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Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that is well-known for causing
continuous loss of memory, cognition, and other higher brain functions. AD is not a sin-
gle disease, but rather a group of related diseases with similar characteristics. The use of
deep neural network-based pattern classification techniques, such as convolutional neural
networks, is effective in classifying patients into different sub-types of AD and in distin-
guishing the different stages of severity of the disease. in the medical field, early detection of
its start can be quite beneficial. This article focuses on the early detection of various stages of
cognitive aging and AD using neuroimaging and transfer learning (TL). Images of imagery
via resonance magnetic (IRM) obtained from a Kaggle database called Alzheimer’s Dataset
( 4 class of Images) with several classes of non-dementia (NONDEM), very mild demen-
tia(VERDEM), mild dementia(MILDEM), moderate dementia(MODDEM) are classified
using a transfer learning approach. In this work, we compare the classification performance
of six pre-trained networks, which are VGG-19, VGG-16, ResNet-50, InceptionV3, Xcep-
tion, and DenseNet169. They were enthralled and tested using 6400 images from the Kaggle
data pool. The confusion matrix and its parameters are used to assess the classification per-
formance of these six networks. VGG-19, VGG-16, Inception-V3, Xception, ResNet-50,
and DenseNet169 all have 92.86%, 92.83%, 91.04%, 90.57%, 85.99%, and 88.64% overall
precision in MA detection, respectively.
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1 Introduction

The neurological illness known as Alzheimer’s disease (AD) affects 88% of the older popula-
tion and is the primary cause of dementia in this group [1]. It affects approximately 50million
people worldwide. It has an impact on the cognitive abilities of patients and consequently on
their quality of life. The main signs of the disease are forgetting past events or conversations
or remembering recent conversations. There is no definitive solution for this disease, but
early diagnosis and subsequent treatment are important to help slow its progression.

The mortality rate of Alzheimer’s disease is reduced when it is diagnosed early. There
was a time in the history of Alzheimer’s treatment when the disease could not be detected
until after death. In contrast, medical imaging techniques now play a major role in the
diagnosis and treatment of Alzheimer’s disease. Some imaging methods used to identify
Alzheimer’s disease include X-ray scanning, magnetic resonance imaging (MRI), diffusion
tensor imaging (DTI), and positron emission tomography (PET). Because it is non-invasive
and generates high-resolution 3D pictures, magnetic resonance imaging (MRI) is one of the
most widely utilized techniques. Manually processing these images is of high cost and often
time-consuming. This has led to the creation of algorithms capable of extracting the most
relevant information from the data to support a diagnosis. Supervised deep learning-based
approaches are used to classify MRI images of patients with different stages of Alzheimer’s
disease, which varies fromnon-dementia (NONDEM), verymild dementia (VERDEM),mild
dementia (MILDEM) to moderate dementia (MODDEM). In particular, convolutional neural
networks (CNNs) [2] showed the highest performance in this task, however, they require a
huge volume and variety of data and are time-consuming. However, recent works have shown
that CNNs can be successfully adapted to overcome difficulties such as large data sets and
network complexity.

Karim Aderghal et al [3] present a technique of cross-modal transfer learning across
structuralMRI to diffusion tensor imagingmodality to overcome the issue of a lack of publicly
available big datasets to train on. The model parameters are initialized by the authors using
models pre-trained on a structural MRI dataset with domain-dependent data augmentation,
and it is then trained using Mean Diffusivity data. The results of this work show a reduction
in over-fitting issues and an improvement in the model performance in classifying normal
control, Alzheimer’s patients, and moderate cognitive impairment.

Buvaneswari et al [4]. use a deep learning-based segmentation approach using SegNet
[5] to sense features of Alzheimer’s disease-related parts of the brain based on structural
magnetic resonance imaging (MRIs) and then accurately classifying Alzheimer’s disease
and dementia using ResNet-101 [6].For AD classification and recognition.

Mosleh Hmoud Al-Adhaileh [7] uses transfer learning of two pre-trained deep neural
network architectures, namely AlexNet [8] and ResNet50 [6], the experimental findings
showed that the newly suggested approach has a higher detection accuracy than the current
methods.

All of the above research has the common goal of diagnosing Alzheimer’s disease as
quickly and accurately as possible. Since there is a possibility to be spared from this
irreversible disease by adopting preventative treatments that might considerably slow its pro-
gression, doctors advise diagnosing Alzheimer’s disease as early as possible. Deep learning
has proven to be the perfect solution to address all these challenges and produce fascinating
results, which is the focus of this research. Deep learning can be used to efficiently classify
brain scans at different stages of the disease. With the help of the high-performance GPU
computing platform, it is feasible to learn a lot of data in a short amount of time.
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The principal objective of this research is to develop and conduct a comparative analysis
of classification models designed for Alzheimer’s disease classification, primarily leveraging
MRI data. We aim to achieve this by employing a range of deep-learning CNN-based algo-
rithms. A central focus of our study lies in meticulously assessing the efficacy and accuracy
of the chosen methodology in the precise classification of Alzheimer’s disease.

Furthermore, our investigation extends beyond the confines of algorithmic comparison.
We also delve into the examination of state-of-the-art methods for Alzheimer’s disease stage
classification. This comprehensive evaluation allows us to discern which of these meth-
ods excels in terms of accuracy, precision, and F1 score. This endeavor is instrumental in
enhancing our capacity to predict Alzheimer’s disease in its early stages, thereby aiding in
the prevention of its progression. The format of this article is as follows: Section 1 introduces
the topic of Alzheimer’s disease, its characteristics, and its types. Section 2 provides the
academic approaches for the classification of Alzheimer’s disease based on transfer learning.
Section 3 focuses on the field of machine learning, especially convolutional neural networks,
their architecture, and their applications for classification. Section 4 presents the definition
and operation of the algorithms applied to transfer learning and contributes to the imple-
mentation of classification models. Sections 5 and 6 present and discuss the results of the
implemented models and, finally, Section 7 concludes the paper.

2 Existing works on AD classification using transfer learning

Artificial intelligence’s subset of machine learning (ML) includes all methods that attempt to
mimic human behavior [9]. Machine learning concerns the utilization of Statistical methods
and algorithm development that allow the computer to learn automatically from the data and
to improve over time [10, 11].

From a single cross-sectional structural brain MRI, Silvia Basaia et al [12]. developed
and validated a deep learning system to predict individual diagnoses of Alzheimer’s disease
(AD) andmoderate cognitive impairment that would evolve into AD (c-MCI). On 3D images,
convolutional neural networks (CNN) were used to distinguish between AD, c-MCI, and s-
MCI(stable MCI). CNNs were able to identify c-MCI patients from s-MCI patients with up
to 75% accuracy. CNNs are a valuable tool for automatically diagnosing patients across the
Alzheimer’s disease spectrum.Despite the heterogeneity in imaging techniques and scanners,
the method functioned effectively without prior feature engineering. CNNs can help to speed
up the use of structural MRI as a tool for patient assessment and management.

Manhua Liu et al [13] use convolutional neural networks (CNNs) to propose amulti-model
deep learning framework for autonomous joint segmentation of the hippocampus and catego-
rization ofAlzheimer’s disease using structuralMRI data. First, a deepmulti-taskCNNmodel
for hippocampus segmentation and illness classification is created. Second, based on the out-
comes of the hippocampus segmentation, a 3D dense connection convolutional network (3D
DenseNet) [14] is built to learn the features of retrieved 3D patches. Finally, the classification
of the illness condition is performed utilizing the multi-task CNN and DenseNet models’
learned features. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [15]
contains baseline T1-weighted structural MRI data from 97 Alzheimer’s disease individuals,
233 MCI subjects, and 119 normal control (NC) subjects. For hippocampus segmentation,
the combined technique achieves an 87.0 percent similarity coefficient. Furthermore, when
compared to NC subjects, the composite technique obtains an accuracy of 88.9% and an
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AUC of 92.5 percent for the classification of AD subjects, and an accuracy of 76.2 percent
and an AUC of 77.5 percent for the classification of MCI participants.

Buvaneswari et al [4]. use a deep learning-based segmentation approach using SegNet to
sense features of Alzheimer’s disease-related parts of the brain based on structural magnetic
resonance imaging (MRIs) and then accurately classify Alzheimer’s disease and dementia
using ResNet-101. To classify, It has been shown that the ResNet-101, trained using features
taken from SegNet and the ADNI dataset, can achieve a high degree of automated classifica-
tion. ResNet is trained to classify images using the 7 morphology features-white matter, gray
matter, cortical thickness, cortical area, sulcus contour, gyri hippocampus, and cerebrospinal
fluid space-that were extracted from 240 MRIs using SegNet. This classifier has achieved
96 percent sensitivity and 95 percent accuracy from 240 ADNI MRIs other than the training
ones.

Sadiq et al [16] using the Open Access magnetic resonance imaging (MRI) dataset from
the Series of Imaging Studies and the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
The authors suggest creating a very small feature vector for each MRI using the 3D Shearlet
transform (3D-ST) [17]. For AD classification, the feature vectors from 3D-ST and CNN
are combined. The feature vectors are combined and then used to train a classifier. The
customizedCNNmodel is used, inwhich all the descriptors are processed end-to-end to obtain
the classification model. The experimental findings demonstrate that the performance of
classification is enhanced by the combination of deep featureswith shearlet-based descriptors.

Haifeng Wu et al [18] This article proposes a 3D transfer network that is built on a 2D
transfer network to classify the illness and the normal groups with MRI and uses machine
learning as an additional diagnostic of Alzheimer’s disease. The method uses a 2D transfer
network to extract characteristics from 2D MRI slices, which are subsequently subjected
to dimension reduction. Then, for categorization, all of a subject’s 2D slices’ features are
combined. The experiment’s findings show that the recommended 3Dnetwork’s classification
precision is higher than the present 2D transfer network’s, increasing by around ten percentage
points, and that its classification time is just one-fourth of the current time.

The work of Jayanthi VenkatramanShanmugam et al [19] focuses on utilizing neuroimag-
ing and transfer learning to identify early signs of cognitive change and AD (TL). A transfer
learning strategy is used to classify the magnetic resonance imaging (MRI) pictures of early
mild cognitive impairment (EMCI),moderate cognitive impairment (MCI), and latemild cog-
nitive impairment (LMCI). three pre-trained networks, which are GoogLeNet [20], AlexNet
and ResNet-18 [6], are used for this classification. 6000 photos from the ADNI database
are used to train and test the models. The confusion matrix and associated metrics are used
to analyze the classification performance of the three networks. In terms of AD detection,
GoogleNet, AlexNet, and ResNet-18 have worldwide accuracies of 96.39%, 94.08%, and
97.51%, respectively. The parameters of the confusion matrix are also used to analyze the
performance of the pre-trained networks by class.

Mosleh Hmoud Al-Adhaileh [7] utilizes in this article, two deep neural network stud-
ies, called AlexNet and Restnet50 [6], which have been applied for AD classification and
recognition. The data from magnetic resonance imaging (MRI) brain scans obtained from
the Kaggle website is the dataset utilized in this article to assess and test the proposed model.
To accurately categorize AD, the convolutional neural network (CNN) method has been
used. The AlexNet and Restnet50 transfer learning models were used to pretrain the CNN.
The experimental findings showed that the newly suggested approach has a higher detec-
tion accuracy than the current methods. For brain MRI datasets, the AlexNet demonstrated
remarkable performance on all five assessment measures (accuracy, F1 score, precision,
sensitivity, and specificity). In comparison to Restnet50, AlexNet outperformed it with an
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accuracy of 94.53%, specificity of 98.21%, F1 score of 94.12%, and sensitivity of 100%.
Table 1 provides a summary of the literature review on Alzheimer’s detection.

3 Background for Alzheimer’s disease

3.1 Machine learning

Amachine learning-based image segmentation approach is [22] typically used to classify the
area of interest, such as the diseased or healthy region. Preprocessing, which may include
the use of a filter to remove any noise or increase contrast, is the first step in creating
such an application. After the preprocessing step, the image is segmented using techniques
such as thresholding, clustering, and edge segmentation. After segmentation, features are
collected from the color, texture, contrast, and size information of theROI.After that, themost
important components are identified using statistical analysis or feature extraction techniques
like principal component analysis (PCA). After that, a machine learning (ML) classifier like
SVM or CNN is used with the selected attributes. After being trained, the ML classifier may
be used to categorize brand-new, unknown data.

3.2 Convolutional neural networks

CNN is the most extensively used deep learning architecture since it is extremely comparable
to a traditionalNN. For greater performance and efficiency,CNNuses local connectors known
as local receptive field and weight sharing, which are stacked on top of each other. Because of
the deep design, these networks can learn a wide range of complicated features that a simple
neural network can not [22]. Computer vision, which has many uses such as autonomous
driving, robotics, and therapies for the blind, is powered by convolutional neural networks.
A three-dimensional network of neurons in the CNN uses an image as its input but only links
to a . Layers in a CNN include convolutional layers [23], non-linear activation layers (such
the rectified linear unit (ReLU) layer, pooling layers [24], and fully connected layers [25].
To create feature map volumes made up of features retrieved by the filter, the convolutional
layer performs a convolution operation between pixels of the input image and a filter. ReLU
is a nonlinear activation layer that applies the feature to the input values to hasten learning
and increase nonlinearity. The pooling layer subsamples the input values to reduce the spatial
dimension of the picture and prevent overfitting [26] since calculations depend on nearby
pixels. Additionally, it has translational invariance. The last layer of a CNN is often a fully
linked layer, similar to the hidden layers of standard NNs, where every neuron is related to
every other neuron in the layer before it. As previously stated, CNNs are commonly employed
to solve classification difficulties, Fig. 1 shows CNN architecture.

3.2.1 Convolutional layer

The convolutional layer [23]may determine the convolution for a pixel by using the following
equation [7]:

net(i, j) = (x ∗ w)[i, j] =
∑∑

mnx[m, n]w[i − m, j − n], (1)

Wherew is the noyau or filter matrix, x is the entering datamade up of a collection of pictures,
the asterisk marks the convolution process, and net(i,j) is the result of the convolutive layer
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Fig. 1 CNN architecture

that sends it to the subsequent layer. In the layer below, the outcome of the entrance and nose
is computed, aggregated, and expressed as an analog point. The tangled sofa is seen in the
figure.

3.2.2 Nonlinearity

The mathematical procedure was completed by the convolutional layer, and the results were
sent to the nonlinear layer, which came next [27] You may trim or adjust the discharge that
has been produced using this couch. However, this layer is employed to saturate or limit
the output. The convolution layer is inextricably linked to the nonlinearity layer [7]. Deep
learning approaches have mostly depended on the two activation functions sigmode and tanh
during the past 20 years. The following two equations, however, show that the rectified linear
unit (ReLU) has simpler representations of the functions and gradient:

ReLU (x) = max(0, x); (2)

d

dx
ReLU (x) =

{
1 si 1 i f x > 0
0 otherswise

(3)

In (2), the ReLU function returns the maximum of 0 or the input value x. In simple terms,
it returns x if x is positive and 0 otherwise.

Equation (3) is the derivative of ReLU concerning x, i.e. 1 for positive x and 0 for non-
positive x. This derivative is crucial in neural network learning, as it enables network weights
to be updated during backpropagation.

In summary, the ReLU function introduces non-linearity into a neural network by produc-
ing the input for positive values and zero for non-positive values, and its derivative simplifies
to 1 for positive input and 0 otherwise.

3.2.3 Pooling layer

CNN uses pooling for two reasons [24]. First, a fixed size for the output feature map of
pooling is needed for classification. No matter how big the filters are, using max pooling on
each of the 256 filters will provide a 256-dimensional output, for instance. Since it enables
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Fig. 2 Fully connected deep learning

a decrease in the dimensionality of the data and a reduction in the time needed for data
training for upcoming layers in the network, downsampling is a crucial step in the layer
pooling process. The pooling layer can be researched and utilized in image-handling systems
to reduce resolution. The pooling does not take the number of filters into account.

3.2.4 Fully connected layer

After the pooling layer comes the fully connected layer [25], It is utilized to link and arrange
every neuron in a conventional neural network. As a result, every neuron in a layer is directly
coupled to every other neuron in the layer above it and the layer below it. The CNNmethod’s
most often utilized parameter is this layer. The time required for CNN data training may be
cut down with the usage of this layer. The fundamental disadvantage of a fully connected
layer is that it requires several parameters that need amore complex calculation of the training
samples. A fully linked neural network is displayed in Fig. 2.

3.2.5 Softmax layer

The probability distribution of N-dimensional vectors for the input pictures is computed
using the softmax layer [28], which is the last layer of the model being shown. The main
use of softmax in this model’s output layer is multiclass classification in deep learning-based
models. The properly adjusted target class for the input image can be chosenwith the aid of an
accurate output probability calculation. The softmax layer represents a specific probability of
the output and is differentiable. Additionally, the exponential component raises the likelihood
of reachingmaximum values. The softmax function is represented by the following equation:

Oi = exi

M∑
l=1

exi
(4)

where xi is the output I before the softmax, Oi is the softmax output number I, and M is
the total number of output neurons [7]. The position of the softmax layer in the network is
depicted in Fig. 3:
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Fig. 3 Example of a Softmax layer utilization. X is the feature vector of a training sample, W is the weight
vector, B is the bias unit, and Y is the model output

4 Transfer learning

Transfer learning [29] is an effective way to train CNNs when there is a lack of training
data and appropriate computing resources. Transfer learning refers to a procedure in which a
trained model on one problem is used for refining the other one. It helps to shorten the time to
train a model and to build a better-generated model [30]. The training of deep convolutional
neural networks (CNNs) from the ground up is challenging because it demands a large
quantity of training data. In turn, CNN models are time intensive, at times taking many
days or weeks to build. These restrictions can be surpassed by reusing the pre-trained model
weights. The models are trained on over a million IRMs and can categorize the IRM into
100 classes. The high-performance models can be used straight away or, for a new task, can
be mixed. The pre-trained models may be applied in a variety of ways. They may be used
to categorize IRM from a fresh dataset, to start. Secondly, the pre-trained model is used in
picture preprocessing and feature extraction. The state-of-the-art architecture templates used
for transfer learning are as follows: Visual Geometry Group (VGG16), (VGG19), Residual
Networks (ResNet), Inception CNNs, Xception and the procedure of functioning is cited in
Fig. 4.

In Fig. 4, the diagram shows that we have divided the MRI data set into training and test
sets for the evaluation of our models, in particular using transfer learning. The MRI data set
represents 100%. For training purposes, 80% of this data has been allocated. Of the training
data, 20% of the MRI data is used as a validation set, and the remaining 80% is used to train
models using transfer learning techniques. On the other hand, 20% of the total MRI data
has been reserved exclusively for model performance testing, where we evaluate parameters
such as accuracy, specificity, and sensitivity. This data partitioning strategy guarantees a
comprehensive evaluation of model performance on previously unseen data while optimizing
its parameters during the learning process.

4.1 ResNet50

ResNet [6], a reliable deep learning architecture, won the 2015 Imagenet classification
competition. Many computer vision jobs are saved by this design. As the number close
to ResNet indicates how many deep levels are present, we picked ResNet50, which has 50
layers for processing. The presence of jump connections, which assist in the resolution of
the evanescent gradient descent problem, is the primary advantage of the ResNet50 design.
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Fig. 4 Diagram of the system used

256-dimensional input is supported by the ResNet50. The initial procedures, which include
convolution and max-pooling and mention [31], are carried out by each ResNet, followed by
stacked convolutions. A completely linked layer with 4 labels-health, scab, rust, and numer-
ous diseases-follows the network’s final averaging layer. The ResNet50’s overall architecture
is displayed in Fig. 5.

Fig. 5 ResNet50 architecture
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Fig. 6 DenseNet-169 architecture

4.2 DenseNet-169

In DenseNet, which introduced dense connectivity in which each layer gets signals from
all preceding layers merged by channel concatenation, resulting in a minor information
bottleneck, Huang et al [32]. initially presented dense blocks. DenseNets are effective
characterization extractors because they combine the characteristics of identity maps, deep
supervision, decreased characterization redundancy, and diversified depth for feature reuse.
Figure 6 introduces DenseNets of various depths, such as DenseNet-121, 169, 209, and 264.

For the characterization extraction procedure, the convolutional neural networkDenseNet-
169 (DenseNet-169) was used. Huang and al.(2016) proposed this model. DenseNet-169’s
architecture consists of an initial convolution and commonality layer, three transition layers,
and four dense blocks. The categorization layer, cited as [33], comes next after these layers. A
maximum commonality factor of 3x3 is employed with a factor of two in the first convolution
layer, which then conducts 7x7 convolutions with a factor of two. The network then consists
of three sets, each consisting of a transition layer before a dense block.

4.3 Inception-V3

The development of CNN classifiers was aided by the Inception network [34]. The basic goal
of the Inceptionmodel is to figure out how a convolutional vision framework’s optimal sparse
local design can be related to and protected by readily available dense components. Here,
a layer-by-layer construction is used, with the final layer’s relationship statistics dissected
and grouped into sets of units with strong connections. These groups serve as the following
layer’s units and are linked to the preceding layers’ units. Each unit in the previous layer
is supposed to be compared to a specific position in the input image before being merged
into filter banks. The linked units in the lower tiers are focused on adjacent local regions.
In comparison to previous CNN models, Inception v3 has an extremely complicated CNN
architecture. The Tensorflowmachine learning framework was used to train this model using
the ImageNet dataset. The Inception module is made up of a series of convolution layers
of various sizes that run in parallel. This network contains 48 layers and around 23 million
parameters and it is shown in Fig. 7. The 2014 ILSRVC was won by this network.
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Fig. 7 Inception-V3 architecture

4.4 Xception

Chollet presented theXception architecture (2017) as amore advancedvariant of the Inception
model [35]. The architecture of Inception inspired the model. It is made out of a stack of
residual connections from depth-separable convolutions. The Xception model uses inverted
depth-separable convolutions. In otherwords, the input is first subjected to a point convolution
process, followed by a depth convolution operation. Although it has almost the same number
of parameters as Inception-V3, Using this approach, Xception outperformed Inception-V3
on the ImageNet dataset. The 36 convolution layers of the 14 modules that make up the
Xception architecture are seen in Fig. 8.

4.5 VGG-16

The VGG-16 model [36], which employs fewer hyperparameters than other CNN designs, is
one of them. In addition to a stride in the convolution layer and a stride 2 [37] in the shared
layer with the same padding, this model uses a 3x3 size filter throughout the design. It is
named VGG-16 because it is made up of 16 couches, including a softmax convolution couch.
Instead of 10 couches FC with softmax, the last couch of the VGG-16 is replaced by two

Fig. 8 Xception architecture

123

70204 Multimedia Tools and Applications (2024) 83:70193–70216



Fig. 9 VGG-16 architecture

FC with softmax activation. Klymentiev, 2019, and Rehman et al., 2020, explain the model
VGG-16’swhole construction by couche, and themodelVGG-16’s detailed couche-by-couch
setup is illustrated in the following Fig. 9.

4.6 VGG-19

The VGG 19 [36] for widespread visual recognition, was created. The primary benefit of
this technique is that its source code is available for public use, allowing us to quickly
implement transfer learning and adapt the network to other designs. To enable the system
to learn complicated features, the method also learns small collective kernels rather than a
single massive kernel. The resilience of this design in comprehending complicated features
is the basis for its use in the classification of neurological diseases. Figure 10 depicts the
overall architecture of ACV 19.

4.7 Performance analysis

The accuracy of the trained network is computed and then compared to that of other pre-
trained networks. To increase classification accuracy, the network design, preprocessing
procedures, and training settings are changed. The confusion matrix parameters for the TP,
TN, FP, and FN are crucial for assessing this performance.

The ratio of true to total estimations is used to compute accuracy, which refers to the
network’s correct predictions. Indeed, the precision is untrustworthy if the network’s perfor-
mance for all classes is equal. The simple notion is that error is the polar opposite of precision
in the sense, Error = 1 − Accuracy. It means that the total number of forecasts is divided
by the number of instances that were incorrectly categorized.

The false positive rate, also known as fallout, is a comment on the network’s rate ofmaking
positive predictions. It’s calculated as the proportion of erroneous positive predictions to total
negations.

Precision reveals the number of truly positive forecasts within the total number of positive
predictions. As a result, it’s also called the positive predictive value (PPV). The best accuracy
number is 1.0 (100%), while the poorest is 0. The true positive rate, also known as recall or
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Fig. 10 VGG-19 architecture
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sensitivity, is expressed as follows Trueposi tiverate = 1− Falseposi tiveratre. It is the
proportion of appropriately classified positives in the overall number of positives [38].

F1 − score = 2.Precision.Recall

Precision + Recall
(5)

The F1 score [39], also known as the harmonicmean of precision and recall [19] Alzheimer’s,
is beneficial when the model has poor accuracy and good memory or vice versa. This is the
performance parameter that is most frequently used when network performance differs by
class.

Fig. 11 Examples of the four Alzheimer’s stages (classes) sampled from the Kaggle Alzheimer’s dataset
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The real negative rate, which gauges the network’s specificity or selectivity, is the proportion
of accurately identified negatives to actual negatives.

5 Implementation and results

5.1 Data acquisition and preprocessing

The images come from the Kaggle database entitled ”Kaggle Alzheimer’s Dataset (4 image
classes)”.The data comprise four image classes, for both training and testing (MildDemented,
Moderate Demented, Non Demented, Very Mild Demented). All subjects were over 50 years
of age, due to the age-related increased risk of Alzheimer’s disease. Images were collected
by MRI, and patients ranged in age from 55 to 100. Each class contains images of male and
female subjects. The dataset contains a total of 6400 grayscale images of resolution 176×208.
In this study, 5120 images are used for training the model, and 1280 images are used in the
testing phase. the database is available online in [40]. Examples of the four classes sampled
from the dataset are shown in Fig. 11.

5.2 Methodology

Our methodology is based on multi-class classification of scans from the Kaggle database
to different stages of Alzheimer’s disease, which are non-dementia (NONDEM), very mild
dementia (VERDEM), mild dementia (MILDEM), moderate dementia (MODDEM). To per-
form this, we first Split the dataset to two folds, 5120 images for the training phase and 1280
images for the test, for a total of 6400 images. The sampled images, from both folds, are
resized from (176x208) to (224x224) and transformed to grayscale. Figure 11 shows exam-
ples of the used data. Then, the prepared data is fed to six pre-trained classifier models, which
are VGG-16, VGG-19, ResNet-50, DensNet-169, Inception, and Xception. We change the
top layer of all models to fit the number of classes in our case. The training data is then used to
refine the six models. The model parameters are optimized throughout 5000 iterations using
gradient descent and the AdamOptimizer [41]. Categorical The adversarial loss is calculated
using cross-entropy loss. Additionally, the input picture and video’s pixel values are scaled
to the range [−1.1]. The Keras Framework is used for the network’s implementation. The
performance of the model is finally evaluated for each class classification and for the total
classification, using the confusion matrix, classification ratio, as well as loss and precision
curves.

5.3 Algorithm of the proposed study

In this section, we present the algorithm employed to study the pre-trained models, with a
specific focus onResNet-50. It is important to note that this algorithmic approach is consistent
across all other models within our study.

5.4 Results and comparison of performance

A performance evaluation of the six networks in each AD class is undertaken to verify the
performance of the networks. The confusion matrix and accuracy curves of the six networks
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Algorithm 1 Algorithm of the proposed study
img ← Kaggle − data
model ← pretrained − ResNet50
traing − data, testing − data ← spli t
for epochNumber do

for batchSize do
ŷ = model( f eatures)
loss = crossEntopy(y, ŷ)
optimization(loss)
accuracy()
best − Accuracy = max(best Accuracy, accuracy)

end for
end for

are used for this purpose. This enables us to assess the network’s performance, check to see
whether it performs consistently across all classes, and choose the right training parameters
so that the network can successfully distinguish between the various AD classes.

5.4.1 Performance parameters of every model

The performance value is shown in this section:

• Performance parameters of the VGG-16 :

The performance of VGG-16 by class, shown in Table 2, demonstrates that the brain’s
IRM pictures are classified most correctly for the class MODDEM and least correctly for the
class NONDEM. It is clear that the MODDEM class is extremely well classified, with 100%
precision, and that the other classes’ precision is less than that of the MODDEM class.

• Performance parameters of the VGG-19:

According to Table 3 performance of VGG-19 by class, brain MRI pictures are classified
most accurately for the MODDEM class, with 92 percent accuracy, and least accurately for
the NONDEM class.

• Performance parameters of the ResNet-50:

According to Table 4, which breaks out ResNet-50’s performance by class, the classes
MILDEM and NONDEM are the most accurate in classifying brain MRI images, with accu-
racy rates of 77% and 78% respectively. And the classes MODDEM and VERDEM least
accurately.

• Performance parameters of the Inception-V3:

Table 2 Performance parameters of the VGG-16

Performance metric MILDEM MODDEM NONDEM VERDEM

Precision 78% 100% 75% 76%

Recall 53% 75% 89% 67%

F1-score 63% 86% 82% 71%
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Table 3 Performance parameters of the VGG-19

Performance metric MILDEM MODDEM NONDEM VERDEM

Precision 87% 92% 76% 78%

Recall 48% 100% 90% 70%

F1-score 62% 96% 82% 74%

Table 4 Performance parameters of the ResNet-50

Performance metric MILDEM MODDEM NONDEM VERDEM

Precision 77% 38% 78% 49%

Recall 26% 25% 60% 79%

F1-score 39% 30% 68% 61%

Table 5 Performance parameters of the Inception-V3

Performance metric MILDEM MODDEM NONDEM VERDEM

Precision 74% 100% 73% 70%

Recall 50% 17% 86% 62%

F1-score 60% 29% 79% 66%

Table 6 Performance parameters of the Xception

Performance metric MILDEM MODDEM NONDEM VERDEM

Precision 66% 75% 70% 76%

Recall 51% 50% 90% 51%

F1-score 58% 60% 79% 61%

Table 7 Performance parameters of the DensNet-169

Performance metric MILDEM MODDEM NONDEM VERDEM

Precision 74% 100% 71% 68%

Recall 36% 33% 89% 58%

F1-score 49% 50% 79% 63%
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Based on the performance of Table 5 of Inception-V3 by class, brain MRI images are
classified most accurately for the MODDEM class, with 100% accuracy, and least accurately
for the other classes.

• Performance parameters of the Xception:

The performance of Xception by class, presented in Table 6, shows that the classification
performance is almost similar for all classes.

• Performance parameters of the DensNet-169:

According to the class-wise performance of DenseNet-169 Table 7, brain MRI images
are most accurately classified for the MODDEM class, with 100% accuracy, and the least
accuracy for other classes.

5.4.2 Confusion matrix

In our case, the confusion matrix was utilized for the performance evaluations of the methods
used after the classification. The following are the VGG-19, VGG-16, ResNet-50, Inception-
V3 and Xception, and DenseNet169 confusion matrices Fig. 12.

5.4.3 Accuracy curves

The accuracy curves are very important for evaluating the performance of the methods used
after classification. Here are the accuracy curves ofVGG-19,VGG-16, ResNet-50, Inception-
V3 and Xception, and DenseNet169 Fig. 13.

5.5 Comparison with other results

In our comparison with other studies, our Alzheimer’s disease classification model stands
out for its superior accuracy. Specifically, our model achieves an impressive accuracy of
92.83% for VGG-16 and 91.04% for Inception. In contrast, Haif Wu et al.’s research [18]
reports lower accuracy values of 77% for VGG-16 and 78% for Inception. Furthermore, our
ResNet-50 model attains an accuracy of 85.99%, surpassing the 58.7% accuracy reported by
Mosleh Hmoud Al-Adhaileh et al. [7].

The outstanding performance of our model becomes even more evident when compared
to the approach taken by Sadiq et al. [16], who used the Inception and Xception models,
achieving accuracy rates of 90% and 86%, respectively. In contrast, our model achieves
higher accuracy rates, with 90.57% for Xception and 91.04% for Inception, reinforcing
its effectiveness in the classification of Alzheimer’s disease. The Table 8 summarizes this
comparison.

Our research uniquely classifies Alzheimer’s disease into four stages (non-dementia, very
mild dementia, mild dementia, and moderate dementia), a novel dimension not commonly
explored. This distinctive approach enhances the overall comprehensiveness of our work,
contributing to improved diagnostic accuracy in Alzheimer’s disease classification. In sum-
mary, our results highlight the promising potential of our proposed model to advance the
field of Alzheimer’s disease classification research.
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Fig. 12 Confusion matrix of every model

6 Discussion

Alzheimer’s disease (AD) is a neurological condition that worsens with age and results in
disconnected nerve cells. The hippocampus gets smaller, the brain shrinks, and the ventricles
get bigger all as a result of AD.Memory, logic, and answers to issues in everyday activities are
all impacted as AD advances. Many researchers’ major objective is to provide a replacement
for the AD diagnosis system.
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Fig. 13 Accuracy curve of every model

Table 8 Comparison with other
results

Researchers
Works

Architecture Evaluation(Accuracy)

• Sadiq et al [16] • Xception
• Inception

• Xception: 90%
• Inception: 86%

•HaifWuet al [18] • VGG-16
• Inception

• VGG16: 77%
• Inception: 78%

• Mosleh Hmoud
Al-Adhaileh [7]

• ResNet-50 • ResNet-50: 58,7%

• Ours • VGG-19, VGG-
16, Inception-V3,
Xception,
ResNet-50, and
DenseNet169

• VGG-19: 92.86%
• VGG-16: 92.83%
•
Inception-V3: 91.04%
• Xception: 90.57%
• ResNet-50: 85.99%
• DenseNet169: 88.64%
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Today, artificial intelligence methods have been successful in detecting and classifying
neurological diseases and, of course, in classifying AD. In this work, we used CNN and
specifically transfer learning for AD detection and prediction using MRI scans obtained
from Kaggle. Based on the six learning models VGG-16, VGG-19, Inception-V3, Xception,
ResNet-50, and DensNet-169, we classified the four types of AD as non-dementia (NON-
DEM), very mild dementia (VERDEM), mild dementia (MILDEM), moderate dementia
(MODDEM).The results obtained show that the VGG-16 and VGG-19 models give a good
performance since the accuracy of both models is close to 93%.We rank second to the Xcep-
tion and Inception-V3 models when we obtain an accuracy close to 91%, for the ResNet-50
and DensNet-169 models the accuracy decreases to 86% and 89% respectively. These results
can be seen from the accuracy curves in Fig. 13 since the best curves are for the VGG-16 and
VGG-19 models and more or less the curves for the Xception and Inception-V3 models, but
the curves for the ResNet-50 and DensNet-169 show that models fall short in comparison to
the others, especially when we look at the validation curves.

In the tables of performance parameters, we can see that with the Inception-V3, DensNet-
169, and VGG-16 models, we obtained the best accuracy of 100% for the MODDEM class
and close accuracies for the other classes, and with the ResNet-50 model we obtained a
low accuracy of 38% for MODDEM. For the NONDEM and MILDEM classes, we have an
accuracy between 66% and 87% for all learning models. For the VERDEM class, we have
an accuracy between 70% and 78% for all models except the ResNet-50 model, for which
we obtained an accuracy of 49%.

7 Conclusion

A correct diagnosis of AD is necessary for successful treatment. Because of this, several
researchers have concentrated their efforts on developing a computer-aided system capable
of providing early, accurate diagnoses of AD. In this study, six separate pre-trained deep
learning models, VGG-19, VGG-16, ResNet-50, Inception-V3, Xception, and DensNet-169,
were fine-tuned to fir the problem of AD classification by transfer learning. The 6400 MRI
images in the Kaggle database are used to train and test these models to distinguish the four
classes of maldysis, NONDEM, MILDEM, MODDEM, and VERDEM. Transfer learning is
used to modify the architecture of the networks to classify the four different AD types. The
results show that the learning models are quite effective in distinguishing AD patients from
non-ADpatients. The total performance of the networks is evaluated and each class separately.
With these six networks, it is possible to clearly and accurately categorize the different
stages of AD based on the performance analysis. From the results, it is clear that VGG-16
and VGG-19 networks have better performance than other networks. And the Xception and
Inception-V3 are ranked second.
The primary goal of future studywill be the creation of deep learning networks specifically for
AD class categorization. According to the study’s findings, deep learning methods and MRI
technology can aid in the early identification of neurodegenerative disorders like Alzheimer’s
disease.Accurate identification ofADstagesmight speedup the creation of novelmedications
by giving a better way to measure the efficacy of targeted therapies that may be able to slow
disease progression.
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