average feature of the whole image I can be expressed as: vav = 1

n

∑n
j=1 v j .

Moreover, under the action of the attention mechanism, vav is used as the basis for the query.
Similarly, the global representation vglo of the full image I is represented in the same way
as uglo:

vglo =
∑n

j=1 w jv j

‖ ∑n
j=1 w jv j ‖2 (6)

where the attention weight w j is the normalized similarity between v j and the query vav .

123



Multimedia Tools and Applications (2024) 83:72043–72062 72049

3.2 Cross-modal similarity fusion

To describe the detailed correspondence between vision and language and achieve visual-
semantic alignment across different modalities, we utilize a normalized distance-based
representation to capture the semantic similarity between heterogeneous modalities.

Specifically, the local semantic similarity sv
j between image region v j and its semantically

matched relevant words in the text as:

sv
j =

W v
s

∣∣∣v j − auj

∣∣∣
2

‖ W v
s

∣∣∣v j − auj

∣∣∣
2 ‖2

(7)

auj =
m∑

i=1

ai j ui (8)

ai j = e(λêi j)
∑n

j=1 e
(λêi j)

(9)

where W v
s ∈ R

k×d is a learnable parameter matrix, the text context auj is attended by region

v j . ĉi j = [
ci j

]
+ /

√∑m
i=1

[
ci j

]2
+, where ci j represent the cosine similarity between word ui

and region v j . The semantic sv
j is queried by image region v j .

Moreover, the semantic similarity sglo between whole image and full text could be mea-
sured by:

sglo = Wg
s

∣∣vglo − uglo
∣∣2

‖ Wg
s

∣∣vglo − uglo
∣∣2 ‖2

(10)

where Wg
s ∈ R

k×d is a learnable parameter matrix.
During the matching process, we seek to eliminate local semantic similarities contributed

by region-word pairs that are locally matched but not truly referenced in the global textual
context, which can be referred to as unreliable region-word pairs. We adopt the following
approach in the overall measurement of cross-modal relevance: we multiply the semantic
similarity of each region query, denoted as sv

n , by its corresponding coefficient, cn . Con-
sequently, we combine the global semantic similarity and the scaled local similarities. This
combination effectively amalgamates global and local information, facilitating the extraction
of meaningful matching characteristics.

Sv = concat
[
sglo, c1s

v
1 , · · · , cns

v
n

]
(11)

S
′
v = sgr(Sv) (12)

where,sgr represents similarity graph reasoning framework.

3.3 Dual perception attention

To ensure the significance of mismatched segments is not overlooked, our approach involves
a simultaneous focus on both mismatched and matched fragments within image-text pairs.
This is achieved by utilizing distinct attentionmaskswithin the negative and positive attention
mechanisms, allowing for a precise assessment of their impacts. To initiate this process, we
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Fig. 3 Flowchart of the feature representation

begin by computing semantic relevance scores between all words and regions (Figs. 3,4 and
5).

si j = u juTi
‖ u j ‖‖ ui ‖ , i ∈ [1,m] , j ∈ [1, n] (13)

With the aim of effectively harnessing non-matching segments to meaningfully diminish
the overall similarity of mismatched image-text pairs, we identify segments within the textual
modality that lack corresponding matched image regions as non-matching segments. These
segments are assigned a certain level of significance in the process. We use the maximum
cross-modal similarity between a segment and all segments from the other modality to reflect

Fig. 4 Flowchart of the cross-modal similarity fusion
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Fig. 5 Flowchart of the dual perception attention

their level of match. Thus, we employ the maximum pooled similarity between each word
segment ui , where i ∈ [1,m], and all image regions v j , where j ∈ [1, n].

s j = max
i

({
si j − tk

}n
i=1

)
(14)

Therefore, the negative impact, or dissimilarity, of the i-th word in an image-text pair can
be measured as follows:

snegi = si � Maskneg (si ) (15)

where, the function Maskneg(·) represents a mask that equals 1 when the input is negative,
and 0 otherwise. The symbol � denotes the dot-product operation.

Given that semantically similar word segments are expected to share similar matching
relationships, we account for the intra-textual semantic relationships among word segments,
enhancing the accuracy of negative effect measurement. Consequently, we carry out intra-
modality propagation to determine the matching degree of each word:

ŝ j =
m∑

l=1

wintra
jl sl , s.t . wintra

jl = softmaxλ

({
u juTl

‖ u j ‖‖ ul ‖

}m

l=1

)

(16)

where, wintra
jl signifies the semantic relationship between the i-th and l-th word segments,

with λ being a scaling factor. During the inference, we replace ŝi with the enhanced si .
We measure the similarity of image-text pairs from two perspectives. Firstly, we focus on

the cross-modal shared semantics, which involves aggregating matched image regions for
each query word to quantify the degree of similarity of the matched fragments.

winter
j i = softmaxλ

({
Mask pos

(
s ji − tk

)}n
i=1

)
(17)

where,winter
ji represents the semantic relationship between the word u j and the image region

vi .Maskpos(·) functions as amask that equals the inputwhen it’s positive, and−∞otherwise.
This is used to erase attention weights for unrelated image regions, specifically when the
difference between si j and tk is less than zero, making the weight effectively zero.

For the i-th word, the shared semantics corresponding to the image can be combined as:
v̂ j . Using this weighted image feature, the similarity of u j is quantified by:

s f
j = u j v̂

T
j /

(‖ u j ‖‖ v̂ j ‖) (18)
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Additionally, we employ the high correlation score si j to indicate the similarity between
words and regions. Simultaneously, we calculate the weighted similarity srj of word ui as
using the corresponding correlation scores.

srj =
n∑

i=1

wrelev
i j si j (19)

Therefore, the positive impact of the matched fragments in the image-text pair (U , V ) can
be assessed as follows:

s pos = s f
j + srj + S

′
v (20)

Finally, the similarity of the image-text pair (U , V ) can be comprehensively determined
by the combined positive and negative effects:

(U , V ) = 1

m

m∑

i=1

(
snegj + s posj

)
(21)

3.4 Objective function

Following the previousmethod, after obtaining the final representations V andU of the image
modality and the text modality respectively, this paper uses the triplet loss as the objective
function to supervise the matching and learning process in the latent space. When using text
as a query, we sample both matched and mismatched images in each mini-batch. The loss
function tries to find the hardest negative items in the mini-batch, which form triples with
the positive items and the ground truth query, and the similarity in the formed positive pairs
should be a bound β higher than the similarity in the negative pairs. Similarly, when using
image as a query, the selected negative samples should be texts that do not match the given
query, and the formed positive and negative pairs should also satisfy the above bound β. The
loss function L is defined as follows:

L =
∑

(U ,V )

[
β − S (U , V ) + S

(
U , V ′)]

+ + [
β − S (U , V ) + S

(
U ′, V

)]
+ (22)

where sim(·) is the similarity function, and here we use cosine similarity. I
′
and T

′
are hard

negative samples, [·]+ is equivalent to max[·, 0] .

3.5 Ensemble and re-ranking scheme

Similar to previous approaches during the testing phase, the model encodes images and texts
into visual and text feature vectors. Cosine similarity is employed to generate a similarity
matrix for all test images and texts. In the ensemble approach, the similarity scores from two
trained models are averaged and incorporated in the final ranking process. The obtained simi-
larities between queries and search terms are then ranked, simplifying the retrieval of results.
For the purpose of calculating the single-peak text similarity, the text-to-image reordering
necessitates an additional text encoding path. However, in our experiments, we solely employ
the image-to-text reordering, while maintaining the original results for text-to-image reorder-
ing.

123



Multimedia Tools and Applications (2024) 83:72043–72062 72053

4 Experiments

4.1 Data sets

This paper conducts performance evaluation on two publicly available datasets: Flickr30K
[40] and Microsoft COCO [41]. The Flickr30K dataset comprises 31,783 images, with each
image having 5 corresponding captions. Among these, 29,000 images are allocated to the
training set, while the remaining 1,000 are divided equally between the test and validation
sets. The MSCOCO dataset consists of 123,287 images, also paired with 5 captions each.
Of these, 113,287 images are designated for training, 5,000 for validation, and an additional
5,000 for testing. Given the considerable size of the MSCOCO dataset, this paper obtains the
final result by either averaging the performance over 1,000 test images five times or directly
testing the entire set of 5,000 images.

4.2 Evaluation indicators

The evaluation records are captured through the computation of recall at K (R@K), where
the overall recall proportion (Rsum) can be calculated using the subsequent formula:

Rsum = R@1 + R@5 + R@10(image retrieval)

+R@1 + R@5 + R@10(text retrieval)
(23)

4.3 Evaluation of baselinemethods

This subsection compares the DASF model with representative techniques in the same field,
and the comparison does not include large pre-trained models due to the limitation of the
experimental environment. We compare with three types of models: global matching meth-
ods, local matching methods and multi-level matching methods. The global models include
VSE++ [2] and MTFN [42], the local area matching methods include SCAN [10], PFAN
[11], GSMN [14], VSRN++ [43] ,HREM [44] and CGMN [45], and the multi-level match-
ing methods include MDM [46], CASC [47], SGRAF [18] and NAAF [22]. We obtain the
results of the comparative methods by running the source code provided in the original paper
or by citing the experimental results reported in the original paper. "-" indicates that the
corresponding result is not shown in the cited work. The details of the above methods are as
follows:
Improving Visual-Semantic Embeddings (VSE++) [2] enhances the standard multimodal
embedding loss function by incorporating hard negative samples, ranking loss, and fine-
tuning with data augmentation.
Multi-modal Tensor Fusion and Re-ranking (MTFN) [42] proposed a new multi-modal
tensor fusion network, which uses the tensor fusion of rank to learn image-text similarity
function.
StackedCross Attention (SCAN) [10] is used to infer the fine-grained semantic relationship
between prominent objects in images and words in sentences, find the interaction between
vision and language, and infer the similarity of text and text.
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Position Focused Attention Network (PFAN) [11] uses the combination of location text
cues and relational attention to live valuable location features and imposes the relationship
between regional images and texts.
Multi Modal Deep Matching (MDM) [46] uses the local and global representations of
images and texts to combine cross-modal correlation and intra-modal similarity to investigate
the matching relationship between images and texts at a deeper level.
Cross-Modal AttentionWith Semantic Consistence (CASC) [47] directly extracts seman-
tic labels from the sentence corpus, makes high-level semantic words correspond to a single
image region, and uses local alignment and multi-label prediction to achieve global semantic
consistency.
Graph Structured Matching Network (GSMN) [14] explicitly models objects, relations
and attributes as a structured phrase, learns the correspondence between objects, relations
between attributes, and the fine-grained correspondence between structured phrases, and
realizes node-level matching and structure-level matching.
Similarity GraphReasoning andAttention Filtration (SGRAF) [18] adopts the similarity
graph inference (SGR) module to learn the local and global relational perception similarity.
Then, the similarity attention filtering model is designed to selectively focus on meaningful
and representative alignments and eliminate noise interference.
Cross-modal Graph Matching Network (CGMN) [45] Spatial and non-fully connected
graphs are explicitly constructed for each image, with object region features serving as graph
nodes.
Visual and Textual Semantic Reasoning (VSRN++) [43] uses regional or word relation
reasoning to integrate semantic relation information into visual and text features and conduct
global semantic reasoning to select discriminative information and gradually increase the
representation of the whole scene.
Novel Hierarchical Relation Modeling (HREM) [44] explicitly captures both fragment
and instance-level relations to learn discriminative and robust cross-modal embeddings.
Negative-Aware Attention Framework (NAAF) [22] uses both matching and mismatching
fragments to jointly infer image-text similarity. Using an iterative optimization method, it
effectively enhances the discriminative negative effects by thoroughly exploring mismatched
fragments.
Cross-modal confidence-aware network (CMCAN) [48] combines the inferred confidence
levels with local semantic similarity to refine the measurement of relevance between images
and text. This integration allows for more accurate relevance assessment.

4.4 Experimental details

This section provides the detailed model setup and training parameter settings of DASF in
the experiments. The experiments are performed on NVIDIA A100 GPU with batch size set
to 400 for MSCOCO and 330 for Flickr30K,with 16 and 20 training epoches on different
datasets. The Adam optimizer is used to train the model, the learning rate is set to 0.0005
at the beginning, decaying by 0.1 every 10 epochs. The feature dimension d is set to 1,024.
The scaling parameter λ is set to 20,and the margin hyperparameter γ is selected as 0.2.

4.5 Results on flickr30K

The outcomes reported in Table 1 for the Flickr30K dataset highlight the superiority of DASF
over other methods. The bold entries indicate the best results in the current indicator, and
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Table 1 Results on Flick30K

Methods Image-To-Text Text-To-Image
R@1 R@5 R@10 R@1 R@5 R@10 Rsum

VSE++ [2] 52.9 80.5 87.2 39.6 70.1 79.5 409.8

MTFN [42] 65.3 88.3 93.3 52.0 80.1 86.1 465.1

SCAN [10] 67.9 89.0 94.4 43.9 74.2 82.8 452.2

PFAN [11] 67.6 90.0 93.8 45.7 74.7 83.6 455.4

MDM [46] 44.9 75.4 84.4 34.4 67.0 77.7 384.0

CASC [47] 68.5 90.6 95.9 50.2 78.3 86.3 469.8

GSMN [14] 76.4 94.3 97.3 57.4 82.3 89.0 496.8

SGRAF [18] 77.8 94.1 97.4 58.5 83.0 88.8 499.6

CGMN [45] 77.9 93.8 96.8 59.9 85.1 90.6 504.1

VSRN++ [43] 79.2 94.6 97.5 60.6 85.6 91.4 508.9

CMCAN [48] 79.5 95.6 97.6 60.9 84.3 89.9 507.8

HREM [44] 81.4 96.5 98.5 60.9 85.6 91.3 514.3

NAAF [22] 81.9 96.1 98.3 61.0 85.3 90.6 513.2

DASF(ours) 83.6 96.6 98.3 61.2 84.7 91.4 515.8

the same meaning applies to the following table. Following the utilization of the re-ranking
scheme, the model proposed in this paper achieves the most favorable results across various
indicators. Based on the experimental findings, DASF secures high scores of 83.6, 96.6,
and 98.3 for R@1, R@5, and R@10 in text retrieval, respectively. For image retrieval, the
corresponding scores are 61.2, 84.7, and 91.4. The model only falls short in R@5 for image
retrieval.

Table 2 Results on MSCOCO 1K

Methods Image-To-Text Text-To-Image
R@1 R@5 R@10 R@1 R@5 R@10 Rsum

VSE++ [2] 64.6 90.0 95.7 52.0 84.3 92.0 478.6

MTFN [42] 74.3 94.9 97.9 60.1 89.1 95.0 511.3

SCAN [10] 70.9 94.5 97.8 56.4 87.0 93.9 500.5

PFAN [11] 75.8 95.9 99.0 61.0 89.1 95.1 515.9

MDM [46] 54.7 84.1 91.9 44.6 79.6 90.5 445.4

CASC [47] 72.3 96.0 99.0 58.9 89.8 96.0 512.0

GSMN [14] 78.4 96.4 98.6 63.3 90.1 95.7 522.5

SGRAF [18] 79.6 96.2 98.5 63.2 90.7 96.1 524.5

CGMN [45] 76.8 95.4 98.3 63.8 90.7 97.5 520.7

VSRN++ [43] 77.9 96.0 98.5 64.1 91.0 96.1 523.6

CMCAN [48] 81.2 96.8 98.7 65.4 91.0 96.2 529.3

HREM [44] 81.2 96.5 98.9 63.7 90.7 96.0 527.1

NAAF [22] 80.5 96.5 98.5 64.1 90.7 96.5 527.2

DASF(ours) 82.8 97.1 98.8 65.0 91.05 96.9 531.6
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4.6 Results onMSCOCO

According to the results on MSCOCO shown in Tables 2 and 3, We can see that, DASF
performs the best,in most cases. Text retrieval on the 1K test set achieves 82.8 in R@1,
which exceeds VSRN++ 4.9, CMCAN 1.6, and NAAF 2.3 respectively. It reaches 97.1 and
98.8 in R@5 and R@10, respectively, which is also superior to the above models. For image
retrieval, the three metrics are 65.0, 91.05 and 96.9 respectively. On the 5K test set, we
obtain similar conclusions. On the 5K test set, except for R@1 in both text retrieval and
image retrieval, where it falls slightly behind CMCAN, it achieves the best results in all other
metrics.

4.7 Time complexity

In score-based methods, cross-modal interaction evaluates the relationship between queries
and samples by calculating similarity scores. The time complexity of this approach is O(N 2).
Specifically, assuming there is one query and a set of N samples, the time complexity of score-
based query retrieval is O(N ). This implies that as the sample set increases, retrieval time
grows quadratically. In contrast, the time complexity of embedding-based query retrieval is
O(1), meaning that even with a large sample set, retrieval time remains at a constant level.

Therefore, to enhance performance, score-based methods sacrifice retrieval speed when
assessing the relationship between queries and samples. This trade-off means that when
dealing with large-scale datasets, more time may be required for retrieval, but more accurate
similarity assessments can be obtained. This is a common trade-off in cross-modal interac-
tions. Our approach aims primarily at achieving high accuracy, thus sacrificing some retrieval
time. As shown in Fig. 6, we present a comparison of recent retrieval methods in terms of
retrieval accuracy and retrieval speed. We perform all methods on the whole Flickr30K test
set.

Table 3 Results on MSCOCO 5K

Methods Image-To-Text Text-To-Image
R@1 R@5 R@10 R@1 R@5 R@10 Rsum

VSE++ [2] 41.3 71.1 81.2 30.3 59.4 72.4 355.7

MTFN [42] 48.3 77.6 87.3 35.9 66.1 76.1 391.3

SCAN [10] 46.4 77.4 87.2 34.4 63.7 75.7 384.0

PFAN [11] - - - - - - -

MDM [46] - - - - - - -

CASC [47] 47.2 78.3 87.4 34.7 64.8 76.8 389.2

GSMN [14] - - - - - - -

SGRAF [18] 57.8 - 91.6 41.9 - 81.3 -

CGMN [45] 53.4 81.3 89.6 41.2 71.9 82.4 419.8

VSRN++ [43] 54.7 82.9 90.9 42.0 72.2 82.7 425.4

CMCAN [48] 61.5 - 92.9 44.0 - 82.6 -

HREM [44] - - - - - - -

NAAF [22] 58.9 85.2 92.0 42.5 70.9 81.4 430.9

DASF(ours) 58.2 85.9 92.9 41.8 72.6 82.9 434.3
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Fig. 6 The comparison between accuracy and speed for cross-modal retrieval

4.8 Ablation experiments

In order to demonstrate the effectiveness of the DASF model in cross-modal matching, we have
provided a summary of the impact of key components within the model on the overall frame-
work in Table 4. We conducted experiments in two directions: image retrieval and text retrieval,
on the Flickr30K dataset. In this context, DASF-Full represents the average performance of
both models, while the remaining entries correspond to individual model tests.

• DASF-no-sgr: removes similarity graph reasoning in the whole framework.
• DASF-no-sglo: removes global matching structure in the whole framework.
• DASF-no-svj : removes local matching structure in the whole framework.
• DASF-only-Sv: Keep only the global-local similarity fusion and train without the dual
perceptual attention part

• DASF-full: Keep all components identical to the original model, and it represents the
average performance of the two models.

The comparative results for variants of DASF are shown in Table 4. From the results, we
find that ourmethodoutperforms the other four variants on theFlickr30Kdataset. Specifically,
the largest drop in performance occurs when dual perceptual attention is removed, and only
local-global similarity is used. Using only local or global matching also results in a noticeable
decrease in performance. The impact of similarity graph reasoning is relatively minimal
compared to othermodel variants but still demonstrates a discernible decrease in performance.
These results validate the effectiveness of our architecture.

Table 4 Results of ablation
experiments

Methods Image-To-Text Text-To-Image
R@1 R@5 R@10 R@1 R@5 R@10

DASFw/osgr 79.8 94.1 97.8 58.4 82.2 89.8

DASFw/osglo 78.8 93.9 96.9 58.1 81.6 88.8

DASFw/osvj 72.2 90.5 93.5 53.8 78.2 85.6

DASF-only-Sv 70.8 87.6 90.7 52.3 76.8 83.6

DASF-full 83.6 96.6 98.3 61.2 84.7 91.4
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4.8.1 Analysis of ablation results

1. When the sgr module is removed from the DASF, the model’s performance exhibits
a noticeable decline due to the absence of continuous updates from the nodes, which
results in the loss of inference related to local-global relationship-aware similarity. This
observation reaffirms the effectiveness of similarity graph reasoning.

2. The removal of the global matching structure results in insufficient consideration of
global information between the entire image and text, leading to a decrease in semantic
consistency and the inability of the model to achieve high performance. This observation
confirms the significance of global matching for this model.

3. Neglecting local matching significantly impacts the model’s performance due to inad-
equate inference of word-region correlations. Experimental results indicate that the
performance decline is more pronounced when the local matching structure is removed
compared to the removal of the global matching structure. This suggests that in this
model, local matching takes precedence over global matching.

4. When the model removes the dual-perception network, neglecting negative perception
attention leads to the model’s inattention to non-matching segments’ influence. On the
other hand, ignoring positive perception attention results in a reduced ability of the model
to focus on important regions. Experimental results confirm the effectiveness of the dual-
perception network in this model.

4.9 Case study

Figures 7 and 8 illustrates the results of DASF on Flickr30K dataset for image retrieval
and text retrieval, respectively. In the three image retrieval text tasks, the first four matching
results of each task are correct.It is evident that the DASFmodel, when dealing with complex
scenes, significantly enhances its performance by effectively distinguishing and utilizing
matching and non-matching segments in complex scene matching, thanks to the support of

Fig. 7 The image retrieval task demonstration. The top five retrieval results are sorted in descending order.
The figure above shows image retrieval text tasks, and the correct results are marked in blue font, and the
incorrect results are marked in red font
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Fig. 8 The text retrieval task demonstration. The top five retrieval results are sorted in descending order. The
above figure shows the text retrieval image tasks, and the image with green border are the correct retrieval
results

dual perception attention during the matching process. From the results of three text retrieval
image tasks, it can be seen that out of the first five matching results, all obtained the correct
results in the first position. It can be observed that in cases where region features are partially
similar, the model’s simultaneous consideration of both global and local matching, along
with the integration of global and local information during the matching process, ensures the
completeness of information. Consequently, the model can obtain more accurate answers,
even in similar scenes, with higher priority given to the correct answers compared to other
incorrect ones.

5 Conclusion

In this paper, we propose a Dual perception Attention and local-global Similarity Fusion
framework. We combine two types of similarity matching, global and local, to establish a
more accurate correspondence between images and text by considering both global semantics
and local details during the matching process. Simultaneously, we integrate dual perception
attention mechanisms to learn the relationship between images and text, determining the
degree ofmatching and better considering contextual and semantic information. Experiments
show that our model outperforms previous methods on the image-text matching task on two
widely used datasets MSCOCO and Flickr30K. Ablation experiments also demonstrate the
effectiveness of each individual modules of the model, as well as the effectiveness of the
model as a whole. In the future, we look forward to applying this framework learning to
more cross-modal tasks, such as image captioning and visual question answering.
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