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Abstract
In data mining and machine learning communities, Neural Network (NN) is a popular 
classification method. On extremely unbalanced and complicated datasets, NN may 
achieve excellent classification accuracy. However, one disadvantage of NN is its inability 
to explain its reasoning process, which restricts its use in numerous sectors that need clear 
conclusions as well as high accuracy. To address this issue, rule-extraction mechanisms 
exist that extract intelligible classification-rules from NN and turn them into a white 
box. Attribute or network pruning, dealing with diverse attribute types, rule pruning, and 
dealing with class overlapping difficulties are all significant components or portions of 
many existing rule extraction methods, and present strategies to deal with these aspects 
are insufficiently successful. As a result, this study offers a rule extraction approach named 
“Comprehensible and Transparent Rule Extraction Using Neural Network”-CTRENN to 
address the aforementioned shortcomings and transform NN into a white box with high 
accuracy and better explain-ability. The suggested CTRENN is an expansion of the state-
of-art Rule Extraction from Neural Network Using Classified and Misclassified Data 
technique (RxNCM). The CTRENN augments the RxNCM with a floating sequential 
search for feature and rule selection to improve feature and rule selection. CTRENN also 
distinguishes between continuous and discrete properties to improve the readability of the 
produced rules. Unlike RxNCM, the CTRENN employs a probabilistic technique to deal 
with the overlapping of attribute data ranges in various classes. Experiments are carried 
out using six real life datasets obtained from the UCI repository in order to illustrate the 
efficacy of the proposed CTRENN algorithm in comparison to the current methods.

Keywords Neural Networks · Rule extraction · Classification · RxREN · RxNCM

1 Introduction

In our digital era, massive volumes of data are acquired in various forms from many 
sources on a daily basis. This gathered data contains a wealth of important information 
that is challenging to extract appropriately. In response, data mining techniques [1] have 
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developed supercomputing capabilities that can mine unseen patterns and information and 
apply them to various decision-making situations. Tasks related to data mining generally 
include regression, classification [2], clustering [3], association analysis [4], and so on. 
Among these tasks’ classification is the most common and popular[5]. Bayesian Classifica-
tion [6], Decision Trees [7, 30, 31], Ensembles [8], Neural Networks [9], SVM [31], and 
other classification approaches are widely used and dominating. Among these approaches, 
the utilization of Neural Networks in Data Mining activity has increased in recent years 
due to their unparalleled capabilities of classifying data with mixed-mode properties, 
obtaining higher precision or accuracy, and keeping low computing complexity [10, 11]. 
The disadvantage of Neural Networks in decision-making is their black-box character, 
which is incapable of explaining the decision-making process in a comprehensible manner 
[12]. Because the black-box nature [13] of Neural Networks makes them incomprehensible 
in thinking and decision making, they suffer in sectors where an explanation for the con-
clusion is required [31, 32]. Medical diagnosis, financial decision-making, infrastructure 
management, and other professions sometimes demand a clear explanation of rationale and 
decision process. In medical diagnostics, for example, a clear explanation of the etiology of 
a disease is essential to raise awareness among the general public and to take preventative 
steps to prevent the sickness from spreading. As a result, several methods have been devel-
oped to extract intelligible rules from neural networks in order to turn the black-box nature 
of neural networks into white boxes [14].

Considering the approaches used to extract the rules, neural network rule extraction 
strategies can be classified as decompositional, pedagogical, or eclectic [15]. Analyzing the 
weights between units and activation functions is part of decompositional approaches. The 
association between the inputs and outcomes is examined in pedagogical approaches to 
derive rules. Eclectic methods include decompositional and pedagogical strategies together 
[16]. Because of lower processing in terms of computational requirement, ease of imple-
mentation, and superior accuracy than others, pedagogical approaches are commonly uti-
lized [17]. RxREN [18], RxNCM [19], BRIANNE [20], and X-TREPAN [21] are some 
current and successful pedagogical techniques. Among them, the most recent is RxNCM, 
which extracts rules by reverse engineering a Neural Network by removing inconsequential 
input neurons and then generates rules using properly classified and misclassified patterns.

The RxNCM [19] algorithm has some inherent drawbacks in its workings. First, the 
RxNCM algorithm solely employs a sequential feature removal strategy in which a fea-
ture that is judged inconsequential is permanently eliminated; this is known as the nesting 
effect. This indicates that the significance of the feature will not be taken into account in 
subsequent iterations. As a result, the RxNCM technique does not evaluate the combina-
tions of input neurons rather subsets in order to find the best one, and so its performance 
suffers. Second, regardless of whether the characteristics are continuous or discrete, the 
RxNCM computes data ranges for all of them. Because patterns with discrete proper-
ties cannot be adequately represented by data ranges, the resulting rules are erroneous in 
nature. Third, reclassification is used by the RxNCM to update the final ruleset. Though 
this improves accuracy, the new data range may still contain some overlapping.

Keeping all of these disadvantages in mind, the research objective was to present a 
new pedagogical rule extraction technique called Comprehensible and Transparent Rule 
Extraction using Neural Network (CTRENN) to enhance the RxNCM approach. Firstly, 
the CTRENN enhances the network-pruning phase by pruning the input neurons using 
backward floating approach. The backward floating approach considers characteristics that 
have been considered irrelevant for later iterations, eliminating nesting effect. Secondly, 
CTRENN has distinct approaches for handling discrete and continuous characteristics. For 
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discrete characteristics, decision trees are used to produce IF-ELSE rules, while for con-
tinuous attributes, obligatory data ranges are used to generate rules. Finally, in the rule 
updating phase, CTRENN employs probabilistic techniques to address the class overlap-
ping dilemma. The probabilistic technique eliminates overlap by changing the higher and 
lower data ranges based on the class likelihood of each characteristic. This enhances the 
performance of the extracted final set of rules.

CTRENN’s performance is validated using six datasets from the UCI repository [33], 
and it is revealed that CTRENN provides more accurate and understandable rules than 
RxREN and RxNCM. The following is how the paper is structured: Sect. 2 discusses some 
of the significantly associated literatures, Sect.  3 goes over the suggested technique in-
depth, Sect. 4 goes over the experimental findings for validating the algorithm, and Sect. 5 
concludes the study.

2  Literature survey

Neural networks are effective tools for extracting patterns and detecting complex trends in 
data that may be utilized to generate meaning from difficult or inaccurate data. However, 
they have the disadvantage of being fundamentally black boxes in nature. There are, how-
ever, several techniques for converting neural networks into white boxes by extracting clear 
rules from them. Several rule-extraction strategies have been developed to uncover the 
information contained in neural networks. The rule extraction strategies may be classified 
into three approaches: decompositional, instructional, and eclectic. To take out rules from 
the network, decompositional algorithms evaluate the weights and activation functions of 
the hidden layer neurons.

Towell et  al. [22] introduced the SUBSET method, which evaluates the incoming 
weights of hidden and output neurons, takes into account all potential subsets of incoming 
weights, and identifies all rule combinations bigger than a preset threshold. It was con-
strained by the ever-increasing number of propositional rules. Lu et al. [23] presented the 
NeuroRule method, a decompositional approach for extracting oblique classification rules 
from neural networks with one hidden layer. The RG component of NeuroRule creates 
rules that cover as many examples of a separate class as feasible with the fewest amounts 
of characteristics. NeuroLinear, a technique for obtaining oblique decision rules from neu-
ral networks, was proposed by [24].  It’s a rule extraction technique of decompositional 
approach with similar stages to NeuroRule [23]; the difference is in data pretreatment. It 
does not discriminate between discrete and continuous data as input. Gupta et al. [25] intro-
duced an extended analytic rule extraction approach from feed-forward neural network that 
uses the strength of a Neural Network’s connection weights to extract rules. This GLARE 
algorithm employs the typical network structure and training methods in rule extraction, 
as well as a direct mapping between input and output nodes to improve comprehensibility.

Odajima et al. [26] suggested a variant decompositional approach for discrete attribute 
datasets called Greedy Rule Generation (GRG). The discrete hidden layer activation values 
are subjected to this approach. Because this is a greedy technique, the number of rules 
created is significantly lower than that of NeuroRule. The instructional strategies attempt 
to map the relationship between input and output neurons as nearly as possible to how the 
Neural Network perceives the relationship. One such instructional approach is the BRI-
ANNE technique introduced by [20], it has a significant benefit over the previously stated 
algorithms in that it does not require discretization and can function with continuous data. 
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Craven and Shavlik [21] presented TREPAN, a method for extracting rules from Neural 
Networks in the form of decision trees. During the Neural Network’s learning phase, this 
method queries the network to find the class patterns. Biswas et  al. [19] introduced the 
RxNCM method, which is an enhancement on RxREN[18] algorithm. To produce the 
rules, the RxREN employs misclassified patterns after deleting inconsequential neurons. 
The RxNCM algorithm improves on this by generating rules utilizing both the misclassi-
fied and properly classified algorithms.

There are also eclectic techniques that combine elements of a decompositional approach 
with elements of a pedagogical approach. The FERNN algorithm was proposed by [27]. It 
is an eclectic rule extraction approach that discovers valuable hidden units by utilizing 
C4.5 to locate information gain. Final rules are created by recognizing and weighting rel-
evant input connections to relevant hidden units. The Rex-CGA approach was proposed by 
[28]. This strategy works with several hidden layer layers. To produce rules, the Rex-CGA 
uses CGA to locate clusters of activation values in the hidden layers.

Iqbal [29] developed Hierarchical and Eclectic Rule Extraction through Tree Induction 
and Combination (HERETIC) which utilizes DT to produce rules from individual nodes 
in a network and then combines the rules generated by all nodes to construct final rules. 
To create rules, Fast Extraction of Rules from Neural Networks(FERNN) [27] detects the 
significant hidden neurons and significant input-hidden connections of a fully connected 
trained single hidden layer network. Jivani et  al. [17] contrasted decompositional, peda-
gogical, and eclectic rule extraction methods. Using criteria such as network architecture, 
efficiency, extracted rules, and accuracy, they demonstrated that the pedagogical method is 
computationally quicker than both decompositional and eclectic strategies while retaining 
a relatively high level of accuracy.

3  Proposed CTRENN

Figure 1 illustrates the algorithm’s framework. The method distinguishes between discrete 
and continuous properties. It produces rules with discrete and contributing qualities one at 
a time, merging them if accuracy increases. If only discrete characteristics are provided, 
the algorithm creates rules using only those attributes, and if only continuous attributes are 
present, the method generates rules using only those attributes. Notations used in the fol-
lowing part has been described in Table 1.

The CTRENN method is divided into seven primary phases that includes- Optimal Net-
work Architecture, Network Pruning, Attribute Separation, Data Range Calculation, 
Rule Construction, Rule Pruning, and Rule Updating. The ideal network architecture is 
determined in the first step. During the network pruning step, the trained neural network’s 
unimportant input neurons are deleted. Following trimming, the qualities are classified 
as discrete or continuous. In the data range calculation step, the input data range of each 
relevant continuous attribute for classification is calculated. The rule creation step creates 
classification rules for discrete attributes (if present) and continuous attributes (if present) 
using the data ranges acquired in the previous phase, and combines both types of rules 
if both are available. During the rule trimming phase, these rules are trimmed to elimi-
nate inconsequential ones. At last, the rule update process fine-tunes the rules by chang-
ing the data ranges. The following sections explain each phase of the proposed CTRENN 
algorithm:
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3.1  Optimal network architecture

For rule extraction, a Back Propagation Neural Network (BPNN) with one hidden layer 
of h neurons is utilized. The number h is determined depending on the network’s Mean 
Square Error(MSE). The network topology is modified from l + 1 to 2 ∗ l hidden neu-
rons, with l being the number of input neurons, and the structure with the lowest MSE is 
selected for further processing.

3.2  Network pruning

Using the backward floating approach, the CTRENN eliminates irrelevant input neu-
rons from the network. This backward floating approach increases the efficiency of the 
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Fig. 1  Flowchart of CTRENN
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final set of rules extracted by making the feature/rule set more trustworthy by tak-
ing into account all possible combinations of features/rules. After eliminating the ith 
input neurons, CTRENN calculates the number of misclassified cases erri for all input 
neurons li . Here ‘i’ ranges in between 1 to number of neurons. A temporary short-
term pruned network is produced by removing the input neuron with the lowest erri  
value for the network. This temporary trimmed network’s accuracy Accp is determined. 
Accp is compared to the starting network’s current accuracy Acco . If Accp > Acco , 
the program treats this temporarily trimmed network as the pruned network and sets 
���� = ���� . The pruned input neuron is removed from set A of the network and 
placed in set B for later consideration.

CTRENN successively adds the removed input neurons (in set B), to the pruned 
network (set A). If the new accuracy ( Accp ) is strictly greater ( Accp > Acco) than the 
current accuracy then that input neuron is added back into the network and the accu-
racy is updated ( Acco = Accp ). The similar procedure is executed for all the remaining 
input neurons.

Table 1  Notations used in this article

T: Set of classified examples by a Neural Network on a given training set

l: Number of input neurons
h: Number of hidden layer neurons
n: Number of output neurons
Acco: Accuracy of a trained network on validation dataset
A: Set of input neurons in network
B: Set of insignificant input neurons
Accp: Accuracy of a pruned network on validation dataset
m: Number of input neurons in the pruned network
li: i th neuron in the input layer
Ck: k th target class of a dataset
erri: Number of incorrectly classified examples by the trained network without  li where i ϵ [1, m]
Ei: Incorrectly classified examples by the trained network without  li
Pi: Properly classified examples with only input neuron  li
UEPi: Union of  Pi and  Ei

epi: Total number of examples in UEPi for significant input  li of pruned network
cepik: Number of examples in UEPi of class Ck for significant attribute  li
DRMik: Data Range Matrix
Lik: Lower Range of feature i in  DRMik

Uik: Upper Range of feature i in  DRMik

minik: Lower Range after rule updation
maxik: Upper Range after rule updation
Rk: Rule set for class k
cnj: j th condition in  Rk where j ϵ [1, m]
D: Set of insignificant rule conditions neurons
Accr: Accuracy of initial rule set  Rk

Accj: Accuracy of rule set on removal of  cnj
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3.3  Attribute separation

The significant attributes that remain after the network pruning is separated into two sets, 
continuous and discrete. Let C be the set of continuous attributes and D be the set of dis-
crete attributes. The set C of continuous attributes are used in the data range computation 
phase.

3.4  Data range calculation

If any continuous attributes remain in the pruned network, this phase is executed. By eval-
uating the misclassified patterns Ei in the absence of each li and the properly classified 
patterns Pi in the presence of each li , the CTRENN algorithm learns the functioning and 
relevance of each major continuous input neuron li . CTRENN organizes the examples in 
set UEPi with regard to each target class Ck and then finds the number of examples cepik in 
each class to obtain the necessary data range of li for each class Ck . The resulting matrix is 
known as a data length matrix. The number of examples in the set UEPi for the input neu-
ron li is epi . The value of k is in the range [1,n].

All of the characteristics may well not be required for categorizing patterns in all of the 
n classes, i.e., for classifying patterns in all of the n classes, a certain attribute may not be 
important. As a result, the algorithm chooses data ranges for those attributes which meet 
the following criteria(1)

The algorithm constructs a Data Range Matrix (DRM) by finding the lower range Lik 
and upper range Uik of data for each attribute li in class Ck if cepik > 𝛼 ∗ epi . The data 
range matrix is defined as DRM with an order m ∗ n as shown in Fig. 2. Each element of 

(1)cepik > 𝛼 ∗ epi Forclassk,where ��[0.1, 0.5]

Fig. 2  Data Range Matrix
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DRM is represented by lower and upper data ranges of the corresponding attributes and 
classes i.e., Lik and Uik . DRMik is calculated using Eq. (2).

3.5  Rule construction

The rule construction phase is composed of 2 parts if both discrete and continuous types 
of attributes are there in the network. The first part deals with discrete attributes and the 
second part deals with continuous attributes. In the first part, rules are constructed with 
the discrete attributes using C4.5 decision tree (DT). Next, for each rule in the rule-set, 
the rules with the continuous attribute ( Rk ) are included and the accuracy is checked. If 
the accuracy increases then the rule with continuous attributes is kept in the final set. The 
working algorithm for rule construction phase if the pruned network contains both discrete 
and continuous attributes is given in Table 2.

If only discrete attribute is present, the algorithm only generates rules with discrete 
attributes using DT and goes rule pruning phase. Similarly, if only continuous attributes 
remains, the algorithm only generates rules with continuous attributes and goes to rule 
pruning phase.

3.6  Rule pruning

Redundant conditions from the rule-set are removed in this step. A condition cnj from ini-
tial rule Rk, is removed first and then the CTRENN algorithm calculates the current accuracy 
Accj . If Accj > Accr the removed condition is added to set D, considering Accr as the initial 
accuracy. Next removed conditions in set D are sequentially added back one by one. If the 

(2)
Ifcepik > 𝛼 ∗ epi,DRMik = [Lik,Uik]

Else,DRMik = 0

}

Table 2  Rule construction 
algorithm for discrete and 
continuous attributes

Step 1 Using only the discrete attributes D create a DT using C4.5

Step 2 Generate a set of classification rules R using the DT
Let AccR be accuracy for rule setR

Step 3 For each rule Rk(continuous set) in R do steps 4 to 5
Let Ck be the class Rk predicts
Go to Step 4

Step 4 Fori = 1tom

Step 4.1. If cepik > 𝛼 ∗ epi, 
thencnj = (data

(

li
)

≥ Lik ∧ data(li) ≤ Uik)
Step 4.1.1. If j == 1, thencn = cnj
Else,cn = cn ∧ cnj
Step 4.1.2. j = j + 1

Write the continuous attribute rule in if–then rule format 
and add it toRk

Let new accuracy beAccNewR
Step 5 If (AccNewR > AccR)

Keep continuous attribute rule inRk

Else
Remove continuous attribute rule fromRk
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accuracynew is strictly greater than the accuracycurrent then that condition is added back into 
the network permanently and the accuracy is updated.

3.7  Rule update

There may be overlap between various classes  in  the data range generated for  the attribute. 
CTR-ENN’s rule updating phase enhances accuracy by employing a probabilistic strategy to 
shift the upper and lower data range. For each and every rule, a condition −cnj represents an 
attribute for which there is one lower limit value denotes by ( L ) and one upper limit value 
denotes by ( U ). The overlap happens if the data range of one category intersects with the data 
range of another. In the case of discrete attributes, the CTRENN considers each value and in 
the case of continuous attributes a defined range of values. CTRENN determines the prob-
ability ( Pk , where kϵ[1, n] ) for each attribute value belonging to more than one class if the 
data spans for both classes. If Pk > 1∕n , where n = number of classes, then it is allocated to 
the data range of that attribute for class k . Let the new minimum and maximum values of the 
attribute li for class Ck be minik and maxik. New DRMik = [minik,maxik] . The new rule set’s 
classification accuracy is Rnewacc. Before updating rule-set R, the algorithm alters the cnj if 
Rnewacc ≥ Racc , where Racc is the classification accuracy. For each attribute, the rule change is 
repeated.

Table 3  Description of the datasets

# denotes Numbers

Dataset Shape of Dataset # of Patterns # of Attributes # of Classes

Bank Marketing 4119 × 16 4119 16 2
Census 48,842 × 14 31,655 14 2
Heart Disease 303 × 13 270 13 2
German Credit 1000 × 20 345 20 2
Breast Cancer 

Wisconsin(Original)
699 × 9 683 9 2

Australian Credit 690 × 14 690 14 2

Table 4  Optimal Network 
Architecture

Dataset Optimal Architecture

Bank Marketing 16–23-1
Census 14–19-1
Heart Disease 13–21-1
German Credit 20–33-1
Breast Cancer 9–13-1
Australian Credit 14–20-1
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4  Experimental Results

Six authentic benchmark datasets from the UCI repository [33] were utilized to evaluate 
the proposed CTRENN method. Among the datasets, Breast Cancer was an example of 
continuous dataset, while the others were of mixed mode. Table 3 has a comprehensive 
overview of the six datasets.

Mean Square Error (MSE) of the network were utilized to find the optimal architecture 
with hidden nodes ranging from (h = l + 1) to (h = 2 ∗ l) , where h = number of hidden 
layer neurons and l = number of input neurons plus one bias. Table 4 shows the optimal 
architectures for all datasets.

The  following criteria’s were utilized  to assess  the performance of the model: tenfold 
Cross Validation (CV) accuracy, the average number of extracted rules (G.C.), the average 
number of antecedents (L.C.), the Recall, the Precision, the F-Measure and the FP-Rate. 
The tenfold CV method is widely regarded to minimize biases associated in validation. 
Two new pedagogical rule extraction models are used here to show the comparative perfor-
mance of the CTRENN. Table 5 demonstrates the comprehensive comparison of CTRENN 
with RxREN and RxNCM using tenfold CV accuracy for each of the datasets. Figure 3 
shows the graphical comparison of accuracy between the algorithms. The results show that 
CTRENN performs better than RxREN and RxNCM. Formulations have been stated in the 
following section.

�������� = TP+TN
/

TP+TN+FP+FN ��������� = TP
/

TP+FP

Table 5  Comparison of accuracy 
in percentage for10-fold CV

Dataset RxREN RxNCM CTRENN

Bank Marketing 84.27 88.88 89.84
Census 81.48 81.48 85.33
Heart Disease 71.78 70.37 75.87
German Credit 73.50 74.67 76.76
Breast Cancer 91.73 93.16 93.16
Australian Credit 83.64 85.50 86.67
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Fig. 3  Graphical Comparison of accuracy
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The number of extracted rules gives a significance of the Global Comprehensibility 
(G.C.) of a rule set. This measure is useful in understanding the depth of the knowledge in 
the hidden layers of the neural networks. The number of antecedents gives a significance 
of the Local Comprehensibility (L.C.) of a rule set. This gives a measure of the signifi-
cance of the attributes present in a rule. Table 6 shows the comparison between CTRENN, 
RxNCM and RxREN, with respect to L.C. and Table 7 shows comparison in terms of G.C. 
Comprehensibility is enhanced when the number of attributes is minimal. Figure 4a and 4b 

������ = TP
/

TP+FN �� − ���� = FP
/

TN+FP

� −������� = 2∗(Precision∗Recall)
/

(Precision+Recall)

Table 6  Comparison of Local 
Comprehensibility (L.C.) for 
tenfold CV

Dataset RxREN RxNCM CTRENN

Bank Marketing 5 3 7
Census 2 2 5
Heart Disease 2 3 5
German Credit 2 2 6
Breast Cancer 3 2 4
Australian Credit 3 2 6

Table 7  Comparison of Global 
Comprehensibility (G.C.) for 
tenfold CV

Dataset RxREN RxNCM CTRENN

Bank Marketing 2 2 4
Census 2 2 3
Heart Disease 2 2 5
German Credit 2 2 4
Breast Cancer 2 2 2
Australian Credit 2 2 3
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RxREN RxNCM CTRENN
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RxREN RxNCM CTRENN
a b

Fig. 4  a Graphical Comparison of L.C. b Graphical Comparison of G.C
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shows the graphical comparison of L.C. and G.C respectively among the algorithms. The 
results show that for all datasets CTRENN has both L.C. and G.C. higher than the other 
algorithms. Perhaps, the reason for this is that CTRENN uses separate rule generation pro-
cedures for discrete and continuous attributes/features. The higher number of rules results 
in a higher predictive accuracy but also results in lower comprehensibility.

Table 8  Comparison of Recall 
for tenfold CV

Dataset RxREN RxNCM CTRENN

Bank Marketing 0.7953 0.8325 0.8634
Census 0.8133 0.8133 0.8412
Heart Disease 0.6567 0.6363 0.6966
German Credit 0.7025 0.7306 0.7433
Breast Cancer 0.9067 0.9183 0.9183
Australian Credit 0.8333 0.8452 0.8533

Table 9  Comparison of Precision 
for tenfold CV

Dataset RxREN RxNCM CTRENN

Bank Marketing 0.7704 0.8167 0.8435
Census 0.8041 0.8041 0.8255
Heart Disease 0.6539 0.6363 0.7
German Credit 0.7328 0.7415 0.7481
Breast Cancer 0.9188 0.9365 0.9565
Australian Credit 0.8132 0.8398 0.8511

Table 10  Comparison of 
F-Measure for tenfold CV

Dataset RxREN RxNCM CTRENN

Bank Marketing 0.7826 0.8245 0.8533
Census 0.8086 0.8086 0.8332
Heart Disease 0.6552 0.6363 0.6982
German Credit 0.7173 0.7360 0.7456
Breast Cancer 0.9127 0.9273 0.9371
Australian Credit 0.8231 0.8424 0.8521

Table 11  Comparison of FP-Rate 
for tenfold CV

Dataset RxREN RxNCM CTRENN

Bank Marketing 0.2366 0.1437 0.1325
Census 0.1717 0.1717 0.0255
Heart Disease 0.2347 0.25 0.1747
German Credit 0.5 0.4251 0.3714
Breast Cancer 0.0254 0.0267 0.0267
Australian Credit 0.5666 0.25 0.2067
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Table  8, 9, 10, and 11 shows the comparison between CTRENN, RxNCM and 
RxREN in terms of Recall, Precision, F-Measure and FP-Rate. Fig.  5a and b shows 
the graphical comparison of Recall and Precision among the algorithms respectively. 
Fig.  6a and b shows the graphical comparison of F-Measure and FP-Rate among the 
algorithms respectively.

The experimental results obtained above show that CTRENN is able to obtain bet-
ter predictive accuracy than the other pedagogical algorithms – RxREN and RxNCM. It 
can be noted that RxREN and RxNCM do not distinguish between discrete and continu-
ous attributes/features during rule generation. This leads to them always to have exactly 2 
rules per rule set. In case of the CTRENN discrete and continuous attributes/features are 
separated for rule generation. This makes the classification rules produce higher predic-
tive accuracy but suffers from having more rules per rule set. This leads to CTRENN to 
have worse comprehensibility than that of RxREN and RxNCM. Here, the compromise is 
between accuracy and comprehensibility.

All the results presented above show that the rules generated by the proposed algorithm 
are accurate and justifiable. And also, the rules generated are transparent enough to distin-
guish between different types of attributes making a decision.
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Fig. 6   a Graphical Comparison of F-Measure Fig. 6b. Graphical Comparison of FP-Rate
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5  Conclusion

The rule extraction algorithm CTRENN transforms a neural network from a black box 
to a white box structure by extracting the network’s accumulated information as human-
understandable rules. As the CTRENN algorithm follows the pedagogical approach 
to rule extraction, CTRENN extracts classification rules by utilizing the connection 
between the input and output layer neurons. The CTRENN improves upon the RxNCM 
algorithm by introducing three novelties. The novelties of the CTRENN algorithm lie in 
the network-pruning and rule-pruning phase, attribute separation into discrete and con-
tinuous sets, and the rule updating phase. To enhance the performance, the CTRENN 
algorithm utilizes the backward floating search strategy to prune the network and the 
rules. Moreover, Nesting effects which occur in the sequential feature selection approach 
are avoided using the backward floating technique. CTRENN uses separate methods for 
dealing with discrete and continuous attributes. For discrete attributes, IF-ELSE rules 
are generated using decision trees and for continuous attributes, the rules are generated 
using the corresponding attributes data range. To avoid the inherent overlap of classes, 
the CTRENN adopts a probabilistic method in rule updating phase. CTRENN elimi-
nates overlap by changing upper and lower data-ranges based on the class likelihood of 
each attribute value.

Six real datasets from the UCI repository are utilized to validate the algorithm’s perfor-
mance. The results suggest that the proposed method is successful in terms of the accuracy 
and other performance metrics. When compared to the RxREN and RxNCM algorithms, 
the suggested CTRENN method generates more accurate but less comprehensible rules. 
Hence, the trade-off is between accuracy and comprehensibility. The presented rule extrac-
tion approach shows to be an effective tool for comprehending the decisions produced by 
a neural network in a human-understandable format. The algorithm has a wide range of 
applications, including medical diagnostics, financial issues, and more. To increase the 
comprehensibility of the ruleset, additional changes to the algorithm can be used to reduce 
the amount of produced rules. Data Range Calculation, Rule Construction, Rule Pruning, 
and Rule Updating process can be improvised to get better transparency with higher accu-
racy and comprehensibility. In this respect, further studies are required to make the model 
better in terms of comprehensibility with higher accuracy.
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