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Abstract
An automatic vehicle classification (AVC) system designed from either still images or videos
has the potential to bring significant benefits to the development of a traffic control system.
On AVC, numerous articles have been published in the literature. Over the years, researchers
in this domain have created and used a variety of datasets, but most often, these datasets
may not reflect the exact scenarios of the Indian subcontinent due to specific peculiarities
of the road conditions, road congestion nature, and vehicle types usually seen in Indian
subcontinent. The primary goal of this paper is to create a new still image dataset, called
JUIVCDv1, which contains 12 different local vehicle classes that are collected using mobile
cameras in a different way for developing an automated vehicle management system. We
have also discussed the characteristics of the current datasets, and various other factors taken
into account while creating the dataset for the Indian scenario. Apart from this, we have
benchmarked the results on the developed dataset using eight state-of-the-art pre-trained
convolutional neural network (CNN) models, namely Xception, InceptionV3, DenseNet121,
MobileNetV2, and VGG16, NasNetMobile, ResNet50 and ResNet152. Among these, the
Xception, InceptionV3 and DenseNet121 models produce the best classification accuracy
scores of 0.94, 0.93 and 0.92 respectively. These models are further utilized to make an
ensemble model to enhance the performance of the overall categorization model. Majority
voting-based ensemble, Weighted average-based ensemble, and Sum rule-based ensemble
approaches are used as ensemble models that give accuracy scores of 0.95, 0.94, and 0.94,
respectively.
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1 Introduction

The need for more effective solutions to the traffic congestion issue has grown in recent years
due to the increase in vehicle traffic. Automatic vehicle classification (AVC) systems are
needed for real-time traffic management and monitoring to deal with the ever-increasing vol-
ume of traffic. The rising number of vehicles on the road has been a concern for researchers
towards the betterment of the road traffic scenario. Many studies on the traffic management
system have been published in areas such as vehicle categorization [1], detection [2, 3],
make and model recognition [4–6], segmentation, lane detection, pedestrian detection, etc.
Autonomous driving will play a huge role in vehicle-related research in the future. For this
reason, research on AVC systems is much needed in today’s scenario. Such systems can also
be used to collect information about vehicle make and model details that are necessary for
security reasons. Working on such problems using real-world traffic scenarios is difficult in
terms of training, testing, and model validation. Huge amounts of realistic data are required
for this purpose. Deep learning algorithms [7, 8] give better results in the case of real-time
competitive performance in comparison to other machine learning algorithms and conven-
tional approaches in various applications, and deep learning models strive to outperform
previous results in a given domain. During the study of this domain, it has been found that
there are not many datasets available for research, and many of them are based on specula-
tive situations. Moreover, well-known AVC datasets are mostly paid, and the datasets with
a decent number of images lack appropriate annotations, thus making it challenging to use
them for research purpose. On the other hand, sufficient samples are needed to create an
effective supervised learning-based model that is accurate as well as capable of functioning
in real-life scenarios.

For vehicle localization, there are a few datasets available, but the number of datasets
available for AVC is limited. Furthermore, existing AVC datasets do not mostly capture real-
life scenarios adequately. For example, images taken in the Indian subcontinent frequently
show multiple vehicles overlapping in a single frame due to heavy traffic congestion. This
issue makes the classification, localization, detection, and segmentation processes extremely
challenging. These challenges are relevant not only in India but also in Bangladesh, Pakistan,
Sri Lanka, and many other South-Asian nations. The available AVC models which were
trained on well-managed traffic scenarios, might not be applicable to the datasets collected
from these nations. However, Bhattacharya et al. [9] developed a dataset, called JUVDsi,
for vehicle detection in Indian road scenarios. Ali et al. [10] published a vehicle detection
dataset, called IRUVD, which includes 14 vehicle classes typically based on the Indian roads
scenario.

1.1 Researchmotivation and contributions

In this sub-section, the motivation behind this research work and its contributions have
been discussed. For vehicle detection, a large number of datasets are found in the literature.
However, only a few datasets are available for vehicle classification tasks. Not all datasets
accurately reflect real-world situations. Similar to the Indian subcontinent, images taken in
crowded traffic conditions sometime show many automobiles overlapped in a single image.
This problem makes the classification, localization, detection, and segmentation processes
very challenging. Also, there is no more room for research on some AVC datasets because
researchers have already achieved almost 100% accuracy on those datasets. To reduce road
accidents, it is also necessary to recognize vehicles [11], pedestrians [12] and re-identification
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[13–15] of vehicles. There are several potential applications of AVC in various sectors, such
as smart cities, transportation, law enforcement, and car industry. Security, traffic manage-
ment, along with customer experiences are all significantly enhanced by accurate vehicle
identification and categorization. AVC may be used in a wide range of real-world situations,
including intelligent parking systems, autonomous cars, toll payment systems, traffic mon-
itoring systems, and vehicle identification at crime scenes. At transportation hubs, robust
AVC techniques are frequently employed, as a result of which identifying vehicle while
entering restricted areas can help with security-related difficulties. To train the model for this
problem, a large number of real-world vehicle images are needed. Vehicle re-identification,
which attempts to match the same vehicle image captured by many cameras, is vital to video
surveillance for public safety since vehicles are an indispensable part of human existence.
In this instance, the problem of vehicle re-identification demands the highest level of accu-
racy from AVC approaches. Considering the aforementioned details, in this paper, we have
introduced a new still-image based dataset, called JUIVCDv1, for AVC. The following is a
list of this paper’s main contributions.

1. This dataset offers a realistic image representation of the traffic situation in India, which is
very different from that of other developed countries. Vehicle images captured in various
scenarios are considered. A total number of 6335 vehicle images can be found in this
dataset.

2. Researchers may take this dataset to evaluate the effectiveness of their methods for
autonomous vehicle localization and categorization.

3. This dataset includes images of vehicles captured at night time, which makes the cat-
egorization task more challenging. As a result, the developed model is also capable of
handling data collected in low-light conditions.

4. The vehicle images in the collection are taken in different weather conditions. Therefore,
the model is resilient enough to handle data collected in a variety of meteorological
scenarios.

5. Detailed annotations are provided for the performance evaluation of either newor existing
methods developed on this dataset.

6. Initially, we have executed eight CNN models, namely Xception, InceptionV3,
DenseNet121,MobileNetV2, VGG16, NasNetMobile, ResNet50, and ResNet152 on this
dataset for AVC. We have also applied three ensemble models on this dataset, namely
Majority Voting-based Ensemble (MVE), Weighted Average-based Ensemble (WAE),
and Sum Rule-based Ensemble (SRE). Finally, we have benchmarked this dataset using
an MVE classifier combination approach which achieves 95% accuracy.

2 Literature review

In this section, we have discussed three aspects of the research problem related to AVC.
This section summarizes the AVC datasets that are available publicly for development and
validation, performance comparison of different types of AVC methods, and some recent
state-of-the-art approaches already available for AVC. During this study, it was found that the
datasets related toAVCare quite expensive and the number of freely availableAVCdatasets is
very few.Moreover, the datasets that are freely available to the research community have been
used so frequently over the years that these attain an accuracy of almost 100%. Therefore,
there is a need for a new dataset with more challenges portraying real-life scenarios. Also,
a country like India has a different scenario in this domain due to the road conditions and
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the presence of multiple vehicles within a single frame. If we use other datasets that are not
similar to the Indian road scenario, then the model may not be working properly in real-life
conditions. Table 1 provides a summary of the freely available AVC datasets commonly used
by researchers to date with state-of-the-art accuracies achieved on these datasets.

To the best of our knowledge, we have gathered the following shortcomings of the exist-
ing datasets. The BIT car dataset comprises only 6 classes, and the images in the dataset
are captured under a single weather condition, posing a challenge for building a robust AVC
model. The online images in the CompCars dataset are gathered from vehicle forums, public
websites, and search engines. In contrast, in our developed dataset, images from real-world
traffic scenarios are captured. Notably, this dataset includes 12 distinct vehicle classes. The
images in our developed dataset are sourced fromvariousweather conditions, including rainy,
sunny, and cold seasons, as well as nighttime and daytime settings. We have partitioned the
dataset into train and test sets using a 70:30 ratio, which help the future researchers to eval-
uate their methods. There are many studies related to vehicle detection, but the research
articles related to AVC is found to be a few. Maity et al. [26] surveyed this topic in the year
2021 considering all the works done for AVC in the last decade. In this section, we will also
discuss some significant AVC methods. Sun et al. [27] proposed a novel vehicle-type classi-
fication system, which uses a lightweight CNNwith feature optimization and a joint learning
strategy. The first step was to create a lightweight CNN with feature optimization, called
LWCNN-FO. To minimize the parameters of the network, they employed depth-wise sepa-
rable convolution. Additionally, the SENet module was included to automatically determine
the significance of each channel with features using self-learning. Silva et al. [28] proposed
an AVC system with a computer vision solution to solve the problem of the vehicles’ make
and model classification. By observing the car’s attributes and contrasting them with those
in the membership, a camera was set up to authenticate the vehicle. They concentrate on
constructing a fine-grained AVC system that uses the system’s multi-camera composition to
fuel a CNN with many views of the vehicle. The evaluations presented indicate that incor-
porating data from multiple perspectives of a vehicle enhances the classification accuracy
of its make and model, particularly in difficult tolling situations. Ni et al. [29] proposed a
vehicle attribute recognition system by appearance. The study covered both coarse-grained
(vehicle type) and fine-grained (car manufacturer and model) components in its review of
existing vehicle component identification methods. This paper aimed to perform vehicle

Table 1 List of freely available image datasets used for AVC till date

Dataset No. of classes No. of images Accuracy (%)

MIO TCD [16] 11 648959 97.95

FG3DCar [17] 30 300 95.30

Stanford Cars [18] 196 16185 96.80

BIT vehicle [19] 6 9850 96.10

BoxCars [20] 27 63750 86.57

CompCars [21] 163 136726 99.00

Poribohon BD [22] 15 9058 98.70

Deshi BD [23] 13 10440 98.00

Frontal-103 [24] 103 65433 91.00

LSUN+Stanford [25] 196 2067710 99.00

Ours (JUIVCDv1) 12 6335 95.00

123



Multimedia Tools and Applications (2024) 83:71379–71406 71383

type recognition by categorizing vehicles into broad classifications based on their sizes or
intended usage, such as sedans, buses, and trucks. This study also conducted an analysis
of Vehicle Make Recognition, which involves the classification of vehicles based on their
respective manufacturers such as Ford, Toyota, and Chevrolet. Silva et al. [30] presented
a subscription/membership function for an automated toll-collecting (ATC) system using
computer vision. This application system established a one-to-one correspondence between
a distinct identifier (ID), a tangible automobile, and a membership. A camera-based system
was implemented to authenticate that every transaction aligned with the factual membership
data by cross-verifying the vehicle and ID information. The visual system employed vari-
ous algorithms to extract distinct features of a vehicle such as a number plate, make, model,
color, number of axles, and so on. The system performed a comparison between the extracted
characteristics and those present in the membership. The authors concentrated on address-
ing the vehicle’s make classification problem and suggested a detailed vehicle classification
approach that leverages the system’s multi-camera configuration. Sahin et al. [31] proposed
the utilization of Light Detection and Ranging (LiDAR) sensor data to differentiate between
distinct categories of truck trailers, surpassing the capabilities of conventional classification
sensors such as inductive loop detectors and piezoelectric sensors. The present study demon-
strates the processing of point-cloud data obtained from a 16-beam LiDAR sensor to extract
valuable information and features. The outcomes indicate that the Support Vector Machine
(SVM)model can effectively differentiate various caravan body types with a remarkably high
degree of precision, ranging from 85% to 98%. Liu et al. [32] proposed a new end-to-end
CNN architecture that can simultaneously detect and remove adversarial perturbations by
utilizing denoising techniques. This approach was referred to as Denoising Detection and
Denoising Adversarial Perturbations (DDAP). The DDAP denoiser utilized the DDAP detec-
tor’s adversarial examples to eliminate adversarial perturbations. Themethod being proposed
can be considered a pre-processingmeasure. It does not necessitate any alterations to the con-
figuration of the vehicle classification model and has minimal impact on the classification
outcomes of clear images. To validate the capabilities of DDAP, they conducted testing on
public datasets such as BIT-Vehicle. Butt et al. [33] presented an AVC system that utilized
a CNN to enhance the resilience of vehicle classification in real-time scenarios. The authors
provide a dataset of vehicles consisting of 10,000 images that were classified into six distinct
vehicle classes. The dataset was designed to account for challenging lighting conditions to
enhance the reliability of vehicle classification systems in real time. The study involved fine-
tuning pre-trained models such as GoogleNet, Inception-v3, VGG, AlexNet, and ResNet on
a self-constructed vehicle dataset to assess their accuracy and convergence capabilities. To
achieve generalization, the network was fine-tuned on the VeRi dataset, a publicly available
collection of 50,000 images that have been classified into six distinct vehicle categories. Guo
et al. [34] proposed a semi-supervised approach for vehicle type classification in Intelligent
Transportation Systems (ITS) using broad ensemble learning. The methodology outlined
comprised two primary components. The initial phase involves training a set of base Broad
Learning System (BLS) classifiers using semi-supervised learning techniques to mitigate
the growing burden of unlabeled samples and reduce the duration of the training process.
In the second phase, a dynamic ensemble architecture is created using trained classifiers
that possess distinct characteristics. The authors utilized the publicly available BIT-Vehicle
dataset and MIOTCD dataset to conduct experiments and showcased that their proposed
method has better performance in terms of effectiveness and efficiency when compared to
a single BLS classifier and other commonly used methods. Mohine et al. [35] introduced a
hybrid deep 1D CNN-bidirectional long short-term memory (CNN-BiLSTM) approach that
utilized acoustic modality to move vehicle categorization into two-wheeler, low, medium,
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and heavyweight groups, as well as noise analysis. Furthermore, it underwent testing on the
reference dataset, SITEX02, to validate its performance thus achieving an accuracy rate of
96%. The comparative analysis of the 1D CNN-BiLSTM model’s performance was con-
ducted against traditional classifiers such as ANN, CNN, SVM, and CNN-LSTM models.
Based on the empirical findings, it has been observed that the CNN-BiLSTM model has
achieved a superior classification accuracy of 92% in comparison to traditional classifiers.

3 Dataset preparation

In this section, the specifics of creating the JUIVCDv1 dataset have been discussed in detail.
Here, we have covered dataset nomenclature, methods of collecting vehicle videos, the pro-
cess of creating images from videos, and the process of annotations.

3.1 Dataset nomenclature

We have named our developed dataset JUIVCDv1, where JUIVCD stands for ‘Jadavpur Uni-
versity Indian Vehicle Classification Dataset’. The dataset has 12 different vehicle classes
namely, ‘Bicycle’, ‘Van’, ‘Car’, ‘Bus’, ‘Ambassador, ‘Autorickshaw’, ‘Rickshaw’, ‘Motor-
ized2Wheeler’, ‘Motorvan’, ‘Toto’, ‘Truck’ and ‘Minitruck’. Figure 1 illustrates each of the
vehicle classes, class names, and class labels.

3.2 Collection of raw data preparation

Images have been collected from highways in Kolkata, an Indian metropolitan city, and
some rural locations around Kolkata. We made every effort to compile as many real-time
traffic scenarios as possible. Videos are first taken, and then we used labelImg [36] to extract
the frames and generate still images. JUIVCDv1 dataset includes images from both fixed
positions of the camera as well as from a moving vehicle. We collected data both during the
daytime and nighttime. We have also provided bounding boxes of the vehicles in our dataset.
On Indian urban streets, the most realistic traffic situations have been adopted.
To capture videos and still images, we mostly used two different camera phones:

1. Redmi Note 9Pro (1280x720p)
2. Honor - HRY-AL00 (1080x2340p)

To make it easier for the image processing algorithms to analyze each video, we have created
image frames from each video and saved the images into the JPEG format. The steps of this
procedure are discussed below:

1. Specific image frames have been chosen such that they can be easily distinguished from
each other in the set of chosen frames, and are not too fuzzy.

2. All still images that have been transformed from videos to image frames have been
divided into a training set and a test set. The first 70% image frames are taken into the
training set and the remaining is taken into the test set.

3.3 Annotation of processed data

If we want to apply supervised learning algorithms, an accurate annotation is a crucial neces-
sity for any developed dataset. But, sometimes it takes too much time to annotate proper
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Fig. 1 Sample images of the vehicle classes that are considered in the JUIVCDv1 dataset. (the class labels are
denoted by digits before the name of the vehicle classes)

data [37]. Having annotations in the test data is also beneficial for the researchers to evaluate
performance while developing a new algorithm. This dataset’s annotations are given in both
TXT and XML formats. We have used a standard tool, called labelImg tool for the annota-
tion. Figure 2 represents the annotation format of a sample image taken from the JUIVCDv1
dataset. Table 2 shows the annotation on a sample image using the said tool. The bounding
boxes of the objects are described as:-bx, by, where the x and y coordinates represent the
center of the box. The bh and bw, are the height and width of the bounding boxes respectively
relative to the entire image and c represents the class of the object. In TXT format, ’0’ is
defined as a class of the object and the next values are x_center, y_center, width, and height,
respectively. In JSON format, the annotation information is represented in the following
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Fig. 2 Annotation of a sample image taken from JUIVCDv1

order: the image name first, then the class of the vehicle, the x and y coordinates of the
bounding box, followed by the width and height of the bounding box.

4 Details of JUIVCDv1 dataset

The dataset contains images that can be utilized to create a realistic AVC system focusing
mainly on typical Indian road conditions as well as traffic scenarios. The images are taken
at various times of the day and night to accommodate every possible diversity of the typical
Indian road scenes. Images contain a single object in a single frame. The videos are recorded
from the sidewalks on both the sides of the road, and while riding on a moving vehicle.
This provides a diversity of images and will help to strengthen the developed models by
researchers. To make the model robust and to operate the same in varied situations, the
dataset is intentionally kept unbalanced.

4.1 Train set

There are 12 folders in the train set of the JUIVCDv1 dataset. The folders consist of
namely ‘0_Car’, ‘1_Bus’, ‘2_Bicycle’, ‘3_Ambassador’, ‘4_Van’, ‘5_Motorized2wheeler’,
‘6_Rickshaw’, ‘7_Motorvan’, ‘8_Truck’, ‘9_Autorickshaw’, ‘10_Toto’, ‘11_MiniTruck’.
The ‘0_Car’ folder has 560 number of images, ‘1_Bus’ folder has 560 number of images,
‘2_Bicycle’ folder has 120 images, ‘3_Ambassador’ folder has 480 images, ‘4_Van’,
‘5_Motorized2wheeler’ and ‘6_Rickshaw’folder has 560 number of images, ‘7_Motorvan’
has only 33 images, ‘8_Truck’ has 140 images, ‘9_Autorickshaw’ has 564 images, ‘10_Toto’
has 36 images and ‘11_MiniTruck’ has 181 images. A total of 4300 vehicle images are pro-

Table 2 Annotation format of JUIVCDv1 dataset still image

Annotation format in JSON Annotation format in TXT

[“Image:“3(106).png"],

“annotation:[“label":“ambassador_taxi"],

“coordinates":“x":204.5,“y":167.45,

“width":395.0,“height":228.0 0 0.508 0.491 0.982 0.670
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vided in the training set of the JUIVCDv1 dataset. Sample images are already shown in
Fig. 1. The number of objects present in each vehicle class in the training data has been
shown in Fig. 3 using a bar graph. Here, the Y-axis is the number of vehicle images, while
the X-axis denotes the number of samples present in each vehicle class.

4.2 Test set

similar to the train set, there exist 12 folders in the test set of the JUIVCDv1 dataset. The
folders contain namely ‘0_Car’, ‘1_Bus’, ‘2_Bicycle’, ‘3_Ambassador’, ‘4_Van’, ‘5_Motor-
ized2wheeler’, ‘6_Rickshaw’, ‘7_Motorvan’, ‘8_Truck’, ‘9_Autorickshaw’, ‘10_Toto’,
‘11_MiniTruck’. In ‘0_Car’ folder, there are 240 number of images, ‘1_Bus’ folder has
240 number of images, ‘2_Bicycle’ folder has 80 images, ‘3_Ambassador’ folder has 320
images, ‘4_Van’, ‘5_Motorized2wheeler’ and ‘6_Rickshaw’folders have 240 number of
images, ‘7_Motorvan’ has only 11 images, ‘8_Truck’ have 59 images, ‘9_Autorickshaw’
has 240 images, ‘10_Toto’ has 23 images and ‘11_MiniTruck’ has 122 images. A total of
2035 vehicle images are given in the test data of the JUIVCDv1 dataset. Sample images are
already shown in Fig. 1. The number of objects present in each vehicle class in the test data
is shown as a bar graph in Fig. 4. Here, the Y-axis represents the number of images, while
the X-axis represents the number of items in a vehicle class.

5 Benchmarking JUIVCDv1 dataset

To categorize the automobiles in our dataset, we have also considered some state-of-the-art
pre-trained deep learning models.

5.1 Xception

Chollet et al. [38] proposed a CNNmodel based on depth-wise separable convolution layers.
They assert that it is possible to completely dissociate the cross-channel mapping and feature
maps of spatial correlations. This hypothesis is the extreme version of Inception architecture.
For this reason, the authors proposed the architectural name Xception, which means Extreme
Inception. The Xception architecture consists of 36 convolutional layers for feature extrac-
tion. The Xception architecture is just a linear stack of residually connected depth-separable
convolution layers. Figure 5 shows the architecture of the Xception model.

Fig. 3 Bar graph showing the number of images present per vehicle class in the train set of the JUIVCDv1
dataset
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Fig. 4 Bar graph showing the number of images present per vehicle class in the test set of the JUIVCDv1
dataset

5.2 InceptionV3

In 2016, Szegedy et al. [39] proposed a novel model for classification, called InceptionV3.
The InceptionV3 is a CNN model belonging to the Inception family. It incorporates various
enhancements such as the utilization of label smoothing, factorized 7x7 convolutions, and an
auxiliary classifier to disseminate label information to lower network layers. Additionally,
batch normalization is employed for layers in the side head. In Fig. 6, the overall architecture
of the InceptionV3 model is shown.

5.3 DenseNet121

DenseNet, [40] is a CNN architecture, which was recently presented, with an intriguing con-
nection pattern. DenseNet architecture connects layers with a dense block, promoting feature

Fig. 5 Architecture of the Xception model

123



Multimedia Tools and Applications (2024) 83:71379–71406 71389

Fig. 6 Architecture of the InceptionV3 model [39]

reuse and reduced overfitting. Each layer accesses predecessor’s feature maps, reducing over-
fitting. Direct supervision from the loss function and shortcut pathways contribute to implicit
deep supervision. This results in a dense model, reducing overfitting and improving com-
putational and memory efficiencies. Concatenation of layers enhances network compactness
and growth rate, reducing channel count. In Fig. 7, the block diagram of the DenseNet model
is shown.

5.4 MobileNetV2

An effective model for mobile and embedded vision applications is provided in MobileNet
[41]. It is a simplified architecture that builds lightweight deep CNN models using depth-
wise separable convolutions. Each input channel of MobileNet receives a single filter applied
to depth-wise convolution. Two layers, one for combining and one for filtering, are seg-
regated from this by the depth-wise separable convolution. The result of this factorization
is a significant decrease in computation and model size. Modern object detection systems
can potentially use MobileNet as an efficient base network. The schematic diagram of the
MobileNet model is shown in Fig. 8.

5.5 VGG16

In 2014, the Visual Geometry Group (VGG) at the University of Oxford developed VGG16
[42], which is a popular CNNmodel. It consists of a total of 16 layers, including 16 layers of

Fig. 7 Architecture of the DenseNet121 model
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Fig. 8 Architecture of the MobileNetV2 model

convolutional processing, and three levels of fully linked processing. In the initial layers of
the network, convolutional layers consisting of 3*3 filters have been used. The convolutional
layers are then followed by max-pooling layers with 2*2 filters. These 2*2 filters can reduce
the spatial size of the output of the convolutional layers in half. Of almost 16 convolutional
layers, the first 13 layers employ 3*3 filters, and the remaining three use 1*1 filters. When
smaller filters are used, a deeper network can be constructed using fewer parameters. The
first convolutional layer starts with 64 filters and then works its way up to 512 filters in the
final layer. Each of the fully linked layers that make up the final stage of the network consists
of 4096 neurons. A Softmax layer serves as the last layer of the network and is responsible
for producing the class probabilities. The architecture of the VGG16 model is represented in
Fig. 9.

5.6 ResNet50

A well-known CNN model, called ResNet-50 [43], a member of the ResNet (Residual Net-
work) family, was introduced by He and colleagues. This model uses a standard input picture
size of 224 by 224 pixels. In this model, a max-pooling layer comes after the first layer, which
is a typical convolutional layer. ResNet-50 is made up of four stages and sixteen residual
blocks. The number of residual blocks changes from stage to stage, as does the number of
filters inside each block. The architecture of the Resnet50 model is presented in Fig. 10.

Fig. 9 Architecture of the VGG16 model
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Fig. 10 Architecture of the Resnet50 model

5.7 NasNetMobile

NasNet is a scalable CNN architecture (built for neural architecture search), which consists
of fundamental building blocks refined through reinforcement learning. It was trained on
over a million of images from the ImageNet database [44]. A cell is made up of only a few
processes (a few separable convolutions and pooling) and is repeated several times to meet
the network’s capacity requirements. NasNetMobile is a mobile version, which consists of
12 cells with 5.3 million parameters and 564 million multiply-accumulates (MACs). The
element-wise addition method is used by NASNet, which is far more intuitive than vector-
wise operations. When utilizing a feature map as an input, two types of convolutional cells
are employed. The input picture size of the network is 224*224. The architecture of the
NasNetMobile model is presented in Fig. 11.

5.8 Majority voting-based ensemble

The MVE is one of the most popular and commonly used classifier combination approaches.
In a majority voting rule [46–48], each classifier casts a vote for one class, and the class with
the maximum number of votes wins. In terms of statistics, the target label anticipated by the
ensemble is the mode of distribution of the individual predictions of labels. For example,
suppose three classifiers are used in the ensemble (C1, C2, and C3), and the class labels
are A and B. If both C1 and C2 predict the result as A, and C3 predicts the result as B,
according to the MVE approach, the result will be A. The voting procedures are based on

Fig. 11 Architecture of the NasNetMobile model [45]
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a democratic (weighted) mechanism that aggregates the forecasts from the categorization
models. These categorization models have been separately calibrated using many analytical
sources. The simplest and most natural technique relies on the MVE rule, which designates
a sample based on the most common class assignment (the "loose" method). In the event of a
tie, the sample is not categorized.When all of themodels under consideration have completed
the forecast agreement, voting by strict majority depicts this situation. We have opted for
the MVE strategy since it generally yields superior results [46]. For easy understanding, a
pictorial illustration of the MVE approach is shown in Fig. 12.

5.9 Sum rule-based ensemble

In machine learning [49], one popular idea related to ensemble learning is the SRE. In
ensemble learning, many models are combined to produce a prediction model that itself is
more powerful and reliable than any of the individual models. In particular, the term "SRE"
describes a technique that adds predictions from several models by adding up each one’s
unique forecasts. Next, a summary of each model’s predictions is provided. In classification
tasks, weights may be provided to the class labels, and these weights are taken into account
while calculating the total. The total is added together and is used to determine the final
projection. When it comes to classification challenges, the ensemble prediction might be the
class with the largest sum or weighted sum.

5.10 Weighted average-based ensemble

The WAE [50] is one of the most popular and commonly used classifier combination
approaches. It combines the predictions of several models to increase prediction accuracy.
This approach creates aweighted average of the predictions by givingweights to variousmod-
els according to their performance on a validation set. For easy understanding, a pictorial
illustration of the WAE approach is shown in Fig. 13.

Fig. 12 A pictorial illustration of the MVE approach used to benchmark the JUIVCDv1 dataset
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Fig. 13 A pictorial illustration of the WAE approach used to benchmark the JUIVCDv1 dataset

6 Results and discussion

The present work includes the development of a still image dataset called JUIVCDv1 for
vehicle classification and benchmarking the results on the same. We have trained and tested
eight different CNN models namely Xception, InceptionV3, DenseNet121, MobileNetV2,
VGG16, NasNetmobile, ResNet50, and Resnet152 on our developed dataset. Finally, three
popular classifier combination approaches such as MVE, SRE andWAE are used to enhance
the overall classification performance. In the following subsections, we have discussed the
results obtained with their corresponding analysis.

6.1 Model evaluation

Some standard evaluation metrics such as classification accuracy, precision [51], recall [51],
F1-score [52], and confusion matrices [53] are used to measure the performance of the CNN-
based models on our developed dataset. These evaluation metrics are previously defined in
[9]. We have achieved a 0.94 accuracy score on the Xception model, while InceptionV3 has
achieved an accuracy score of 0.93, DenseNet121 and MobileNetV2 models have achieved
accuracy scores of 0.92 and 0.90 respectively, NasNetmobile have achieved 0.88, the VGG16
model has achieved 0.85 accuracy score and ResNet50 have achieved 0.56 and Resnet152
have achieved 0.55. After, analyzing the results, three base CNN models, namely Xception,
InceptionV3, and DenseNet121 are chosen for the MVE, SRE, and WAE, techniques due
to their performance for the said task. The MVE method has achieved an accuracy score of
0.95, whereas both the WAE and SRE approaches attained an accuracy score of 0.94.

6.2 Results obtained by CNNmodels

The outcomes of the eight pre-trained CNN models as well as three popular ensemble
approaches have been examined in this section. The outcomes of the base learners have
been displayed graphically. When it comes to identifying certain vehicle classes, some mod-
els have been observed to be more accurate than others. A graphical comparison of the test
accuracies provided by eight pre-trained CNNmodels along with three ensemble approaches
is shown in Fig. 14. In addition, a report detailing the accuracies of the classification scores
of the three best performing CNN models has been provided as a classification report, and
the confusion matrices for the three ensemble models are also provided for observing the
accurate and inaccurate classifications made by each of the models.
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Fig. 14 Performance comparison of test accuracies produced by eight pre-trained CNN models along with
three ensemble techniques used for AVC on the proposed JUIVCDv1 dataset

6.3 Performance comparison: classification report

The performance of AVC on the test set of the JUIVCDv1 dataset using the Xception model
has been presented in Table 3. After evaluating Xception on our dataset, we have observed
that the highest precision value of 0.99 is achieved by the class 4_Van and the class namely
5_Motorized2wheeler, and the lowest precision value of 0.69 achieved by 10_Toto. The class
7_Motorvan has achieved the highest recall value of 1.00 and the class 1_Bus has the lowest
recall value of 0.57. The highest F1-Score has been achieved by the model for two classes,
namely 5_Motorvan and 8_Truck i.e., 0.98. The Xception model has achieved an overall
accuracy of 0.94.

In Table 4, we provide howAVCperforms using the InceptionV3model on the JUIVCDv1
test set. After analyzing InceptionV3 using our dataset, we found that class 2_Bicycle had

Table 3 Classification report
showing the values of Precision,
Recall, and F1-score for each of
the vehicle classes produced by
the Xception model on the
JUIVCDv1 dataset

Vehicle class Precision Recall F1-score

0_Car 0.86 0.98 0.92

1_Bus 0.87 0.57 0.68

2_Bicycle 0.88 0.75 0.81

3_Ambassador 0.97 0.95 0.96

4_Van 0.99 0.90 0.94

5_Motorized2wheeler 0.99 0.96 0.97

6_Rickshaw 0.94 0.90 0.92

7_Motorvan 0.96 1.00 0.98

8_Truck 0.98 0.98 0.98

9_Autorickshaw 0.77 0.91 0.83

10_Toto 0.69 0.78 0.73

11_Minitruck 0.97 0.98 0.98

(Accuracy score: 0.94)
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Table 4 Classification report
showing the values of Precision,
Recall, and F1-score for each of
the vehicle classes produced by
the InceptionV3 model on the
JUIVCDv1 dataset

Vehicle class Precision Recall F1-Score

0_Car 0.86 1.00 0.92

1_Bus 0.96 0.95 0.95

2_Bicycle 1.00 0.88 0.93

3_Ambassador 0.99 0.97 0.98

4_Van 0.97 0.90 0.93

5_Motorized2wheeler 0.98 0.97 0.98

6_Rickshaw 0.95 0.98 0.97

7_Motorvan 0.58 1.00 0.73

8_Truck 0.60 0.95 0.74

9_Autorickshaw 0.97 0.97 0.97

10_Toto 0.73 0.48 0.58

11_Minitruck 0.94 0.61 0.74

(Accuracy score: 0.93)

the model’s greatest precision value of 1.00, while class 7_Motorvan had the model’s lowest
precision value of 0.58. Themodel for two classes, 0_Car and 7_Motorvan, has themaximum
recall value of 1.00, and10_Toto has the lowestRecall value of 0.48.Themodel has the highest
F1-Score of 0.98 for the two classes of 3_Ambassador and 5_Motorized2wheeler. The total
accuracy score of the InceptionV3 model is 0.93.

The effectiveness of AVC utilizing the DenseNet121 model on the JUIVCDv1 test set is
shown in Table 5. The model attained the highest precision of 1.00 for the classes 3_Ambas-
sador and 7_Motorvan, and the lowest precision of 0.57 for the class 8_Truck, according
to our evaluation of DenseNet121 on our dataset. In the model, the recall value of 0.43 for
the class 10_Toto is the lowest, and the classes "0_Car" and "5_Motorized2wheeler" have
the maximum recall value of 1.00. The model for class 5_Motorized2wheeler has the high-
est F1-Score, which is 0.98. An accuracy score of 0.92 is attained with the DenseNet121
model.

Table 5 Classification report
representing the results of
Precision, Recall, and F1-score
for each of the vehicle classes
produced by the DenseNet121
model on the JUIVCDv1 dataset

Vehicle class Precision Recall F1-score

0_Car 0.88 1.00 0.93

1_Bus 0.91 0.94 0.93

2_Bicycle 0.93 0.84 0.88

3_Ambassador 1.00 0.94 0.97

4_Van 0.95 0.88 0.92

5_Motorized2wheeler 0.97 1.00 0.98

6_Rickshaw 0.95 0.97 0.96

7_Motorvan 1.00 0.91 0.95

8_Truck 0.57 0.93 0.71

9_Autorickshaw 0.95 0.95 0.95

10_Toto 0.67 0.43 0.53

11_Minitruck 0.86 0.61 0.72

(Accuracy score: 0.92)
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Table 6 Classification report
showing the values of Precision,
Recall, and F1-score for each of
the vehicle classes produced by
the MVE approach on the
JUIVCDv1 dataset

Vehicle class Precision Recall F1-score

0_Car 0.92 1.00 0.96

1_Bus 0.88 0.61 0.72

2_Bicycle 0.93 0.70 0.80

3_Ambassador 0.98 0.97 0.97

4_Van 1.00 0.86 0.93

5_Motorized2wheeler 0.99 0.96 0.98

6_Rickshaw 0.97 0.96 0.96

7_Motorvan 0.98 1.00 0.99

8_Truck 0.96 0.98 0.97

9_Autorickshaw 0.98 1.00 0.99

10_Toto 0.67 0.88 0.76

11_Minitruck 0.96 1.00 0.98

(Accuracy score: 0.95)

6.4 Results obtained by ensemble approaches

This section discusses the results provided by three popular state-of-the-art ensemblemethods
MVE, SRE andWAE. In Table 6, we show the performance of AVC using theMVEmodel on
the JUIVCDv1 test set. We have chosen three CNNmodels for the majority voting technique
since they are more accurate than the other CNN models utilized in this case: Xception,
InceptionV3, and DenseNet121. After analyzing our dataset, we have found that the model
attained the maximum accuracy value of 1.00 for class 4_Van and the lowest precision value
of 0.48 for class 9_Autorickshaw. Class 0_Car has the model’s highest recall value of 1.00,
while class 1_Bus has the lowest recall value of 0.61. The class 7_Motorvan model has the
highest F1-Score, which is 0.99. The final accuracy of the MVE technique is 0.95.

In Table 7, we have demonstrated the performance of AVC on the JUIVCDv1 test set
using the SRE model. We have chosen three CNN models, Xception, InceptionV3, and

Table 7 Classification report
showing the values of Precision,
Recall, and F1-score for each of
the vehicle classes produced by
the SRE approach on the
JUIVCDv1 dataset

Vehicle class Precision Recall F1-score

0_Car 0.90 1.00 0.95

1_Bus 0.97 0.96 0.97

2_Bicycle 1.00 0.84 0.91

3_Ambassador 0.99 0.96 0.97

4_Van 0.94 0.95 0.95

5_Motorized2wheeler 0.98 1.00 0.99

6_Rickshaw 0.96 0.98 0.97

7_Motorvan 0.73 1.00 0.85

8_Truck 0.68 0.85 0.75

9_Autorickshaw 0.97 0.98 0.98

10_Toto 0.68 0.85 0.75

11_Minitruck 0.89 0.70 0.78

(Accuracy score: 0.94)
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Table 8 Classification report
showing the values of Precision,
Recall, and F1-score for each of
the vehicle classes produced by
the WAE approach on the
JUIVCDv1 dataset

Vehicle class Precision Recall F1-score

0_Car 0.90 1.00 0.95

1_Bus 0.97 0.96 0.97

2_Bicycle 1.00 0.84 0.91

3_Ambassador 0.99 0.96 0.97

4_Van 0.94 0.95 0.95

5_Motorized2wheeler 0.98 1.00 0.99

6_Rickshaw 0.96 0.98 0.97

7_Motorvan 0.73 1.00 0.85

8_Truck 0.68 0.85 0.75

9_Autorickshaw 0.97 0.98 0.98

10_Toto 0.80 0.52 0.63

11_Minitruck 0.89 0.70 0.63

(Accuracy score: 0.94)

DenseNet121, for the WAE approach since they are more accurate than the other CNNmod-
els used in this example. We have discovered that the model achieved the highest accuracy
value of 1.00 for class 2_Bicycle and the lowest precision value of 0.68 for class 8_Truck after
evaluating our dataset. Themodel’s best recall value is 1.00 for classes Class 0_Car, 7_Motor-
van, and 5_Motorized2wheeler, while the lowest recall value is 0.52 for class 10_Toto. The
model in class 5_Motorized2wheeler has the highest F1-Score, which is 0.99. The SRE
technique has a total accuracy of 0.94.

In Table 8, we have shown the performance of AVC using the WAE model on the JUIV-
CDv1 test set. We have chosen the best three performing CNN models, namely Xception,
InceptionV3, and DenseNet121, for theWAE technique since they are more accurate than the
other CNN models that are utilized in this case. After analyzing our dataset, we have found
that the model attained the maximum precision value of 1.00 for class 2_Bicycle and the
lowest precision value of 0.68 for class 8_Truck. Class 0_Car, 7_Motorvan, and 5_Motor-
ized2wheeler have the model’s highest recall value of 1.00, while class 10_Toto has the
lowest recall value of 0.52. The class 5_Motorized2wheeler model has the highest F1-Score,
which is 0.99. The total accuracy of the WAE technique is 0.94.

6.5 Performance comparison: accuracy vs epoch

In this section, curves related to training and validation accuracies of eight different basemod-
els have been shown. In Fig. 15, the training accuracy (TA) and validation accuracy (VA)

Fig. 15 Training accuracy and validation accuracy curve achieved through Xception model
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curves of the Xception model are given concerning the number of epochs, whereas Fig. 16
denotes the same for the InceptionV3 model. After analyzing base CNN models on JUIV-
CDv1 dataset, we have found that the Xception model achieves the best accuracy in Indian
road scenario, and it shows a accuracy of 0.94 where InceptionV3 and DenseNet121 achieves
the accuracy score of 0.93 and 0.92 respectively. Finally, Fig. 17 shows the DenseNet121
model’s TA and VA curves vs the number of epochs.

6.6 Confusionmatrices

In Fig. 18(a) shows the confusion matrix for the MVE approach model, Fig. 18(b) shows the
confusion matrix for the SRE approach model and Fig. 18(c) shows the confusion matrix for
the WAE approach model. In Fig. 19, a sample of the class 10_Toto is wrongly classified as
a sample of the class 7_Motorvan, whereas in Fig. 20, a sample of the class 11_Minitruck is
wrongly classified as a sample of the class 0_Car. This wrong classification may be attributed
to the fact that for some images, there are intra-class similarities among the sample images
belonging to different vehicle classes. Moreover, as there are very few still images of 10_Toto
in our collected data, and 10_Toto as well as 6_Rickshaw have a significant amount of
similarity in their appearances, several samples of 10_Toto have been incorrectly designated
by the models. Adding more samples of 10_Toto to the training set will help the models learn
better to distinguish 6_Rickshaw and 10_Toto, and to address the problem. Again, the images
of the front side of 11_Minitruck are quite similar in appearance to some of the 0_Car. This
also leads to the wrong classification of the 11_Minitruck images.

6.7 Data visualization

In the year 2019, Selvaraju et al. [54] proposed a visual explanation algorithm namely
Gradient-WeightedClassActivationMapping (Grad-CAM), that creates a coarse localization
map, which highlights the significant areas in the image for prediction/classification by using
the gradients of any target concept. Grad-CAM [55] may be used with several CNN models,
like VGGwhich has fully connected layers, visual question-answering CNNs for multimodal
tasks, or CNNs for reinforcement learning. Grad-CAMmay be seen as one of the first steps in
the bigger scheme of interpretable or explainable AI since the visualizations provide insights
into failure and aid in the identification of bias while surpassing previous standards. The
backpropagation technique’s issues with upsampling and downsampling relevance maps to
create coarse relevance heatmaps are also successfully avoided by this extension of the CAM
algorithm. Figure 21 shows the Grad-CAMs generated on some sample vehicle images by

Fig. 16 Training accuracy and validation accuracy curve achieved through Xception model
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Fig. 17 Training accuracy and validation accuracy curve achieved through Xception model

best five different CNN models used in the present work. In Fig. 21, the second and third
columns depict the original vehicle image and Grad-CAMs generated by Xception, Incep-
tionV3, DenseNet121, MobileNetV2 and NasNetMobile models respectively.

6.8 Results on poribohonBD dataset

Tabassum et al. [56] created the PoribohonBD dataset for vehicle categorization based on
vehicle images of Bangladesh. Sample vehicle images of this dataset are accessible at: https://
data.mendeley.com/datasets/pwyyg8zmk5/2here. We have considered this dataset for exper-
imentation since both the countries, India and Bangladesh have very similar road scenarios.
Images of vehicles are collected from two sources: a) social media and b) smartphone cam-
eras. The collection includes 9058 tagged and annotated photos of 15 native vehicles, that
are commonly found on roads of Bangladesh, including bus, three-wheeler rickshaw, motor-
cycle, truck, and wheelbarrow. In this dataset, data augmentation techniques are also used to
maintain the amount of images comparable for each type of vehicle. Initially, we have chosen
eight base CNN models for the primary study. After analyzing the results, we have observed
that the DenseNet121 model attains the maximum accuracy value of 0.94, the ResNet152v2
model attains an accuracy of 0.91, the MobileNet model attains an accuracy of 0.90, the
Xception model attains an accuracy of 0.88, InceptionV3 model attains the accuracy of 0.85,
VGG16 model attains the accuracy of 0.67, ResNet50 model attains the accuracy of 0.65 and
NASNetMobile model attains the accuracy of 0.60. Among them, three best performing base
CNNmodels such as Xception, InceptionV3, and DenseNet121 are chosen for implementing
the MVE, WAE, and SRE techniques. After considering the ensemble methods, the MVE
approach has achieved the highest accuracy score of 0.96, the SRE method has attained an

Fig. 18 Confusion matrices produced by MVE, SRE, and WAE techniques on our developed JUIVCDv1
dataset

123

https://data.mendeley.com/datasets/pwyyg8zmk5/2
https://data.mendeley.com/datasets/pwyyg8zmk5/2


71400 Multimedia Tools and Applications (2024) 83:71379–71406

Fig. 19 Missclassified Image 1

accuracy score of 0.95, and the WAE method has attained an accuracy score of 0.95. Table 9
presents the performance of AVC given by both base CNNmodels as well as three ensemble
models on the PoribohonBD dataset.

Fig. 20 Missclassified Image 2

123



Multimedia Tools and Applications (2024) 83:71379–71406 71401

Fig. 21 GradCAM-based data visualization using best five base CNN models on the proposed JUIVCDv1
dataset

6.9 Limitations of JUIVCDv1 Dataset

Further analysis of the results gives some ideas about the complexities of the developed
dataset. It would also help future researchers to work on this dataset and develop more
advanced methods to deal with associated problems. Some major issues are as follows:

• The training set of the dataset has a class imbalance, which is a major problem. A large
proportion of the still images in this set include cars andmotorcycles,whereas only a small
fraction contains images of totes and bicycles. We have employed data augmentation
techniques for such situations, where the samples are comparatively less.
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Table 9 Classification report
showing the values of Precision,
Recall and F1-score for eight
base CNN models and three
ensemble models applied on the
PoribohonBD dataset

Model Accuracy F1-score Recall

DenseNet121 0.95 0.95 0.94

ResNet152 0.56 0.55 0.55

ResNet50 0.57 0.56 0.56

MobileNet 0.90 0.90 0.90

Xception 0.88 0.88 0.88

InceptionV3 0.87 0.85 0.85

VGG16 0.68 0.67 0.67

NasNetMobile 0.60 0.60 0.60

MVE 0.97 0.96 0.96

WAE 0.95 0.95 0.95

SRE 0.95 0.95 0.95

Bold marks are used to highlight highest scores

• There are 33 Motorvan in the training set, which may not be sufficient for the models
to accurately learn about the vehicle classes. The 11 vehicles in the validation set allow
for a more precise model and easier vehicle classification. However, adequate data is
not available for the CNN models to properly learn bicycle class images. With less
inequality across classes in terms of the number of images, we may have observed far
better classification accuracy.

• In our dataset, several Totos are misclassified due to the scarcity of a significant amount
of sample images in the dataset.

• All of the roads in nations like India, Bangladesh, or Pakistan are not as good as those in
the developed nations of either Europe or America. For the former case, traffic congestion
as well as breaking of traffic rules are quite common in these countries. These issues add
inherent complexities to the image quality.

• Sometimes, it becomes difficult to precisely characterize the vehicles in images taken in
various weather conditions, such as those taken at night when illumination is compro-
mised or those taken in rainy conditions.

7 Conclusion

Nowadays, there is a large number of vehicles on the roads, and hence the need for AVC
systems has becomemore significant for managing real-time traffic, especially in highly pop-
ulated cities. A realistic image/video dataset portraying a traffic condition is essential for this
purpose. Researchers may utilize this dataset to assess the efficiencies of their approaches for
both automated localization and classification of vehicles. Though there are plenty of datasets
available for vehicle localization, only a few of them can be used for the classification task.
Additionally, very few available datasets can accurately reflect real-world situations. For
example, images taken on the Indian subcontinent, frequently show two or more vehicles
overlapping in a single frame leading to traffic congestion. Therefore, researchers have faced
difficulties in using this information because of the distinctive features of Indian roads, such
as the high volume of traffic, clogged highways, the poor state of the roads, and traffic con-
gestion. In this study, we have created an image dataset suitable for AVC keeping Indian
roads in mind to overcome this research vacuum. We have included the necessary annotation
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for the assessment of the AVC algorithms. This dataset is free to use for the research com-
munities only. We have used eight deep learning models, namely Xception, DenseNet121,
InceptionV3, MobileNetV2, VGG16, NasNetmobile, ResNet50, and Resnet152 for bench-
marking our dataset. Additionally, we have applied three popular state-of-the-art ensemble
models such as MVE, WAE, and SRE to enhance the accuracy of the developed dataset. We
have achieved the best accuracy of 0.95 by using the MVE approach, which is satisfactory
given the complexity of the images.

7.1 Future scope

• Version 1 of the dataset has about 6k images, which might not be sufficient to train CNN
models properly. Therefore, we would like to continue gathering images or videos for
the upgradation of the dataset.

• We will take steps in the future to maintain an equivalent number of data in each vehicle
class by collecting more images for classes such as totos, vans, and rickshaws.

• We are planning to collect images in various weather conditions including foggy, night-
time, rainy, etc.

• Wewill attempt to includemore vehicle classes that are commonly found on Indian roads.
• Multi-view or multimodal datasets are not available for the classification of vehicles.
Lots of research and data are required to make a practical solution for AVC. So, we will
plan to capture images for the multimodal dataset.

Acknowledgements The authors acknowledge resources and support provided by the CMATER Laboratory,
Department of Computer Science and Engineering, Jadavpur University, Kolkata, India.

Data Availability Some sample images of the dataset are uploaded in the GitHub repository JUVCsi. The
entire dataset will be freely available for research purposes upon positive responses from the reviewers.

Declarations

Conflicts of interest There is no conflict of interest, according to the authors.

References

1. Islam A, Mallik S, Roy A, Agrebi M, Singh PK (2023) A filter-based feature selection framework for
vehicle/non-vehicle classification. In:Measurements and instrumentation for machine vision, pp 677–684
. Taylor

2. Bhattacharya D, Bhattacharyya A, Agrebi M, Roy A, Singh P (2022) Dfe-avd: deep feature ensemble
for automatic vehicle detection. In: Proceedings of international conference on intelligence computing
systems and applications (ICICSA 2022)

3. Maity S, Chakraborty A, Singh PK, Sarkar R (2023) Performance comparison of various yolo models for
vehicle detection: An experimental study. In: International conference on data analytics & management,
pp 677–684. Springer

4. Zha Z, Tang H, Sun Y, Tang J (2023) Boosting few-shot fine-grained recognition with background sup-
pression and foreground alignment. IEEE Transactions on Circuits and Systems for Video Technology

5. TangH,YuanC,Li Z (2022)Tang JLearning attention-guided pyramidal features for few-shot fine-grained
recognition. Pattern Recognit 130:108792

6. Gayen S, Maity S, Singh PK, Geem ZW, Sarkar R (2023) Two decades of vehicle make and model
recognition–survey, challenges and future directions. Journal of King Saud University-Computer and
Information Sciences, pp 101885

123

https://github.com/JUVCSE/JUVCsi


71404 Multimedia Tools and Applications (2024) 83:71379–71406

7. Li Z, Tang H, Peng Z, Qi G-J, Tang J (2023) Knowledge-guided semantic transfer network for few-shot
image recognition. IEEE Transactions on Neural Networks and Learning Systems

8. Tang H, Li Z, Peng Z, Tang J (2020) Blockmix: meta regularization and self-calibrated inference for
metric-based meta-learning. In: Proceedings of the 28th ACM international conference on multimedia,
pp 610–618

9. Bhattacharyya A, Bhattacharya A, Maity S, Singh PK, Sarkar R (2023) Juvdsi v1: developing and bench-
marking a new still image database in indian scenario for automatic vehicle detection. Multimedia Tools
and Applications, pp 1–33

10. Ali A, Sarkar R, Das DK (2023) Iruvd: a new still-image based dataset for automatic vehicle detection.
Multimedia Tools and Applications, pp 1–27

11. Dong N, Yan S, Tang H, Tang J, Zhang L (2023) Multi-view information integration and propagation for
occluded person re-identification. arXiv:2311.03828

12. Yan S, Tang H, Zhang L, Tang J (2023) Image-specific information suppression and implicit local align-
ment for text-based person search. IEEE Transactions on Neural Networks and Learning Systems

13. Yan S, Dong N, Zhang L, Tang J (2023) Clip-driven fine-grained text-image person re-identification.
IEEE Transactions on Image Processing

14. Yan S, Zhang Y, Xie M, Zhang D (2022) Yu Z Cross-domain person re-identification with pose-invariant
feature decomposition and hypergraph structure alignment. Neurocomputing 467:229–241

15. Yan S, Dong N, Liu J, Zhang L, Tang J (2023) Learning comprehensive representations with richer self
for text-to-image person re-identification. In: Proceedings of the 31st ACM international conference on
multimedia, pp 6202–6211

16. Luo Z, Branchaud-Charron F, Lemaire C, Konrad J, Li S, Mishra A, Achkar A, Eichel J, Jodoin P-M
(2018) Mio-tcd: a new benchmark dataset for vehicle classification and localization. IEEE Trans Image
Process 27(10):5129–5141. https://doi.org/10.1109/TIP.2018.2848705

17. Lin Y-L, Morariu VI, Hsu W, Davis LS (2014) Jointly optimizing 3d model fitting and fine-grained clas-
sification. In: Computer Vision–ECCV 2014: 13th european conference. Zurich, Switzerland, September
6-12, 2014, Proceedings, Part IV 13, pp 466–480. Springer

18. Krause J, Stark M, Deng J, Fei-Fei L (2013) 3d object representations for fine-grained categorization.
In: 2013 IEEE international conference on computer vision workshops, pp 554–561 . https://doi.org/10.
1109/ICCVW.2013.77

19. Dong Z,WuY, PeiM (2015) Jia YVehicle type classification using a semisupervised convolutional neural
network. IEEE Trans Intell Trans Syst 16(4):2247–2256. https://doi.org/10.1109/TITS.2015.2402438

20. Sochor J, Herout A, Havel J (2016) Boxcars: 3d boxes as cnn input for improved fine-grained vehicle
recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 3006–
3015. https://doi.org/10.1109/CVPR.2016.328

21. Yang L, Luo P, Loy CC, Tang X (2015) A large-scale car dataset for fine-grained categorization and
verification. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 3973–
3981. https://doi.org/10.1109/CVPR.2015.7299023

22. Tabassum S, Ullah S, Al-nur NH, Shatabda S (2020) Poribohon-bd: Bangladeshi local vehicle image
dataset with annotation for classification. Data in Brief 33:106465. https://doi.org/10.1016/j.dib.2020.
106465

23. Hasan MM, Wang Z, Hussain MAI, Fatima K (2021) Bangladeshi native vehicle classification based on
transfer learning with deep convolutional neural network. Sensors 21(22):7545

24. Lu L, Wang P (2020) Huang H A large-scale frontal vehicle image dataset for fine-grained vehicle
categorization. IEEE Trans Intell Trans Syst 23(3):1818–1828
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