
Vol.:(0123456789)

Multimedia Tools and Applications (2024) 83:69875–69896
https://doi.org/10.1007/s11042-024-18328-3

1 3

Tps: A new way to find good vertex‑search order for exact
subgraph matching

Yixing Ma1,2 · Baomin Xu2 · Hongfeng Yin3

Received: 31 July 2023 / Revised: 14 November 2023 / Accepted: 19 January 2024 /
Published online: 3 February 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Exact subgraph matching is fundamental to numerous graph data applications. The inher-
ent NP-completeness of subgraph isomorphism poses significant challenges in developing
efficient matching algorithms. Current methods show limited success, particularly in their
filtering and verification stages. Selecting an optimal vertex-searching order can greatly
improve a subgraph searching algorithm’s effectiveness, yet a comprehensive theory for
this selection is lacking. In this paper, we introduce the Multistage Graph Search Model
(MGSM), a novel approach addressing this gap. MGSM provides insights for identifying
the most efficient vertex-searching order and offers a systematic framework for evaluat-
ing existing algorithms. Using MGSM, we identify two main challenges in optimizing the
search order and present a new matching algorithm “Tps” noted for its strategic vertex-
searching order. Extensive experiments demonstrate the superior performance of Tps and
its effectiveness and soundness in optimizing search orders.

Keywords Exact subgraph matching · Subgraph query · Optimization · Query processing

1 Introduction

Graphs are widely used as data representations in various fields, denoted as G(V, E, L)
for labeled graphs. Here, ’V’ represents the set of vertices, typically interpreted as enti-
ties; ’E’ denotes the edges, signifying relationships between entities; and ’L’ comprises the
labels, indicating attributes of entities. Graph data are notably applied in areas like infor-
mation networks, exemplified by the semantic web [1], where they depict sets of entities
and their interconnections. In bioinformatics, for instance, the protein–protein interaction

 * Yixing Ma
 yxgma@ucdavis.edu

 * Hongfeng Yin
 hfyin@czjtu.edu.cn

1 College of Letters and Science, University of California, Davis, USA
2 School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
3 School of Computer and Information Technology, Cangzhou Jiaotong College, Cangzhou, Hebei,

China

http://orcid.org/0009-0006-4552-1389
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-024-18328-3&domain=pdf

69876 Multimedia Tools and Applications (2024) 83:69875–69896

1 3

(PPI) network [2] is effectively represented as a graph. Due to its capability to encapsulate
complex structures and relationships, graph theory has found increasing application across
numerous disciplines. A primary challenge in this realm is identifying a small query graph
within a larger target graph or graph database. This task is inherently challenging, given the
NP-completeness of subgraph isomorphism, which precludes any algorithm from ensuring
a solution in polynomial time. As graph data grow in complexity and size, the development
of efficient subgraph matching algorithms becomes increasingly crucial.

Most exact subgraph matching algorithms [3–9] employ a filtering-verification frame-
work. In the filtering phase, a large portion of impractical matches are eliminated, yield-
ing a more manageable set of candidates. The verification phase then conducts a subgraph
isomorphism search on this set to identify exact matches for the query, typically using the
Depth-First-Search (DFS) based Ullmann algorithm [10]. The exact subgraph matching
problem can be categorized into two types: one involves finding all graphs in a database
containing a specific query, and the other aims to locate all subgraphs within a large target
graph isomorphic to a given query.

For the first type, graph indexing methods [3–5] are commonly used, quickly filtering
out unsuitable target graphs, thereby allowing early matching techniques to focus on refin-
ing indexing strategies. However, for the second type, traditional index-based approaches
become ineffective as they rely on substructures like paths or trees for indexing, leading to
exponentially growing index sizes with larger target graphs, rendering them impractical
[11]. In scenarios with small target graphs, these methods might directly apply the Ull-
mann algorithm without optimization in the verification stage. Yet, for larger target graphs,
this verification process requires significant enhancements.

Responding to the growing scale of real-world graphs, several algorithms addressing the
second type of problem have emerged [6–8]. Despite some successes, they still face chal-
lenges in terms of efficiency and robustness, as highlighted in [12]. Two main issues are
evident:

1) While some filtering methods [6, 7] designed for single large graphs have been intro-
duced, comprehensive performance analyses are lacking. Reports [12] indicate that
these methods were less effective than QuickSI [8], which does not include any specific
filter for large single graphs. This contrasts with the efficiency of index methods for the
first type of problem, suggesting a disparity in filtering strategies for large target graph
searches.

2) Improving the Ullmann algorithm necessitates an apt vertex-searching order for the
query graph. Existing studies [6–9] often rely on intuitive justifications for their chosen
orders, lacking a theoretical framework or solid rationale. While some algorithms show
promising experimental results, the soundness of their reasoning is not always clear.
Conflicting results from various algorithms, due to different experimental datasets, make
drawing definitive conclusions challenging.

In this paper, our contributions are twofold: 1) We introduce the Multistage Graph
Search Model (MGSM), a theoretical model to guide the selection of vertex-searching
orders, a previously unaddressed issue, and define the optimal order for the Ullmann
search. We reformulate the order selection problem into an optimization challenge. 2)
Employing MGSM, we propose a pseudo-tree method to estimate the time cost of a given
search order. Building on this, we develop a novel exact matching algorithm named “Tps”.
In our experimental evaluation with large target graph and over 600 query graphs, Tps

69877Multimedia Tools and Applications (2024) 83:69875–69896

1 3

demonstrates enhanced efficiency by outperforming TurboISO in benchmarks. Further-
more, Tps is grounded in a robust theoretical framework.

2 Related work

In the field of subgraph matching, initial studies predominantly addressed problems where
the target set consisted of numerous small graphs, emphasizing swift filtering methods
based on indexing. Shasha et al.’s GraphGrep [4] employed paths as indexing features but
faced limitations as the number of paths increased with larger target graphs. Yan et al.’s
gindex [3] improved upon this by using subgraphs as features, focusing on their frequency
and discriminative power [21] for more effective indexing.

Subsequently, innovations like TreePi [4] and Tree + delta [5] emerged, striking a bal-
ance between path-based and subgraph-based methods by utilizing subtrees as features.
These approaches, based on the premise that the pruning power of the subtree is more
effective than that of paths yet less costly than full subgraphs, represented a significant
advancement in the field [22]. Other noteworthy works include FG-index [5] and gcode
[15], introducing innovative verification approaches and no-feature index techniques,
respectively [23].

As researchers turned their attention to larger single target graphs, a second problem
type emerged [24]. Ullmann’s algorithm [10] was pioneering in this area, using a DFS
strategy to search large target graphs for a sequence of induced subgraphs. This approach
was further refined by GraphQL [6] and SPath [7], which introduced neighbor signatures
as effective filters and proposed estimation functions to optimize the vertex-searching order
[13].

More recent developments have seen algorithms like QuickSI [8] and TurboISO [9]
demonstrate exceptional performance for this second problem type. QuickSI transformed
the order selection problem into a minimal spanning tree problem, thus bypassing the need
for explicit estimations of search space size [25]. TurboISO introduced an efficient path
filter, further avoiding the need for explicit order selection estimations [26].

In contrast, our Multistage Graph Search Model (MGSM) and Tps algorithm present
a novel approach to optimizing the vertex-searching order in subgraph matching. Unlike
the previous methods which primarily focus on indexing techniques or employ path and
subtree features for efficiency, our MGSM approach analyzes the selection of vertex-
searching order through a multistage graph representation. This allows for a more nuanced
and dynamic optimization of the search order compared to the static approaches of earlier
methods [16, 17].

Furthermore, the Tps algorithm, developed based on the theoretical foundations of
MGSM, prioritizes finding an optimal vertex-searching order for both filtering and veri-
fication steps in subgraph matching. This contrasts with algorithms like QuickSI and Tur-
boISO, which either simplify the order selection problem or avoid explicit estimations alto-
gether. Our approach not only addresses the efficiency of the matching process but also
bridges the theoretical gap in order selection strategies, marking a significant advancement
in the field [18].

Inexact subgraph matching, another significant area of research [13, 15, 19, 20],
employs different similarity measures for matching. Algorithms such as Ness [15], SAGA
[19], and SIGMA [20] in this domain have greatly inspired our work, particularly in the
development of versatile and adaptable matching strategies.

69878 Multimedia Tools and Applications (2024) 83:69875–69896

1 3

3 Preliminaries

3.1 Subgraph matching problem

In graph representation, we denote a graph G as G(V, E, L), where V represents the vertex
set, E is the edge set, and L is the label set associated with the vertices.

Definition 1. (Graph Isomorphism) For two graphs G1(V1, E1, L1) and G2(V2, E2, L2),
if they are isomorphic, then a bijective function f: V1 → V2 exists such that: 1) for every
edge(v1, v2) ∈ E1, a corresponding edge(f (v1), f (v2)) ∈ E2; and 2) for all vertices v, L(v) = L(f
(v)). If G1 is subgraph isomorphic to G2, it implies that G2 contains a subgraph G3 isomor-
phic to G1.

Definition 2. (Exact Subgraph Matching) Given a query graph Q and a target graph G,
the objective of exact subgraph matching is to identify all subgraphs within G that are iso-
morphic to Q.

The exact subgraph matching problem, known for its NP-completeness, primar-
ily employs a filtering-verification framework. The filtering phase eliminates infeasible
matches, leading to a refined candidate set. The subsequent verification phase involves a
subgraph isomorphism search on this candidate set to locate all embeddings of Q. Effec-
tive filtering techniques for large single target graphs include the neighbor signature filter,
pseudo subgraph isomorphism search, and the path filter, as exemplified in TurboISO. The
verification phase typically utilizes the Ullmann framework, characterized by a depth-first-
search (DFS) process. A key challenge in optimizing this process is determining an effec-
tive vertex-search order.

3.2 Ullmann algorithm and vertex‑searching order

To contextualize the Ullmann algorithm and vertex-searching order, we introduce:

Definition 3. (Induced Subgraph) Given a graph Q = (V, E, L). Let V’ be a subset of V,
E’ = {(v, u) |all v, u ∈ V’}, L’ is the label set associated with V’. The subgraph qs = (V’, E’,
L’) is an induced subgraph of Q.

The Ullmann algorithm serves as a fundamental verification framework for the exact
subgraph matching problem. It employs DFS to identify induced subgraphs q1, q2…qi of Q
within G. During the DFS, vertices of Q are included in the search according to the vertex-
searching order.

Figure 1 demonstrates the search process following the vertex-searching order of
 v1-v2-v3-v4. The Ullmann algorithm, using this order, examines a series of induced sub-
graphs. Considering the varying frequencies of subgraph qi in G, an optimal vertex-search-
ing order can reduce the number of subgraphs requiring inspection during DFS. This, in
turn, decreases the number of recursive calls, making the identification of an effective ver-
tex-searching order a crucial factor in enhancing the efficiency of Ullmann-based search
algorithms.

To establish an efficient vertex-searching order, algorithms like GraphQL and SPath
have developed estimation functions to evaluate proposed orders. QuickSI utilizes the

69879Multimedia Tools and Applications (2024) 83:69875–69896

1 3

frequency of query edges as weight, determining the vertex-searching order through the
Prim algorithm. Conversely, TurboISO sorts the paths of the spanning tree based on the
frequency of leaves. The next section will delve into identifying the most effective vertex
search order.

4 Multistage‑graph search model

In this section, we introduce the Multistage-Graph Search Model (MGSM) to analysis the
problem of selecting vertex-searching order.

Definition 4. (Multistage graph) A multistage graph M can be represented by a directed
graph M (s, t, V, D, W). V is the set of vertices. D is the set of directed edges. W is the set of
weights associated with vertices. s is the source vertex, and t is the terminal vertex. Verti-
ces are divided into several stages. Given a directed edge like (u, v), stage(v) = stage(u) + 1.

Definition 5. (MGSM) Given a query Q = (V1, E1, L1) and a target graph G = (V2, E2, L2).
Using a new vertex u to denote an induced subgaph qs of Q, and let U be the set of u for
all induced subgraph of Q. Let D = {directed edge (u1, u2)| u1, u2 ∈ U, q(u1) is an induced
subgraph of q(u2) that has one more vertex than q(u1)}. Let w(u) =|q(u)|. |q(u)| denotes the
frequency, i.e., the number of matches of q(u) on G. W = {w(u) | u ∈ U}. The source vertex
u0 denotes the empty set, terminal ut denotes Q itself. Now we have a multistage graph M
(u0, ut, U, D, W). To reflect the relationship between M, Q and G, we rewrite it as M (u0, ut,
U, D, W | Q, G), and we call M the MGSM of Q and G.

Figure 2 shows an example of induced subgraphs and MGSM. We can see that a vertex-
searching order corresponds to a path on the multistage graph. Given an order v1-v2-v3-v4,
the sequence of induced subgraphs been tested is q1.1, q2.1, q3.1, q4. So, the corresponding
path is u0-1.1–2.1–3.1-ut.

Fig. 1 Example of Ullmann search process

69880 Multimedia Tools and Applications (2024) 83:69875–69896

1 3

Theorem 1 Given query Q, target G and M (u0, ut, U, D, W | Q, G). The best vertex-search-
ing order is the minimum weight path on M, from u0 to ut.

Proof The weight of vertex on M denotes the frequency of induced subgraph of Q. So, the
minimum weight path on M means if the Ullmann algorithm follows this search order, it
tests the least induced subgraphs. So, the number of recursions calls of Ullmann algorithm
is minimized.

4.1 ES‑feature

Based on Theorem 1, the optimization of the vertex-searching order can be reformulated as
follows:

Problem 1 Given query graph Q (V1, E1, L1), target graph G (V2, E2, L2) and M (u0, ut, U,
D, W | Q, G), find a path p from u0 to ut on M, which minimizes.

w(u) denotes the weight of u, which is equal to the frequency of induced subgraph rep-
resented by u. Obviously, it is extremely hard to solve this problem directly using methods

∑

ui∈P

W
(
ui
)

Fig. 2 MGSM example

69881Multimedia Tools and Applications (2024) 83:69875–69896

1 3

such as dynamic programming, because according to the binominal theory, |U| is exponen-
tial based on |V1|, besides, w(u) is usually unknown.

However, if the precise frequencies of certain substructures such as edges or paths are
pre-calculated, these could assist in estimating w(u). These pre-counted substructures are
referred to as es-features.

For instance, GraphQL and SPath can determine the frequency of each query vertex
using neighbor signature filtering, hence their es-feature is the vertex. QuickSI obtains the
frequency of each query edge through indexing, hence its es-feature is the edge. TurboISO,
through path filtering, can acquire both the frequency of vertices and paths.

It’s straightforward to deduce that the greater the number of edges an es-feature encom-
passes, the more accurate the estimation. Being significantly larger than a vertex or edge,
the path as an es-feature is one reason why TurboISO outperforms others. On the contrary,
the pseudo subgraph isomorphism test, acting as a global filter, cannot offer large es-fea-
tures comparable to the path filter. The filtering step, therefore, not only reduces the can-
didate set but also provides prior information for the optimization of the verification step.

4.2 Estimation problem of induced subgraph

Given a vertex u on M (u0, ut, U, D, W | Q, G), the induced subgraph q(u) usually contains
more than two es-features. So, we must consider how to estimate w(u) by frequencies of
es-features. According to the estimating approach, recent algorithms can be divided into
two groups:

1) The first group includes GraphQL and SPath. They have designed estimation function
E(u) to estimate w(u). Since they choose vertex as es-feature, E(u) is proportional to
∏|C(vq)|. C(vq) is the candidate set of query vertex vq. So, the order optimization prob-
lem (1) are converted into an approximate form.

Problem 2 Given a query graph Q, a target graph G and M (u0, ut, U, D, W |Q, G), find a
u0- ut path p on M, which minimizes.

This kind of estimation function has three shortages: (1) It uses vertex as es-feature,
whose structural complexity is far less than subgraph. (2) If an induced subgraph qs has
more than one es-feature, E(qs) is obviously unrealistic. Forexample, suppose qs can be
divided into two segments q1, q2. Even if E(q1) and E(q2) are exactly equal to |q1| and |q2|,
E(qs) will be proportional to E(q1) *E(q2), which can hardly reflect the true value of |qs|.
(3) The optimization problem deduced from this estimating function cannot be solved in
polynomial time.

2) QuickSI and TurboISO belong to the second group, which claims no need to estimate the
w(u). But, the second group uses greedy strategy to get vertex-search-order. However,
we have found that both have similar approach to estimate w(u) implicitly. They just
take the frequency of a most frequent es-feature, such as most frequent edge or path, as

∑

u∈P

E(u)

69882 Multimedia Tools and Applications (2024) 83:69875–69896

1 3

the approximate value of w(u). So, the order optimization problem (1) is converted into
an approximate form.

Problem 3 Given a query graph Q, a target graph G and M (u0, ut, U, D, W |Q, G), find a
u0- ut path p on M, which minimize.

maxF(u) denotes the largest frequency of es-feature contained in u. The following
examples show how the two algorithms, QuickSI and TurboISO, can be derived from simi-
lar ways.

Example 1 Consider how to select a spanning tree T on Q and take the edge set of T as
es-feature set. It means that given an induced subgraph q(u) and the most frequent edge
ef ∈ Edge(q(u)) ∩ Edge(T), we use the frequency |ef| upon target graph to be the value of
w(u). Then problem (1) naturally converts into minimal spanning tree problem. So, we get
the basic order-selection strategy of QuickSI.

Example 2 Given a spanning tree T on Q, we take the r-l path (Given a spanning tree of
a query graph, an r-l path is a path from root to a leaf.) on T as es-feature. It means that
we use the most frequent r-l path pf within q(u) to estimate w(u). Then problem (3) can
be solved by sorting all r-l paths based on their frequency. Now we get the basic order-
selection strategy of TurboISO.

QuickSI and TurboISO use most frequent es-feature to estimate |qs|, and it is true that
their estimations may be very accurate. The |E(qs)-|qs|| can be much smaller. However,
|E(qs)-|qs|| does not determine whether an estimation is reasonable or not. Imagine that if
we multiply E(qs) with a large number such as 210, |E(qs)-|qs|| will increased dramatically.
However, it has no influence on the selection of vertex-searching order. When qs contains
more than one es-feature, this estimation will overlook the complexity of graph.

For example, as shown in Fig. 3, G1 is a path with frequency of 100. G2 is a tree having
two r-l paths each with a frequency of 50 and |u1|= 1. The most frequent path estimation
of G1 is 100 and the estimation of G2 is 50. But the real frequency of G2 is 2500 which
is much more than G1. To solve this problem, this estimation must choose more complex
structure to be es-feature, for example, a tree. However, mining tree will increase the cost
of filtering.

5 Tps algorithm

In this section, we introduce Tps, a novel subgraph matching algorithm that emphasizes the
importance of identifying an optimal vertex-searching order. Drawing from our previous
analysis, Tps seeks to address two key questions:

1) Feature Selection for es-features: What attributes should be selected as es-features,
and how can we ascertain their frequency? We suggest that TurboISO’s approach, which

∑

u∈P

maxF(u)

69883Multimedia Tools and Applications (2024) 83:69875–69896

1 3

advocates for paths as a suitable choice, provides a solid answer. This concept will be
further elaborated in Section 4.1.

2) Frequency Estimation of Induced Subgraphs: How can we estimate the frequency
of each induced subgraph of a query based on the selected es-feature? Our approach
tackles this in two stages: During the filtering phase, we calculate the approximate fre-
quency of each subtree using the exact frequency of each path, as detailed in Section 4.2.
Post-filtering, we estimate the frequencies of certain induced subgraphs based on the
exact frequencies of paths and the approximate frequencies of subtrees, discussed in
Section 4.3.

5.1 Path‑feature filtering

Traditional index-based filtering methods, such as the G-index, become ineffective with
large target graphs due to the exponential increase in index size. Recently, non-index filter-
ing approaches, like the pseudo subgraph isomorphism test, have been proposed to reduce
the candidate set size. However, these methods often overlook that the filtering step also
provides critical information for determining an effective search order in the verification
phase.

Additionally, these approaches can be time-consuming, sometimes yielding only a mod-
estly reduced candidate set. For instance, while GraphQL can attain the smallest candidate
set in certain scenarios using a pseudo subgraph isomorphism test, its verification phase
often takes longer than other algorithms like QuickSI. Furthermore, since the pseudo sub-
graph isomorphism test primarily yields the exact frequency of query vertices, it falls short
in estimating the frequency of induced subgraphs. Its filtering runtime often exceeds that
of other methods, as the pseudo subgraph isomorphism test can be more complex than the
actual subgraph isomorphism verification process.

Therefore, an effective filtering method must meet three criteria: Firstly, it should
significantly reduce the candidate set, thereby narrowing the verification step’s search

Fig. 3 Irrationality of most
frequent path estimation

69884 Multimedia Tools and Applications (2024) 83:69875–69896

1 3

space. Secondly, it should aid in determining frequencies for larger subgraphs, facili-
tating the development of an efficient vertex-searching order for verification. Lastly, it
should be executable within a reasonable timeframe. To achieve these objectives, we
have devised the following filtering strategy.

Filtering ruler 1 Given a spanning tree T of query graph Q, we execute depth-first search
(DFS) to find all mapping functions f: VQ → VG that satisfies: for each leaf vertex vleaf on T,
the path vroot-v1-v2-…vleaf is isomorphic to f(vroot)-f(v1)-f(v2)-…f(vleaf). Then f(v) will be add
into v’s candidate set C(v).

During the DFS, we adopt an additional filtering ruler to speed up this searching pro-
cess and reduce the size of C(v).

Filtering ruler 2 Let NL(v) denotes the label set of v’s neighbors. If u ∈ C(v), v then u must
satisfy: label(v) = label(u), degree(v) ≤ degree(u) and NL(v) ⊂ NL(u).

We combine these two rulers as a filtering method to get refined candidate set C(v)
for each query vertex, and then store C(v) in a tree structure. Given a query vertex v and
its parent vp on T, and a target vertex u ∈ C(vp), we use a node structure cNode(v, u) to
store a candidate match set {uv ∈ C(v) ∩ neighbor(u)}. For the target graph G and a span-
ning tree T shown in Fig. 4, all cNode (v, u) can make up a tree structure cTree shown in
Fig. 5. cTree is built along with DFS filtering.

From the common view of filtering method, ruler 2 is a local filter, i.e., it only con-
siders the local information (such as vertex label, degree, neighbor label). And ruler 1
is a global filter, since it takes all the vertices and paths on T into consideration. This
combination can effectively reduce the size of candidate set.

Form the view of MGSM, ruler 1 implies that we choose the root-leaf paths on T
as es-features. This is because searching for mapping functions which satisfy ruler 1
needs to execute subgraph isomorphism searching for these paths. So, the outputs of
this filtering method include not only a refined candidate set cTree, but also the exact
frequency of each root-leaf path of T. One of the reasons we consider path as es-feature
is because the filtering procedure can be time-efficient.

Fig. 4 Example about spanning tree and target graph

69885Multimedia Tools and Applications (2024) 83:69875–69896

1 3

Theorem 2 Searching for mapping functions satisfy ruler 1 can be done in polynomial
time.

Proof Given a path p, we use Fiso(p) to denote its isomorphism embedding set. For a map-
ping function fi satisfies ruler 1, ∪ fi(p) is only a subset of Fiso(p). It is already known that
subgraph isomorphism search for path query can be done in polynomial time and each
embedding path fi(p) is scanned once because fi is not injective. Thus, our filtering step can
also be done in polynomial time.

If we take more complex substructures such as subtree or subgraph as es-feature, Theo-
rem 2 does not apply and the filtering will take a long time. It is interesting to know that if
fi is changed to be injective, the ruler 1 is equal to searching the exact matches of whole T.
Maybe we can use the exact frequencies of paths to estimate the frequency of subtree.

5.2 Pseudo‑tree estimation

We now try to guess the approximate frequency of some subtrees of Spanning tree T. The
kind of subtree we are interested in is defined as:

Definition 6 (full subtree): Given a tree T and a vertex v on T, the full subtree st(v) is the
subtree composed by v and all v’s descendants.

Given a query vertex v and a target graph vertex u, the term ea(v|u) denotes the esti-
mated local frequency of st(v), when v is matched to u. If v is a leaf, ea(v|u) is set to be 1.
Otherwise, ea(v|u) is calculated as Eq. (1) and Eq. (2). The term et(v|u) denotes the esti-
mated local frequency of st(v), when v’ parent is matched to u.

Given a target graph G, a query graph Q and its spanning tree T, we estimate the global
frequency, on G, of every T’s full subtree st(v) by.

(1)ea(v|u)
∏

i

et
(
vi|u

)
, vi� child(v)

(2)et

�
vi�u

�
=
∑

j ea
�
vi�u j

�
, uj ∈ c Node

�
vi, u

�

Fig. 5 The example of cTree (candidate set)

69886 Multimedia Tools and Applications (2024) 83:69875–69896

1 3

This estimating approach is called pseudo-tree estimation, because of the following
Theorem:

Theorem 3 Given a tree t and a graph G, if any two vertices v1 and v2 on t without ances-
tor–descendant relationship have different labels, Ep(t) is equal to the exact number of t ‘s
embedding of G, which have been refined by both of the two Filtering rulers in Section 4.1.

Proof According to Filtering ruler 1, for any two query vertices v1 and its descendant v2,
the path v1-v2 is isomorphic to f(v1)-f(v2). Then for a query vertex v3 that doesn’t have
ancestor–descendant relationship and same label with v1, we have f(v1) ≠ f(v3). So, if any
two vertices on tree t without ancestor–descendant relationship have different labels, the
tree f(t) is isomorphic to t. As a further deduction from Eq. 1, eat(up) equals to the exact
number of embedding of st(v) on target graph when f(v) = u. Obviously, if ea(v|u) is exact,
Ep(st(v)) must be exact too.

Although pseudo-tree estimation is based on the output of path filtering, it can be per-
formed during path filtering instead of waiting for the filtering step to be finished. The
algorithm 1 shows that the DFS procedure combines path filtering with pseudo-tree esti-
mation. Suppose that there are two query vertices, v and v’s child vi, and two target ver-
tices, u = f(v) and u ‘s neighbor uj. When uj is added into cNode (vi, u), et(vi|u) will be
updated by Eq. (2) (line 11). When cNode (vi, u) is appended to cTree, Ep(st(vi)) and ea(v|u)
will be updated (line 17 and 18). If all neighborhoods of u cannot match vi, then the can-
didate matches stored in the subtree of cNode (vi, u) are all false matches (line 12). In this
case, a function clean will be called to cut the subtree, i.e., delete all the false matches and
undo the update of Ep(st(vk)) for each vk (line 13), where vk is a descendant of vi.

Since the pseudo-tree estimation does not add any recursion calls to DFS, the filtering
step can still be done in polynomial time.

(3)Ep(st(v)) =
∑
k

ea
�
v��uk

�
, uk ∈ C(v)

 Algorithm 1 filtering (query vertex v, target vertex u, cNode(v, u’)).

69887Multimedia Tools and Applications (2024) 83:69875–69896

1 3

5.3 Order selection

To find a good vertex-searching order for verification step, we first constrain the order
selection within the scope of depth-first-walk order of spanning tree T. Setting this limited
scope can help us make reasonable choice, since in this way we can make use of the fre-
quencies of paths and subtrees outputted by filtering step.

By adjusting the visiting order of full subtrees of T, we can have different depth-first-
walk orders. As suggested by MGSM, a given searching order corresponds to a certain
sequence of induced subgraphs. To estimate the frequencies of these subgraphs, they will
be categorized into two groups.

1) The induced subgraph g contains only root-leaf paths but no full subtree. Suppose
that the most frequent path is pm (denote its frequency as freq(p)), We estimate the approxi-
mate frequency of g as.

2) The induced subgraph contains full subtrees. Suppose the most frequent path is pm,
and the most frequent (approximately) full subtree is tm. We estimate the approximate fre-
quency of g as.

Based on pseudo-tree estimation, the optimization problem 1 is converted into the
following.

Problem 4 Given a query graph Q, a target graph G, Q’s spanning tree T, find a depth-
first-walk order Ov, which minimizes.

where gi is the induced graph composed by first i vertices of Ov.

This problem can be exactly solved by algorithm 2 and 3. First, for T’s root and each
of its child vc, adjust the visiting order within st(vc) to get a depth-first-walk order Oc
that minimizes E(st(vc), Oc) (algorithm 2 line 2, algorithm 3 line 1). Then numerate all

(4)E(g) = freq
(
pm

)

(5)E(g) = max
(
freq

(
pm

)
,Ep

(
tm
))

(6)cost
�
T ,Ov

�
=
∑

i E
�
gi
�
, i ∈

�
1, 2,… , ��Ov

��
�

 Algorithm 2 order_selection(T).

 Algorithm 3 Adjust(vertex v).

69888 Multimedia Tools and Applications (2024) 83:69875–69896

1 3

visiting sequence of these full subtrees to find the sequence that minimizes E(T, Ov)
(algorithm 3 line 3), so the whole spanning tree is adjusted. At last, the vertex-search-
ing order Ov is achieved by DFW on T (algorithm 2 line 3). But in experiment, we
implement an approximate version based on greedy strategy with lower cost: perform
DFW on T directly. At each recursion step, choose the unvisited child with largest E(g)
to perform the next recursion step. The visiting order Ov is the vertex-searching order
we want. This approximate way can usually get the same result as the exact one.

5.4 Subgraph matching

The verification step is based on Ullmann framework. As shown in algorithm 4, DFS
verification on candidate set is executed, and the searching order is the output of our
order selection method. The difference between the verification procedure and naive
Ullmann algorithm is that during each recursion step, we do not need to test the whole
C(v), but the cNode(v, f (parent of v)), a subset of C(v) at the local region around the
current matches of v’s parent (algorithm 5, line 12).

Based on these, we proposed a subgraph matching algorithm called Tps. As shown
in algorithm 5, Tps includes three step: Step 1, convert query graph Q into spanning
tree T (algorithm 5 line 1). Step 2, perform path filtering to achieve refined candi-
date set cTree and perform pseudo-tree estimation to achieve vertex-searching order
Ov (algorithm 5 line 2–5). Step 3, perform Ullmann algorithm based on Ov and find all
embedding of Q (algorithm 5 line 6).

 Algorithm 4 verification(query vertex v, candidate set C, vertex-searching order Ov, current match f,
match set M).

 Algorithm 5 Tps(query Q, target graph G).

69889Multimedia Tools and Applications (2024) 83:69875–69896

1 3

6 Optimization of filtering step

Comparing Ullmann algorithm and algorithm 1, it is easy to see Ullmann algorithm
and path filtering have one thing in common: both are based on DFS. So, it is reason-
able to assume that a good vertex-searching order can also reduce the number of times
for recursive calls of filtering. We have already given the method for optimizing the
searching order of Ullmann algorithm, now let’s address the same question for path
filtering.

To find a good vertex-searching order for filtering is equal to generate a good
spanning tree and determine the visiting order of subtrees. Unlike pseudo-tree esti-
mation, we have little prior information such as frequency of path. So, the main
approach is first to index the target vertices with some pruning conditions. Then,
by searching on index, we can get the initial candidate set Cinitial(v) for each query
vertex v. |Cinitial(v)| will be chosen as es-feature, and we use most frequent es-feature
to estimate the frequency of induced subgraph. Then, convert the optimization prob-
lem 2 into corresponding form. The spanning tree T will be achieved by solving
the optimization problem. At last, perform depth-first walk on T to get the vertex-
searching order for filtering step.

6.1 Index

If u is a feasible match of v, it is easy to draw a simple necessary condition:
label(v) = label(u), degree(v)≦degree(u). If v and u satisfy this condition, we add u to
the initial candidate set Cinitial(v). It is easy to index all target vertices according to their
labels and degrees. The space complexity of this index is O(n), which is much more
compact than the feature-based indexes.

Figure 6 shows the structure of our three-level index. The third level of index has
three fields: vertex label, degree threshold, and amount. The amount stores the total
number of vertices who share the same label and whose degrees are less than degree
threshold. Given a query vertex v, |Cinitial(v)| is equal to the value of amount in the index
entry whose vertex label is label(v) and degree threshold is equal to degree(v).

Fig. 6 Three-level index

69890 Multimedia Tools and Applications (2024) 83:69875–69896

1 3

6.2 Spanning tree generation

Choosing |Cinitial(v)| to be es-feature and adopting most frequent feature estimation, we get
a new form of problem 2.

Problem 5 Given a query Q, find a spanning tree T and determine its subtree visiting
order, minimize:

maxV(i) is the largest |Cinitial(v)| of the first i vertices during the depth-first walk. In
fact, to find such T exactly is very costly. We propose an approximate solution: if we have
already get T, it is easy to adjust the visiting order of the subtrees of T in order to minimize
sumV(T).

As shown in algorithm 6, we firstly find a minimal spanning tree by using Prim algo-
rithm (algorithm 6 line 1). Then for each root’s children vc, adjust the visiting order within
full subtrees st(vc) recursively to minimize sumV(st(vc)) (algorithm 7 line 1). After that,
enumerate all the permutation of the subtrees to get the best subtree-visiting order which
minimizes sumV(T) (algorithm 7 line 3). At last, perform DFW on T to get the vertex-
searching order Of for filtering. Algorithm 7 is very similar with algorithm 4 (adjust
function of pseudo-tree estimation), the only difference is that the optimization target is
replaced by sumV(T) since we adopt a different estimation function.

7 Experiments

In this section, we present experimental results obtained from a large synthetic graph to
demonstrate the effectiveness of the Tps algorithm. For comparative analysis, we also
include results from TurboISO in our tests. Note that the "combine and permute" strategy
typically employed in TurboISO is removed for three primary reasons: 1) This strategy
shows significant benefits mainly for specific types of query graphs, such as clique queries,
which do not represent our general graph queries. 2) In scenarios where this strategy is

(7)sumV(T) =
∑

i

maxV(i)

 Algorithm 6 Spanning_tree_generation(query Q).

 Algorithm 7 Adjust(vertex v).

69891Multimedia Tools and Applications (2024) 83:69875–69896

1 3

effective, Tps can be adapted to function similarly to TurboISO, thus not markedly affect-
ing the comparative outcomes. 3) Our research primarily focuses on optimizing vertex-
searching order, a factor more influential to query algorithm performance than other opti-
mization methods. Discussions on alternative optimization approaches are reserved for
future studies.

7.1 Comparison for filtering step

Our target graph encompasses 3,000 vertices and 40,000 edges, generated using the method
adopted by GraphQL [14]. This involves creating ’n’ vertices and ’m’ edges with randomly
selected end vertices, with each vertex assigned a label. To ensure fairness in comparison,
every query was designed to have as many embeddings as possible, with the label set com-
prising 40 distinct labels. The query set was generated following the procedure proposed
by [6]. We began with a small 5-edge graph as the seed and randomly added edges, result-
ing in a 6-edge query set with each query having over 50 matches. We continued this pro-
cess up to 11-edge queries, resulting in a set of 643 queries.

7.2 Comparison for filtering step

Figure 7 and 8 illustrate the number of recursions calls and the running time for the fil-
tering step, respectively. Although both Tps and TurboISO implement path filtering, Tps
optimizes the vertex-searching order within this process as outlined in Section 5. In con-
trast, TurboISO randomly selects the spanning tree and its corresponding order. Figure 7
shows that Tps consistently requires fewer recursion calls than TurboISO, indicating the
influence of optimized vertex-searching order in filtering, albeit less pronounced than in
the verification phase. This is partly due to limitations in estimating the most frequent es-
feature, especially when the es-feature is overly simplistic (e.g., a vertex). Figure 8 reveals
that the filtering running times of both algorithms are similar, attributable to the marginal

Fig. 7 Recursion calls for filtering step

69892 Multimedia Tools and Applications (2024) 83:69875–69896

1 3

improvement in vertex-searching order and the additional time incurred by Tps for pseudo-
tree estimation during path filtering.

7.3 Comparison for verification step

Our comparative analysis of the subgraph isomorphism verification step for Tps and Tur-
boISO focused on two aspects: query graph size and frequency. Figure 9 and 10 show the
average number of recursions calls and running times for verification, respectively. The
performance disparity between the two algorithms is minimal for queries with less than
7 edges. However, as the query size increases, the difference becomes more significant.
For queries exceeding 10 edges, Tps’s recursion calls are only about one-third of those

Fig. 8 Running time for filtering step

Fig. 9 Running time for verification step (view of query size)

69893Multimedia Tools and Applications (2024) 83:69875–69896

1 3

in TurboISO, demonstrating the effectiveness of pseudo-tree estimation over the most fre-
quent es-feature. Similarly, Tps’s average running time outperforms TurboISO by up to
four times.

Figures 11, 12, 13 and 14 present the results segmented by query frequency. Queries
with over 1,000 matches were classified into the high-hit group, comprising 335 queries,
and further divided into four subsets with step sizes of 2,000. The remaining queries fell
into the low-hit group, divided into five subsets with 200 step sizes. For queries with fre-
quencies below 800, Tps’s average running time closely matches that of TurboISO, yet
with significantly fewer recursion calls. The performance gap widens with increasing query
frequency. Notably, for frequencies above 7,000, Tps outperforms TurboISO by nearly a
factor of 5.

Fig. 10 Recursion calls for verification step (view of query size)

Fig. 11 Running time for verification step (low hit)

69894 Multimedia Tools and Applications (2024) 83:69875–69896

1 3

8 Conclusions

In this study, we present the Multistage Graph Search Model (MGSM), a novel theoreti-
cal framework for analyzing vertex-search order selection in graph matching. Our findings
reveal that the optimal search order aligns with the minimum weight path in a multistage
graph. Leveraging this insight, we developed Tps, an innovative matching algorithm that
effectively optimizes search orders for both filtering and verification phases. A key aspect
of our approach is the introduction of the pseudo-tree estimation method which improves
the order selection process. The primary contributions of this work include the develop-
ment of the Tps algorithm and the establishment of a theoretical foundation for order selec-
tion in graph matching.

Looking forward, our research aims to further refine these findings. We plan to con-
struct a more comprehensive query set for balanced comparative analysis. Additionally,

Fig. 12 Recursion calls for verification step (low hit)

Fig. 13 Running time for verification step (high hit)

69895Multimedia Tools and Applications (2024) 83:69875–69896

1 3

we intend to conduct extensive comparisons with existing algorithms, not only to assess
overall performance but also to evaluate their order selection methodologies and estima-
tion techniques. We hope future work will advance our understanding of graph matching
algorithms and their practical applications.

Acknowledgements This research was funded by Science Research Project of Hebei Education Department
[QN2023256]. I would like to thank Xin Dai for his contribution on this paper.

Data availability Data sharing is not applicable to this article as no new data were created or analyzed in
this study.

Declarations

 The authors declare that they have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

References

 1. Gandon F (2018) A survey of the first 20 years of research on semantic Web and linked data. Ing-
enierie des Systemes d’Information 23(3–4):11–56

 2. Xin H , Xuejun C (2012) A Visualize Method for Protein-Protein Interaction Network Based on
Extended Clique. Bulletin of Science and Technology

 3. Houbraken Maarten et al (2013) The Index-Based Subgraph Matching Algorithm with Gen-
eral Symmetries (ISMAGS): Exploiting Symmetry for Faster Subgraph Enumeration. Plos One
9(5):e97896–e97896

 4. Xu, Xiang, Wang, Xiaofang, Kitani, Kris M. (2018) Error Correction Maximization for Deep Image
Hashing. British Machine Vision Conference (BMVC)

 5. Coming DS, Staadt OG (2008) Velocity-Aligned Discrete Oriented Polytopes for Dynamic Collision
Detection. IEEE Trans Visualization and Computer Graphics 14(1):1–12. https:// doi. org/ 10. 1109/
TVCG. 2007. 70405

 6. Wickramaarachchi, Charith, et al. (2016) Distributed Exact Subgraph Matching in Small Diameter
Dynamic Graphs. IEEE International Conference on Big Data

 7. H. Goto, Y. Hasegawa, and M. Tanaka. (2007) Efficient Scheduling Focusing on the Duality of MPL
Representation. Proc. IEEE Symp. Computational Intelligence in Scheduling 57–64. https:// doi. org/ 10.
1109/ SCIS. 2007. 367670

Fig. 14 Recursion calls for verification step (high hit)

https://doi.org/10.1109/TVCG.2007.70405
https://doi.org/10.1109/TVCG.2007.70405
https://doi.org/10.1109/SCIS.2007.367670
https://doi.org/10.1109/SCIS.2007.367670

69896 Multimedia Tools and Applications (2024) 83:69875–69896

1 3

 8. Xiang Xu, Megha Nawhal, Greg Mori, Manolis Savva.MCMI: (2007) Multi-Cycle Image Translation
with Mutual Information Constraints. https:// arxiv. org/ abs/ 2007.02919

 9. Kush, Deepanshu; Rossman, Benjamin. Tree-depth and the Formula Complexity of Subgraph Isomor-
phism. https:// arxiv. org/ abs/ 2004. 13302

 10. Cibej, Uros, Mihelic, et al. (2015) Improvements to Ullmann’s Algorithm for the Subgraph Isomor-
phism Problem. International Journal of Pattern Recognition & Artificial Intelligence

 11. J. Ingraham, V. Garg, R. Barzilay, T. Jaakkola. (2019) Generative Models for Graph-based Protein
Design. In Neural Information Processing Systems (NeurIPS)

 12. J.M.P. Martinez, R.B. Llavori, M.J.A. Cabo, and T.B. Pedersen. (2007) Integrating Data Warehouses
with Web Data: A Survey. IEEE Trans. Knowledge and Data Eng., preprint, 21 https:// doi. org/ 10.
1109/ TKDE. 2007. 190746

 13. Kim, H., Choi, Y., Park, K., Lin, X., Hong, S. H., Han, W. S. (2021). Versatile equivalences: Speeding
up subgraph query processing and subgraph matching. In Proceedings of the 2021 International Con-
ference on Management of Data (pp. 925–937)

 14 Nabieva E, Jim K, Agarwal A et al (2005) Whole-proteome Prediction of Protein Function Via Graph-
theoretic Analysis of Interaction Maps. Bioinformatics 21(suppl 1):i302–i310

 15. Lyu X , Wang X , Li Y F , et al. (2015) GraSS: An Efficient Method for RDF Subgraph Matching.
International Conference on Web Information Systems Engineering. Springer, Cham

 16. Baomin Xu, Tinglin Xin, Yunfeng Wang, Yanpin Zhao. (2013) Local Random Walk with Distance
Measure. Modern Physics Letters B.27(8) 1–9

 17. J. Cheng, Y. Ke, W. Ng, A. Lu. (2007) Fg-index: Towards Verification-free Query Processing on
Graph Databases. In Proceedings of the ACM SIGMOD international conference on Management of
data, pages 857–872

 18. Khan, Arijit, Nan Li, Xifeng Yan, Ziyu Guan, Supriyo Chakraborty, Shu Tao. (2011) Neighborhood
Based Fast Graph Search in Large Networks. In Proceedings of the ACM SIGMOD International Con-
ference on Management of data,901–912

 19. Liu J, Baomin Xu, Xiang Xu, Xin T (2016) A Link Prediction Algorithm Based on Label Propagation.
Journal of Computational Science 16:43–50

 20. Foggia P, Percannella G, Vento M (2014) Graph Matching and Learning in Pattern Recognition in the
Last 10 Years. Int J Pattern Recognit Artif Intell 28(01):1450001

 21. Kim H, Choi Y, Park K, Lin X, Hong SH, Han WS (2023) Fast subgraph query processing and sub-
graph matching via static and dynamic equivalences. VLDB J 32(2):343–368

 22. Wang X, Zhang Q, Guo D, Zhao X (2023) A survey of continuous subgraph matching for dynamic
graphs. Knowl Inf Syst 65(3):945–989

 23. Ge, Y., Bertozzi, A. L. (2021). Active learning for the subgraph matching problem. In 2021 IEEE
International Conference on Big Data (Big Data) (pp. 2641–2649). IEEE

 24. Wang, H., Zhang, Y., Qin, L., Wang, W., Zhang, W., Lin, X. (2022, May). Reinforcement learning
based query vertex ordering model for subgraph matching. In 2022 IEEE 38th International Confer-
ence on Data Engineering (ICDE) (pp. 245–258). IEEE

 25. Zhao, K., Yu, J. X., Li, Q., Zhang, H., Rong, Y. (2023). Learned sketch for subgraph counting: a holis-
tic approach. The VLDB Journal, 1–26

 26. Zhang H, Bai Q, Lian Y, Wen Y (2022) A twig-based algorithm for top-k subgraph matching in large-
scale graph data. Big Data Research 30:100350

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://arxiv.org/abs/
https://arxiv.org/abs/2004.13302
https://doi.org/10.1109/TKDE.2007.190746
https://doi.org/10.1109/TKDE.2007.190746

	Tps: A new way to find good vertex-search order for exact subgraph matching
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Subgraph matching problem
	3.2 Ullmann algorithm and vertex-searching order

	4 Multistage-graph search model
	4.1 ES-feature
	4.2 Estimation problem of induced subgraph

	5 Tps algorithm
	5.1 Path-feature filtering
	5.2 Pseudo-tree estimation
	5.3 Order selection
	5.4 Subgraph matching

	6 Optimization of filtering step
	6.1 Index
	6.2 Spanning tree generation

	7 Experiments
	7.1 Comparison for filtering step
	7.2 Comparison for filtering step
	7.3 Comparison for verification step

	8 Conclusions
	Acknowledgements
	References

