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Abstract
Nowadays, segmentation and classification is most essential process to analyse the brain 
tumor disease. Moreover, Magnetic Resonance Imaging (MRI) scan images are used to 
helps the radiologist to diagnosis the tumor region using an efficient medical imaging tech-
niques. In manual, it requires higher time to process each stage and image size is varied 
due to large amount of dataset. Several computer vision strategies are introduced in the 
literature for brain tumor segmentation and classification however, due to lower accuracy 
as well as ineffective decision making failed to provide the enhanced results. Therefore, 
this article develops the innovative hybrid Aquila coyote optimization algorithm is used to 
extract important elements that will be used in the classification process. Then, Deep Con-
volutional Neural Network (DCNN) classifier used as classification task while the weights 
are being modified and the suggested approach plays a significant role in improving the 
classification accuracy. With regard to the evaluation metrics, accuracy, sensitivity, and 
specificity, the suggested model’s effectiveness is assessed. The performance is attained to 
be 97.3017%, 96.8194%, and 96.4079%, individually. This demonstrates how the suggested 
technique is better to those already in use for the efficient segmentation and categorization 
of brain tumours.
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1  Introduction

Among the most frequent causes of death in both adults and children is a brain tumour. 
A mass of tissue that develops uncontrollably due to faulty development pathways is 
called a tumour. When a certain type of cell separates from its usual characteristics and 
develops abnormally, a brain tumour results. Malignant and non-cancerous cells that 
grow abnormally inside the skull or in the brain are known as tumours [4]. Cells, the 
basic units of tissues, are where cancer starts. These tissues constitute the body’s organs 
[1]. Medical image analysis relies heavily on MRI devices. The data produced by differ-
ent successive pulses in MRI is multidimensional. RI can reveal details about the dis-
ease and detect a number of pathologic abnormalities, allowing for a more exact diag-
nosis [1]. MRI options include flair, T1-weighted MRI, falir with contrast enhancement 
and T2-weighted MRI. The most challenging aspect in helping to construct a diagnosed 
system is segmenting the brain tumour MRI [3]. In the process of building an automatic 
diagnosis system, a novel technique is offered as follows: picture capture, pre-process-
ing, segmentation, post-processing are the new approach used in construction of auto-
matic diagnosis system.

Various segmentation techniques have been utilized in the past, including region 
expanding technique, thresholding, clustering, edge detection, and so on [2, 4]. In recent 
years, a radiation oncologist’s manual segmentation of the tumor zone has resulted in 
longer operations, difficulty in segmenting the tumor territory, and maltreatment by pro-
fessionals, all of which have resulted in issues. The partial volume effect, noise, and 
bias fields such as smoothly varying intensities inside tissues are all major challenges 
in segmentation. When tumors are manually segmented, they might vary widely in size, 
shape, location, and features. Furthermore, the tumor’s intensities are comparable to 
those of normal brain tissue. When a tumor grows, it often deforms the healthy tis-
sues around it, resulting in an abnormal size and shape. For efficient tumor segmenta-
tion, an automatic tumor segmentation approach is being developed to overwhelm these 
limitations.

The objective of this research is to develop a high-accuracy, efficient automatic 
image processing technique for brain MR images in a tumor segmentation system [2]. 
It uses a high-precision, robust diagnosis approach to quickly segment tumor masses 
and improve tumor detection efficiency [5]. Optimization is an important challenge in 
various functional domains, including production, healthcare distribution, and image 
processing [12]. For instance, an optimised programmer can benefit from a computer’s 
enormous memory capacity, the velocity of a particular output or input device, or spe-
cial CPU capabilities [13]. An program must always operate correctly in order to be suc-
cessful. As a consequence, optimization offers business advantages in addition to being 
simple and practical for end users. The deployment of computer intelligence depends 
heavily on optimization algorithms due to the high demand for intelligence products. 
Potential usefulness in commerce, technology, teaching, and other fields will be signifi-
cantly impacted [1].

In order to segregate brain tumours from input MRI images, the Aquila coyote 
method, a hybrid optimization technique, is introduced in this study. The suggested 
Aquila coyote algorithm is used to best tune the weights of the DCNN classifier, which 
classifies brain tumours. To improve the effectiveness of the classification process, the 
segmented image characteristics that are significant statistical features, texture fea-
tures, including Gray Level Co-occurrence matrix (GLCM) features are extracted. The 
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suggested classification model is thoroughly explained in this study, and the conclusions 
allow the model’s effectiveness to be confirmed. Additionally, a thorough evaluation of 
the effectiveness of traditional classification methodologies is given in order to assess 
the efficiency of the suggested strategy for classifying brain tumours.

The important contribution of the article is: 

•	 The proposed model designs a novel optimization strategy named Aquila coyote algo-
rithm for the brain tumor segmentation process using images of MRI.

•	 The important characteristics of the image sequences are essential for improving the 
effectiveness of the suggested brain tumour classification model.

•	 To verify the efficacy of the suggested strategy, the proposed scheme is compared to the 
traditional methods in terms of outcomes.

The remainder of the paper is structured as follows: Section 2 surveys various current 
approaches based on classification and segmentation process of brain tumours as well as 
the difficulties. Moreover, the proposed model is described in Section 3 and there outcomes 
are discussed in Section 4. Similarly, the paper is ends in conclusion Section 5.

2 � Literature survey

This section discusses the traditional approaches of segmenting and categorising brain 
tumours as well as the problems with the current model that served as the impetus for the 
creation of the suggested model.

According on a review of the literature on existing techniques, Shubhangi Nema et al. 
[4] created the residual cyclic unpaired encoder-decoder network (RescueNet), which 
employs residual and mirrored principles to improve the ability of automated algorithms 
to assist radiologists. However, vanishing gradient is the major problem associated with the 
developed model. Aparna Natarajan and Sathiyasekar Kumarasamy [5] designed an auto-
matic segmentation model using swarm intelligence and machine learning strategies, and 
are named as fuzzy logic with spiking neuron model (FL-SNM). The method possessed 
enhanced performance and was highly robust, but the accuracy of the model was very poor. 
Naresh Shiv For parameter learning across the number of features collected in each of the 
three methods, such as T1C, T2, and FLAIR, Shivhare and Nitin Kumar [6] utilised an 
MLP classifier customised utilizing SMO, GWO, or AEFA algorithms. The outcomes are 
united using bagging approach for enhancing the performance of brain tumor segmenta-
tion. However, more time and resources are required to enhance the accuracy of the model.

A CNN-based multi-level brain tumour classification model was created by Muham-
mad Sajjad et al. [8] and demonstrated improved performance when compared to evalu-
ations conducted using more traditional techniques. The radiologist must consider other 
factors in addition to classification as malignant or benign before deciding on the course 
of treatment. S. Deepak and P.M. Ameer [9] created a 3-class categorization module 
by utilising the deep transfer learning approach to categorise the three main types of 
brain malignancies—meningioma, glioma, and pituitary tumours. The dataset used to 
solve the classification task is quite unbalanced, notwithstanding the model’s improved 
classification accuracy. Gopal S. Tandel et  al. [10] modeled a transfer-learning-based 



69172	 Multimedia Tools and Applications (2024) 83:69169–69196

1 3

AI model using CCN for brain tumor classification. The model led to improved perfor-
mance, but the problem of overfitting occurs while using the developed model, which is 
considered as the major drawback of the model. To categorise the various types of brain 
tumours, ZarNawab Khan Swatiaet al. [11] employed which was before DCNN clas-
sification and a block-wise fine-tuning method based on transfer learning. To visually 
inspect and categorise the images in the Image Net dataset, which is hard, expensive, 
and time-consuming, radiologists must be available.

2.1 � Problem statement

•	 The difficulties with the current approaches to segmenting and classifying brain 
tumours are discussed as follows:

•	 The precise structure requirement is the fundamental challenge with hierarchical 
FCM methods based on template matching approaches [3].

•	 To update cluster centers, FCM is often constructed utilizing quantization and 
aggregation, as well as a weight factor. FCM-based approaches, on the other hand, 
have the drawback of requiring a specified number of clusters before initiating clus-
tering operations [3].

•	 Due to privacy concerns and significant costs associated with data gathering, obtain-
ing high-quality labelled medical data is quite challenging. By utilising pre-trained 
models produced using TL techniques, this restriction can be eliminated [10].

•	 The automatic algorithms based on CNN and its variants were unable to signifi-
cantly increase performance [9].

•	 The segmentation job cannot be completed successfully for single-mode MR images 
using self-organizing active contour (SOAC) model [5].

3 � Proposed method of brain tumor segmentation and classification

With accurate and comprehensive automatic algorithms for the classification of brain 
tumours, there is a chance of improving diagnosis and treatment approaches. The per-
formance depends on the pathologists’ expertise because segmenting a brain tumour 
manually is time-consuming and error-prone. In order to execute the enhanced segmen-
tation process effectively, it is crucial to establish an automatic segmentation approach. 
The primary goal of this study is to present a brand-new, finely adjusted segmentation 
technique for the separation of MRI images that can distinguish between benign and 
malignant tumours. To remove image artefacts and enhance the image quality, the input 
is first pre-processed. The segmentation process is then carried out using the suggested 
Aquila coyote optimization technique. After segmentation, the important characteris-
tics, such as texture features, statistical features, and GLCM features, are extracted. The 
DCNN classifier conducts the classification process using the concatenation feature vec-
tor as its input. By using the suggested Aquila coyote optimization procedure to opti-
mally tune the DCNN classifier’s weights, the classifier’s efficacy is increased. Figure 1 
depicts the suggested model’s schematic diagram.



69173Multimedia Tools and Applications (2024) 83:69169–69196	

1 3

3.1 � Input image from input database

The MRI scans from the brain tumour segmentation dataset are used as the source 
images for analysis. Consider the mathematical formulation of the photos taken from of 
the input datasets:

Where, w is the input dataset images and Dx represents xth image taken into consid-
eration. After choosing the input data, the image is filtered to determine if it is benign or 
malignant. The input image’s dimension is set to be its size [224 × 224 × 3].

3.2 � Pre‑processing of input image

The unwanted distortions and aberrations, like noises present in the brain tumor image. 
Such distortions and artefacts must be eliminated prior to the segmentation process in 
order to generate proper segmentation results. In the proposed work, noises are filtered 
using the Median Filter. The Median Filter replaces pixel values with the median inten-
sity of nearby pixels, preserving the boundaries of the filtered MRI picture [14]. After 
pre-processing the image, the ROI  is roughly segmented and optimised using the sug-
gested hybrid Aquila coyote segmentation technique.

(1)I =
{
Dx

}
;(1 ≤ x ≤ w)

Preprocessing and 
enhancement 

Segmentation 

MRI images 
(input dataset)

Stastical features 

Texture features 

GLCM features 

Aquila coyote optimization
algorithm 

Feature exraction 

DCNN classifier Trained classifier model Classifier output 

Fig. 1   Schematic diagram of proposed model of brain tumor segmentation and classification
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3.3 � Proposed aquila coyote optimization algorithm in brain tumor segmentation

The first step in image analysis and algorithmic is image segmentation, one of the most 
difficult image processing operations with a significant impact on the final classification 
outcomes. The technique of separating discrete areas with equivalent pixels is referred 
to as image segmentation. For a variety of reasons, segmentation is frequently utilised 
in medical computer vision and image analysis [7]. Some of its applications include the 
quantification of multiple sclerosis lesions, quantification of coronary borders in angio-
grams, simulation of surgery, surgical planning, measurement of tumour volume as well 
as treatment response, automated classification of blood cells, brain development research, 
tissue sensing on mammography, heart image retrieval from cardiac cineangiograms, and 
tumour detection. Automatic MR picture segmentation is still a persistent issue. Due to 
overlapping brain with varied intensities as well as varying intensities of tissues at different 
regions, it is extremely difficult to properly classify brain tissues automatically. Because 
of its high functional sensitivity, accurate classification of brain tumours in MR images is 
essential for both diagnosing and treating them. However, it is significantly more difficult 
than segmenting natural images. Brain tumours can cover portions of the brain and come 
in a variety of sizes, shapes, and locations. Potential damage to nearby organs could result 
from a tumor’s growth. Finding problems in medical images is quite challenging due to 
the irregular structures of the body, particularly if clutter or aberrations are present. The 
underlying reason why the offered methods are too slow too flexible to be used in practise, 
despite numerous studies on the issue, is the segmentation problem [3].

3.3.1 � Proposed aquila coyote algorithm

The suggested Aquila coyote method is a hybrid meta-heuristics method that combines the 
traits of different seeker types, including Aquila and coyote seekers [15, 16]. The majority 
of common optimization techniques were created in response to how hunters prefer to hunt 
and how they help hunters locate their prey. Similar to how the suggested Aquila coyote 
optimization approach demonstrates the characteristics of both the coyote and the Aquila 
hunters in capturing their prey. The suggested Aquila coyote optimization technique, which 
boasts a dynamic property in tackling the difficulties related to convergence, was devel-
oped using the back-and-forth features of the Aquila seekers and the social hierarchy-based 
characteristic of the coyote seekers. In other words, the dynamic properties of both Aquila 
seekers and coyote seekers enable the suggested Aquila coyote optimization technique to 
address the convergence problem. As a result, the suggested Aquila coyote optimization 
technique is better able to arrive at the overall best solution for practical applications.

The term "optimization" refers to a search process that allows for the evaluation of the 
best answers to problems that arise in the actual world. Multiple agents may be used in the 
search process, and it may evolve through iterations based on mathematical formulae. The 
process of creating a successful optimization algorithm is comparable to the process of 
creating a self-organizing method [15]. The coyote searchers are taken into account in the 
suggested research because of traits like social structure and hierarchy and the predomi-
nate hunting laws related with them. The traversal velocity features and the to-and-fro hunt 
properties of the Aquila seekers are key factors in the algorithm’s creation. These Aquila 
seekers are regarded as the most studied species in the entire world because of their cour-
age in the field. In comparison to female Aquila seekers, males Aquila seekers are shown 
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to be more effective hunters of prey. The Aquila seekers use one of four different hunting 
techniques, switching between them rapidly and cunningly depending on the situation and 
the necessity to capture the target. Following is a description of the many hunting tech-
niques used by Aquila seekers:

Process 1: In the first plan, the Aquila seekers ascend from the ground to a very high 
elevation in order to catch the birds.
Process 2: The second strategy, known as a short slide attack, has the aquila seekers 
only raise at a low range above the ground to capture their prey.
Process 3: The third hunting tactic is mostly employed to pursue slow-moving prey, as 
well as the attack carried out in this manner is known as a slow descend attack in which 
the Aquila seeker lowers to the ground.
Process 4: The fourth technique involves the Aquila seekers walking and dragging the 
prey outside the coverage region before attacking [15].

The Aquila hunters thus alternate between hunting techniques in order to capture their 
prey depending on where the prey is located. As a result, the Aquila searchers are regarded 
as the most knowledgeable and skillful seekers. The algorithm’s steps, which were 
designed based on the traits of Aquila searchers, are as follows:

Step 1: Initialization of Population: The number of Aquila seekers is initially initial-
ised. Each Aquila seeker has a position vector that shows its location at the moment as,

where, n represents the search space total Aquila seeker and b is the problem dimension, 
and ga,b is the ath Aquila seeker location in bth dimension. The Aquila seeker each fitness is 
stored as,

The above equation, which assesses the survival of the fittest according on the fitness 
measure, stores the corresponding health measure of the each Aquila seeker.

Step 2: Termination criterion: The algorithm is then checked for a method involving, 
and if one is not found, the initial location of a Aquila seekers is modified as follows:

Where, Pv+1
a,b

 represents ath Aquila seeker position at (v + 1)th iteration, rand represents 
random number, Nb represents bth lower bound, and Mb represents bth upper bound of the 
given problem.

Step 3: Mathematical representation depending on hunting method: The Aquila seek-
ers alternate between the four hunting techniques, which allow them to change between 
different hunting phases including exploitation and exploration. When the criteria 
v ≤

(
2

3

)
B met, the exploration procedure is carried out; if not, the exploitation phase is 

initiated.

(2)Pa,b =
(
g1, g2,… , gn,b

)
;(a = 1, 2,… , n)

(3)Fv
a
=
(
F1,F2, ..,Fn

)

(4)Pv+1
a,b

= rand ×
(
Mb − Nb

)
+ Nb
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(i) Position update using process 1: The first exploration procedure, also known as 
method 1 of hunting, is used to calculate the location update equation. It is expressed 
as follows:

Where, Pv+1
1

 represents Aquila seekers position produced by the search method 1, 
Pv
best

 best solution found so far in the vth repetition, and 
(
1 −

v

B

)
 represents the term used 

for controlling the first exploration process, the term Pv
mean

 represents the current solu-
tion of location mean value, and rand is the random number of range 0 to 1.

(ii) Position update using process 2: According to the features of the Lyra seekers 
using technique 2 of hunt, also known as the second exploration phase, the location 
update equation is as follows:

Where, Pv+1
2

 is the position of the Aquila seekers position produced by the search 
method 2, levy(r) represents levy flight distribution, and Pv

Rand
 represents a random solu-

tion, and x and y represents search spiral shape.

(iii) Position update using process 3: The first exploitation procedure is also known 
as method 3 of hunting, and it is based on the features of the Aquila seekers. The 
location update equation is constructed as follows:

Where, Pv+1
3

 represents the Aquila seekers position produced by the search method 3, 
� and � represents the adjustment parameters of exploitation.

(iv) Position update using process 4: The second exploitation procedure is also 
known as technique 4 of hunting, and it is based on the features of the Aquila seek-
ers. The location update equation is constructed as follows:

Where, Pv+1
4

 represents the Aquila seekers position produced by the search method 
4, H1 signifies the Aquila seekers various movements, H2 represents the random num-
ber that linearly decreases from 2 to 0, and FTq represents the quality function used 
for balancing the search strategies. The model created using Aquila seekers uses the 
equation mentioned above as its standard equation. However, the features of the coyote 
seekers are combined with the features of the Aquila seekers in order to improve the 

(5)Pv+1
1

= Pv
best

×

(
1 −

v

B

)
+
(
Pv
mean

− Pv
best

× rand
)

(6)Pv+1
2

= Pv
best

× levy(r) + Pv
Rand

+ (c − d) × rand

(7)Pv+1
3

=
(
Pv
best

− Pv
mean

)
× � − rand + ((M − N) × rand + N)�

(8)Pv+1
4

= FTq × Pv
best

−
(
H1 × Pv

4
× rand

)
− H2 × levy(r) + rand × H1

(9)Pv+1
4

= Pv+1
AQ

= FTq × Pv
best

−

(
H1 × Pv

Aq
× rand

)
− H2 × levy(r) + rand × H1



69177Multimedia Tools and Applications (2024) 83:69169–69196	

1 3

performance of the Aquila coyote optimization algorithm which is based on the Aquila 
seekers. The addition of the coyote seekers aids the optimization algorithm in improv-
ing the hunting experience had by the Aquila seekers, speeding up the system’s rate of 
convergence [16]. The answer, emphasising the traits of a coyote seeker, is given as,

The Eq. (5) represents the coyote huntees position update expression, where Pv
CO

 repre-
sents the coyote seeker position at vth iteration, t1 and t2 represents the random parameters 
that changes from 0 to 1. The term y1 represents the alpha influence and y2 represents the 
influence of pack [16].

The above equation becomes,

And the Eq. (9) becomes,

Equation (13), which depends on parameters derived from the features of Aquila seekers 
and coyote seekers, is the updated formulation of the Aquila coyote optimization method. 
This equation helps to segment brain tumours and is also in charge of fine-tuning the 
DCNN weights to segment MRI images.

Step 4: Reassessment of fitness value: To determine whether the best answers are pre-
sent, the fitness of each seeker is reevaluated. If the newly discovered solution demon-
strates greater fitness, the old solution is replaced with the new one.
Step 5: Termination: After the maximum number of iterations or after the entire prob-
lem has been solved, stop the algorithm. Table 1 contains the Aquila coyote optimiza-
tion algorithm’s pseudocode.

3.4 � Feature extraction

Extraction of the key characteristics from the segmentation MRI is a crucial step in the 
proposed approach. The feature vector is extracted from a regular vector using the feature 
extraction approach. In the suggested classification module, a feature is a standout meas-
urement that is taken from a segment MRI. Selecting the most important features or data 
is required in order to carry out the categorization procedure. The statistical parameters, 
Texture feature, and GLCM feature are the features that must be retrieved for the proposed 
system.

3.4.1 � Statistical features

The features of statistical are the significant features generally employed for classifica-
tion as they reveal even small changes in the MRI image, which improves the accuracy 

(10)Pv+1
CO

= Pv
CO

+

(11)Pv
CO

= Pv−1
CO

+ t1y1 + t2y2

(12)
Pv+1
4

= Pv+1
AQ

= FTq × Pv
best

−
(
H1 ×

[
Pv−1
CO

+ t1y1 + t2y2
]
× rand

)
− H2 × levy(r) + rand × H1

(13)Pv+1
AQ

= FTq × Pv
best

−
(
H1rand

[
Pv−1
CO

+ t1y1 + t2y2
])

− H2 × levy(r) + rand × H1
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Table 1   Pseudocode of proposed Aquila coyote optimization algorithm
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Table 1   (continued)
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in classification [17]. The statistical features assist the fact that the outcomes obtained 
are real, and are deliberated as follows,

a)	 Mean: One of the key statistical features, the mean, calculates the average of all MRI 
data instances relative to all instances. The equation is provided by,

where, i represents the total occurrences and the Rk represents the kth data.
b)	 Variance: Variance is defined as the average of the squared differences between the 

mean QMN
 and each individual piece of data and is formulated as,

	   The variance value concentrates even on small variations at various time instances, 
which contributes much to the enhancement of the prediction process.

c)	 Standard deviation: SD, or standard deviation, is the measure of widely distributed data 
used to analyse MRI results in relation to the mean.

d)	 Entropy-based features: Entropy is a crucial measurement of data because it quantifies 
the range of uncertainty in stochastic process and assesses the data rate more thoroughly. 
The relationship of dependence, severance, and independence among the distinct tem-
poral occurrences of the MRI image data is divided by the entropy-based features. The 
entropy measurement is assessed as,

where, u indicates the attribute vector, C(u) represents the number of distinctive occur-
rences in MR image, and Vk indicates the probability of kth occurrence.

(14)QMN
=

1

i

∑i

k=1
Rk

(15)QVR
=

1

i − 1
k
∑i

k=1

(
Rk − QMN

)2

(16)QSD
=

√
1

i − 1

∑i

k=1

(
Rk − QMN

)2

(17)QEN
=
∑C(u)

k=1
VklogVk

Table 1   (continued)
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e)	 Skewness: The third central moment, which is measured by the factor skewness, is 
understood to represent the rate of evenness or absence of symmetry. The following is 
the skewness formula:

f)	 Kurtosis: Kurtosis, which is zero for a Gaussian distribution, is defined as the evaluation 
of the combined influence of the distribution’s tails that correspond to the rest of it. The 
definition of kurtosis is as follows:

where, Rk indicates the kth value of R , and � represents the sample measure of standard 
deviation.

3.4.2 � Texture feature

An essential aspect of MRI that is typically utilised to rate the image’s quality is its 
texture feature. For the classifying of the various regions of the input image, the meas-
urement of texture variable QTX

 is used [18]. The normal and abnormal tissues in the 
MRI can be represented using the texture feature. The variations that take place in the 
texture parameter can quantitatively exhibit the variations in the physical composition 
of the tissue.

3.4.3 � GLCM feature

A GLCM feature is developed by combining the co-occurring grey level intensity measures of 
an MRI image providing a linear spatial association among two pixels. The spatial association 
is deliberated using a pair of parameter (� ,K) , where � represents the orientation and c indi-
cates the space among two pixels. It is general to describe a set of parameter pairs (� ,K) , and 
to then join the GLCM matrices, generally to afford rotational invariance with the orientation 
parameters, characteristically in eight orientations, separated π/4 radians apart. The count of 
grey level values Se indicates the number of unique intensity measures that exist in an image. 
Basically, an image is scaled from [0, 255] to 

[
0, Se

]
 before evaluating a GLCM, where Se is a 

defined count of grey-levels [19]. The features including energy, contrast, correlation, homo-
geneity, and dissimilarity are evaluated for the extraction of GLCM features. The term energy 
is expressed as,

Similarly, the terms contrast is described as,

(18)QSK
=
∑

(
Rk − QMN

)3

i�3

(19)QKR
=
∑

(
Rk − QMN

)

i�4

4

(20)QEN
=

Se−1∑

G=0,T=0

L2
G,T

(21)
QCON

=

Se−1∑
G=0,T=0

LG,T (G − T)
2

�
Se − 1

�2
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The expression for homogeneity is given as,

The equation for correlation is expressed as,

The term dissimilarity is formulated as,

where, the variable L(G, T) indicates the value at (G, T)th position in the grey level co-
occurrence matrix.

3.5 � Feature concatenation

The significant patient data that has to be examined are included in the feature vector that 
was produced from the MRI input. The features, that are concatenated to create the feature 
vector, include statistical features, texture, and GLCM features. Thus, the feature vector is 
written as,

The feature vectors dimension is, [1 × 3000] for the prediction of MR image con-
taining brain tumor. The majority of the MRI image’s features are represented by their 

(22)QHO
=

Se−1∑

G=0,T=0

LG,T

1 + (G − T)2

(23)
QCOR

=

�
Se−1∑

G=0,T=0

LG,T

�
(G−�x)(T−�y)√

(�2

G)(�
2

T)

��
+ 1

2

(24)
QDI

=

Se−1∑
G=0,T=0

LG,T �G − T�
�
Se − 1

�

(25)QFINAL =
{
QSTATICAL,QTEXTURE,QGLCM

}

Fig. 2   Architecture of DCNN
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characteristics in the feature vector. The selection of the significant features among the 
whole features is important in the improvement of accuracy in the proposed classifier. 
Hence, the significant features are selected and concatenated in the proposed module to 
perform effective classification of brain tumor. The high dimensionality of feature vector 
deteriorates the training rate of the DCNN classifier, and hence the Principle Component 
Analysis (PCA) in the proposed research in such a way to reduce the dimension of the fea-
ture vector [20]. The feature vector dimension is reduced to [1 × 1000] through PCA in the 
proposed research.

3.6 � Classification of brain tumor using proposed Aquila coyote tuned DCNN

This component does the categorization of brain tumours utilising photos from the input 
dataset, involving the DCNN classifier in the classification stage. The benefit of employ-
ing DCNN [8] would be that the classifier completes the classification procedure without 
requiring any human involvement.

3.6.1 � Structure of Deep‑CNN

The DCNN classifier’s configuration consists of a number of layers, each of which 
carries out a specific function. The convolutional layers create feature maps, while the 
classification layers produce the final output. The DCNN classifier’s structure is shown 
in Fig. 2.

Input layer  The DCNN classifier input layer is initially fed the feature vector produced by 
the patients’ MRIs.

Convolutional layers  For comparing the feature maps, convolutional filters are used. 
Layer-to-layer connections between neurons are made possible by varying loads. The out-
put of these layers is stated mathematically as,

where, ∗ represents the operator of convolutional, 
(
Wp+1

)
 represents the convolutional layer 

fixed feature map. Consider, the convolutional layers weights be, (Weight)f  and (Bias)f  rep-
resents the bias, which is tuned with the proposed Aquila Coyote algorithm optimally.

Batch normalization layer  This layer is set up between the convolutional layer and the 
ReLU layer to improve the training properties of the suggested classification model. In 
order to achieve effective training, this layer controls the gradients and authorizations in 
the network [8].

ReLU layer  The non-parametric ReLU layer, which has no weight or bias, is used to trans-
mit the image features from the convolutional layers.

Max pooling layer  The feature maps produced from of the convolution layer in the max—
pooling are down sampled to decrease the data as well as the spatial size.

(26)
(
Wp+1

)
= (Wp) +

∑j

f=0

∑j

h=0
(Weight)f ∗ (Bias)f
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Fully connected layers  The final output generation in the FC layer based on the feature 
map of convolutional layer is expressed as,

Using the suggested Aquila Coyote strategy, the DCNN classifier is trained to determine 
the weights of the network in the best possible way.

Softmax layer  To effectively process the classification layer, the FC layer’s output is regu-
larised using the softmax activation function.

Classification layer  The classification layer in the last layer of the DCNN uses the 
possibilities produced by the softmax activation to assign a class to each input image. 
Thus, the input image is categorised in this manner as glioma, malignant tumors, 
pituitary, and no tumour. Table 2 provides a thorough description of the levels in the 
DCNN classifier.

4 � Result and discussion

This section goes into great depth about the outcomes produced using both the planned 
Aquila Coyote performance tuning DCNN and the traditional approaches.

4.1 � Experimental setup

The analysis is completed using the PYTHON tool, which is installed on a system running 
Windows 10 64-bit and with 16 GB of RAM.

4.2 � Database description

The dataset employed for the implementation is the Brain tumor segmentation (MRI) data-
set [21], which includes a total of 4950 files.

4.3 � Evaluation metrics

The efficiency of proposed Aquila Coyote optimization-based DCNN is verified using the 
following measures.

4.3.1 � Accuracy

The degree of similarity between the obtained quantity and the real quantity is how accu-
racy is defined. In mathematics, it is written as,

(27)A = �
(
Wp+1

)
with

(
Wp+1

)
= (Wp) +

∑j

f=0

∑j

h=0
(Weight)f ∗ (Bias)f

(28)Accuracy =
True positive + True negative

real positive + real negative
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4.3.2 � Sensitivity

The ratio of genuine positives to the total range of actual positive cases is what is referred 
to as sensitivity.

4.3.3 � Specificity

It is defined as the ratio of the number of true negative to the total number of real nega-
tive instances in the data.

(29)Sensitivity =

(
True positive

no of real positive cases

)

Fig. 3   Experimental results, (a) input MRI image, (b) Pre-processed image, and (c) Segmented image
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4.4 � Experimental results

This section discusses the experimental results of the suggested brain tumour segmenta-
tion approach. The experimental results of the suggested segmentation model are shown 
in Fig. 3. The FLAIR, T1, T2, and T1W MRI imaging modalities are the four different 
types. The input MRI picture is shown in Fig. 3(a), and the image is obtained after pre-
processing is shown in Fig. 3(b). The segmented picture created by the suggested Aquila 
coyote optimization technique is shown in Fig. 3(c).

4.5 � Performance analysis

This section discusses how the Aquila coyote-DCNN performs in terms of training % and 
k-fold value.

(30)Sensitivity =

(
True negative

no of real negative cases

)

Fig. 4   Performance analysis in terms of training percentage (a) accuracy, (b) sensitivity, and (c) specificity
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4.5.1 � Performance analysis in terms of training percentage

Figure 4 shows how well the Aquila coyote-DCNN approach performed in terms of train-
ing %. The precision of the performance is shown in Fig. 4(a). The accuracy of the sug-
gested approach for the epochs of 20, 40, 60, 80, and 100 is 87.698, 88.8298, 88.9235, 
90.413, and 93.1454, respectively, for a training percentage of 50%. The accuracy of the 
suggested approach for the epochs of 20, 40, 60, 80, and 100 is, respectively, 83.6856, 
85.222, 89.945, 90.5895, and 90.5454 for a training percentage of 60%. The accuracy of 
the Aquila coyote-DCNN approach for the epoch of 20, 40, 60, 80, and 100 is 83.3, 83.4, 
88.4432, 90.534, and 92.334, respectively, for a training percentage of 70%. The accuracy 
of the Aquila coyote-DCNN approach for the epochs of 20, 40, 60, 80, and 100 is 91.3324, 
85.724, 90.235, 89.8567, and 92.1576, respectively, for a training percentage of 80%.

The performance created on sensitivity is shown in Fig. 4(b). The Aquila coyote-DCNN 
method’s sensitivity for the epochs of 20, 40, 60, 80, and 100 is 82.1694, 83.3719, 83.655, 
84.4517, and 88.8336, respectively, for a training percentage of 50%. The Aquila coyote-
DCNN method’s sensitivity for the epochs of 20, 40, 60, 80, and 100 is 78.8747, 81.1673, 
81.2648, 84.4517, and 85.6468, respectively, for a training percentage of 60%. The Aquila 
coyote-DCNN method’s sensitivity for the epochs of 20, 40, 60, 80, and 100 is 74.8911, 
78.078, 85.576, 85.646, and 88.833, respectively, for a training percentage of 70%. The 
Aquila coyote-DCNN method’s sensitivity for the epochs of 20, 40, 60, 80, and 100 is 
9176.882, 84.173, 85.049, 87.638, and 91.223, respectively, for a training percentage of 80%.

The performance based on specificity is shown in Fig. 4(c). The specificity of the Aquila 
coyote-DCNN approach for the epoch of 20, 40, 60, 80, and 100 is 87.8298, 87.9767, 

Table 3   Performance analysis in terms of training percentage accuracy, sensitivity, and specificity

Epochs Accuracy of proposed Aquila coyote-DCNN approach
50% of training 60% of training 70% of training 80% of training

20 87.698 83.6856 83.3 91.3324
40 88.8298 85.222 83.4 85.724
60 88.9235 89.945 88.4432 90.235
80 90.413 90.5895 90.534 89.8567
100 93.1454 90.5454 92.334 92.1576

Sensitivity of proposed Aquila coyote-DCNN approach
50% of training 60% of training 70% of training 80% of training

20 82.1694 78.8747 74.8911 9176.882
40 83.3719 81.1673 78.078 84.173
60 83.655 81.2648 85.576 85.049
80 84.4517 84.4517 85.646 87.638
100 88.8336 85.6468 88.833 91.223

Specificity of proposed Aquila coyote-DCNN approach
50% of training 60% of training 70% of training 80% of training

20 87.8298 83.4651 82.6448 83.6702
40 87.9767 84.1618 83.6702 9.2072
60 88.8487 90.0275 87.1564 89.6173
80 91.8732 91.2579 90.0714 91.0529
100 91.8732 93.3087 93.5137 92.9244
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88.8487, 91.8732, and 91.8732, respectively, for a training percentage of 50%. The speci-
ficity of the Aquila coyote-DCNN approach for the epoch of 20, 40, 60, 80, and 100 is 
83.4651, 84.1618, 90.0275, 91.2579, and 93.3087, respectively, for a training percentage of 
60%. The specificity of the Aquila coyote-DCNN method for the epoch of 20, 40, 60, 80, 
and 100 is 82.6448, 83.6702, 87.1564, 90.0714, and 93.5137, respectively, for a training 
percentage of 70%. The specificity of the Aquila coyote-DCNN method for the epoch of 
20, 40, 60, 80, and 100 is 83.6702, 9.2072, 89.6173, 91.0529, and 92.9244, respectively, 
for a training percentage of 80%. Moreover, Performance analysis in terms accuracy, sensi-
tivity, and specificity measures ate enclosed in Table 3.

4.5.2 � Performance analysis in terms of k‑fold value

Figure  5 shows how the Aquila coyote-DCNN approach performs in terms of the k-fold 
value. The precision of the performance is displayed in Fig. 5(a). The accuracy of the Aquila 
coyote-DCNN technique for the k-fold value of 2 is 71.1990, 91.7092, 92.0918, 92.9847, 
and 93.3673, respectively, for the epoch of 20, 40, 60, 80, and 100. The accuracy of the 
Aquila coyote-DCNN approach for the k-fold value of 4 is 76.1582, 89.7959, 91.4541, 
91.7092, and 94.1327, respectively, for the epoch of 20, 40, 60, 80, and 100. The accuracy 
of the Aquila coyote-DCNN method for the k-fold value of 8 is 90.3061, 91.3265, 92.2194, 

Fig. 5   Performance evaluation in terms of k-fold value (a) accuracy, (b) sensitivity, and (c) specificity
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93.1122, and 94.3878, respectively, for the epoch of 20, 40, 60, 80, and 100. The accuracy 
of the Aquila coyote-DCNN method for the k-fold value of 10 is 91.9643, 90.9439, 89.0306, 
91.1990, and 93.75, respectively, for the epochs of 20, 40, 60, 80, and 100.

The performance based on sensitivity is shown in Fig.  5(b). The accuracy of the 
Aquila coyote-DCNN approach for the k-fold value of 2 is 85.0341, 85.2887, 85.7979, 
85.9213, and 87.3255, respectively, for the epoch of 20, 40, 60, 80, and 100. The Aquila 
coyote-DCNN method’s sensitivity for the k-fold value of 4 is 80.4514, 84.7795, 85.1827, 
86.5617, and 89.6168, respectively, for the epochs of 20, 40, 60, 80, and 100. The Aquila 
coyote-DCNN method’s sensitivity for the k-fold value of 8 is 85.2887, 85.7979, 87.3255, 
84.2703, and 87.3985, respectively, for the epochs of 20, 40, 60, 80, and 100. The Aquila 
coyote-DCNN method’s sensitivity for the k-fold value of 10 is 82.4882, 84.0157, 79.1785, 
83.9518, and 87.8909, respectively, for the epochs of 20, 40, 60, 80, and 100.

The accomplish competitive on specificity is shown in Fig.  5(c). The accuracy of the 
Aquila coyote-DCNN approach for the k-fold value of 2 is 8591.0308, 92.6675, 92.6675, 
92.9082, and 95.5558, respectively, for the epoch of 20, 40, 60, 80, and 100. The specificity 
of the Aquila coyote-DCNN method for the k-fold value of 4 is 84.7246, 92.1861, 92.2744, 
92.9082, and 95.7965, respectively, for the epoch of 20, 40, 60, 80, and 100. The specificity 
of the Aquila coyote-DCNN method for the k-fold value of 8 is 89.7792, 2.6675, 92.9082, 
93.2692, and 95.5558, respectively, for the epoch of 20, 40, 60, 80, and 100. The specificity 
of the Aquila coyote-DCNN method for the k-fold value of 10 is 92.1861, 93.0205, 93.1489, 
94.0154, and 95.5558, respectively, for the epoch of 20, 40, 60, 80, and 100.

Fig. 6   Performance evaluation in terms of training percentage (a) accuracy, (b) sensitivity, and (c) specificity



69191Multimedia Tools and Applications (2024) 83:69169–69196	

1 3

4.6 � Comparative evaluation

The comparative evaluation of approaches in terms of k-fold and training % is discussed 
in this section. The strategies considered for comparison with the proposed Aquila coyote-
DCNN are the Random forest classifier [22], Decision tree classifier [23], K-nearest neigh-
bor classifier [24], AOA-DCNN [8, 15], and the COA-DCNN [8, 16].

4.7 � Comparative analysis in terms of training percentage

Figure 6 illustrates the comparison of approaches based on training %. Figure 6 shows the 
comparative analysis based on accuracy (a). For a training percentage of 50%, the accu-
racy of various approaches, including RF, DT, K-NN, COA-DCNN, AOA-DCNN, and 
the suggested Aquila coyote-DCNN, is 68.3787, 76.4293, 83.3573, 87.3349, 86.1171, 
and 91.2007, respectively. For a training percentage of 60%, the accuracy of various 
approaches, including RF, DT, K-NN, COA-DCNN, AOA-DCNN, and the suggested 
Aquila coyote-DCNN, is 68.9256, 81.1149, 85.1253, 89.5199, 86.9367, and 91.2386, 
respectively. For a training percentage of 70%, the accuracy of various approaches, includ-
ing RF, DT, K-NN, COA-DCNN, AOA-DCNN, and the suggested Aquila coyote-DCNN, 
is 70.4974, 82.6098, 86.4165, 89.9221, 87.4083, and 91.8602, respectively. For a train-
ing percentage of 80%, the accuracy of various approaches, including RF, DT, K-NN, 
COA-DCNN, AOA-DCNN, and the suggested Aquila coyote-DCNN, is 73.8361, 82.9969, 
87.2366, 91.8895, 88.3572, and 93.2449, respectively.

Figure  6 displays the comparative assessment based on sensitivity (b). For a training 
proportion of 50%, the sensitivity of various approaches, including RF, DT, K-NN, COA-
DCNN, AOA-DCNN, and the suggested Aquila coyote-DCNN, is calculated as follows: 
71.9607, 73.439, 75.3039, 85.6428, 83.612, and 87.4083. For a training proportion of 
60%, the sensitivity of various approaches, including RF, DT, K-NN, COA-DCNN, AOA-
DCNN, and the suggested Aquila coyote-DCNN, is calculated as follows: 72.9002, 73.7337, 
76.0505, 85.6719, 84.1976, and 88.6995. For a training percentage of 70%, the sensitivity 
of various approaches, including RF, DT, K-NN, COA-DCNN, AOA-DCNN, and the sug-
gested Aquila coyote-DCNN, is calculated as follows: 73.2913, 74.2321, 76.2303, 86.2085, 
84.4342, and 89.9907. For an 80% training rate, the sensitivity of various approaches, 
including RF, DT, K-NN, COA-DCNN, AOA-DCNN, and the proposed Aquila coyote-
DCNN, is calculated as follows: 74.1279, 76.5735, 78.9036, 86.4165, 85.1527, and 90.1633.

Figure  6 displays the comparative assessment based on specificity (c). For a train-
ing percentage of 50%, the specificity of various approaches, including RF, DT, K-NN, 
COA-DCNN, AOA-DCNN, and the suggested Aquila coyote-DCNN is 81.2576, 85.1253, 
86.1171, 88.9989, 87.372, and 89.9104, respectively. For a training percentage of 60%, the 
specificity of various approaches, including RF, DT, K-NN, COA-DCNN, AOA-DCNN, 
and the suggested Aquila coyote-DCNN, is, respectively, 81.5179, 85.5442, 86.938, 
89.1734, 88.3452, and 90.2491. For a training percentage of 70%, the specificity of vari-
ous approaches, including RF, DT, K-NN, COA-DCNN, AOA-DCNN, and the suggested 
Aquila coyote-DCNN, is calculated as follows: 81.6444, 85.89, 87.4083, 89.4763, 88.6415, 
and 90.2510. The specificity of various methods, including RF, DT, K-NN, COA-DCNN, 
AOA-DCNN, and the proposed Aquila coyote-DCNN, is 82.217, 86.4165, 87.5654, 
89.6388, 88.9318, and 90.4244, respectively, for a training percentage of 80%.



69192	 Multimedia Tools and Applications (2024) 83:69169–69196

1 3

4.8 � Comparative analysis in terms of k‑fold value

Figure  7 presents the comparison evaluation of the techniques in terms of k-fold value. 
Figure  7 shows the comparative analysis based on accuracy (a). For the k-fold value of 
2, the accuracies of the various approaches, including RF, DT, K-NN, COA-DCNN, 
AOA-DCNN, and the suggested Aquila coyote-DCNN, are, in order, 75.5252, 79.0112, 
80.657, 90.6617, 88.1077, and 92.4624. For the k-fold number of 4, the accuracy of vari-
ous approaches, including RF, DT, K-NN, COA-DCNN, AOA-DCNN, and the suggested 
Aquila coyote-DCNN, is calculated as follows: 76.4421, 79.1742, 80.9753, 91.1669, 
89.4314, and 93.1536. For the k-fold value of 6, the accuracy of several approaches includ-
ing RF, DT, K-NN, COA-DCNN, AOA-DCNN, and the suggested Aquila coyote-DCNN 
is, respectively, 77.7786, 79.4248, 81.8386, 91.8211, 89.7346, and 93.6999. For the k-fold 
number of 8, the accuracy of various approaches, including RF, DT, K-NN, COA-DCNN, 
AOA-DCNN, and the suggested Aquila coyote-DCNN, is calculated as follows: 77.875, 
79.5841, 82.1397, 94.6434, 89.9294, and 95.9758.

Figure  7 displays the comparative assessment based on sensitivity (b). For the k-fold 
value of 2, the sensitivity of several approaches, including RF, DT, K-NN, COA-DCNN, 
AOA-DCNN, and the suggested Aquila coyote-DCNN, is calculated as follows: 74.7711, 
79.1742, 80.1896, 91.1477, 89.8091, and 92.4034. For the k-fold value of 4, the sensitivity 
of several techniques including RF, DT, K-NN, COA-DCNN, AOA-DCNN, and the sug-
gested Aquila coyote-DCNN is 75.4177, 79.9647, 81.0903, 92.513, 91.0142, and 92.8561, 
respectively. For the k-fold value of 6, the sensitivity of several techniques including RF, 

Fig. 7   Performance analysis in terms of k-fold value (a) accuracy, (b) sensitivity, and (c) specificity
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DT, K-NN, COA-DCNN, AOA-DCNN, and the suggested Aquila coyote-DCNN is 76.8652, 
80.657, 82.1397, 93.7612, 91.0576, and 93.8587, respectively. The methods’ respective sen-
sitivities are 79.0311, 84.3043, 88.1917, 95.4515, 92.8692, and 96.2199 for RF, DT, K-NN, 
COA-DCNN, AOA-DCNN, and the proposed Aquila coyote-DCNN with a k-fold of 8.

Figure 7 illustrates the comparative evaluation based on specificity (c). The specificity 
of various algorithms, including RF, DT, K-NN, COA-DCNN, AOA-DCNN, and the pro-
posed Aquila coyote-DCNN, is calculated as follows: 76.961, 77.8768, 81.0903, 91.0118, 
87.2237, and 92.2614 for the k-fold value of 2. For the k-fold value of 4, the specificities 
of various methods, including RF, DT, K-NN, COA-DCNN, AOA-DCNN, and the pro-
posed Aquila coyote-DCNN, are, in order, 7079.5821, 80.657, 81.982, 92.1453, 88.9994, 
and 93.4233. For the k-fold value of 6, the specificities of various methods, including RF, 
DT, K-NN, COA-DCNN, AOA-DCNN, and the proposed Aquila coyote-DCNN, are, in 
order, 80.0228, 80.9064, 82.1397, 92.404, 89.3432, and 93.7262. The methods’ respective 
degrees of specificity are 80.2236, 81.7063, 82.3239, 92.4984, 89.5996, and 95.7724 for 
the proposed Aquila coyote-DCNN with k-fold measure of 8.

In Table  4, a comparison of the techniques used to segment and categorise brain 
tumours is presented. The analysis shows that, when compared to other techniques, the 
Aquila coyote-DCNN method achieves greater accuracy and efficiency in the segmentation 
and classification of brain tumours.

5 � Conclusion

In this study, a hybrid optimization approach for brain tumour segmentation from MRI 
data is proposed. For the classification of brain tumours, an AI-based classification tech-
nique is also introduced. The Aquila Coyote Optimization Algorithm specifically involved 
in the segmentation of brain tumour, and then the DCNN classifier does the classification 
procedure using the features collected from the segmented picture. By varying the weights 
of the DCNN classifier, the proposed Aquila coyote method plays a crucial role in improv-
ing the effectiveness of the proposed classification model. The evaluation indices accuracy, 
sensitivity, and specificity, which are obtained to be 97.3017%, 96.8194%, and 96.4079%, 
respectively, are used to examine the effectiveness of the Aquila coyote-DCNN technique. 
In the future, ensemble model will be used to increase the precision of the suggested model 
for classifying and segmenting brain tumours.
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