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Abstract
In reversible image authentication (RIA) methods, it is common to use a reversible hiding
method to embed the authentication code (AC) bits into each block of an original image
to form a watermarking image. Since the reversible hiding methods have low embedding
capacity, the authentication methods based on them have limited attack detection ability. In
this paper, we use a dual-image reversible embedding method based on the central folding
strategy with some slight improvements to construct an RIAmethod. Due to the large embed-
ding capacity, low image distortion, no location map to be used, and AC bits generated by
using hash function MD5 on block’s features, the proposed image authentication method
can detect any type of attack with higher accuracy compared to existing methods. Its attack
detection ability reaches 100% for block sizes of 4 × 4, 3 × 3, and 99.91% for a block size
of 2 × 2 while maintaining high image quality.

Keywords Image authentication · Attack detection · Reversible data hiding

1 Introduction

Nowadays, digital documents often are transmitted on the internet network, but this is an
unsafe medium, so these documents are easily tampered with by a hacker. So, protecting the
integrity and the copyright of the data is an urgent problem in the field of information security.
Two main approaches in this field are encryption and data hiding. Encryption approaches
generate ciphertexts consisting of a series of meaningless symbols that are curious to the
hackers. The data hidingmethods overcome this drawback because the image containing data
and the original image are difficult to distinguish. But when images containing secret data are
sent on the internet, hackers can attack andmodify the content of images, and the receivers can
extract false information. So protecting the integrity of the image becomes very important.
Image authentication is a technique to protect the integrity of images from being illegally
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modified. The existing image authentication methods can be divided into two categories, that
are digital signature-based methods [1, 2] and fragile watermarking-based methods [3, 4].
For the digital signature methods, a signature of an image is obtained using a hash function,
and the hashed result is then encrypted and stored in a trusted third party. To authenticate
an image, the signature is obtained from the image and compared with the signature stored
in the third party. In fragile watermarking methods, the authentication information used as
watermarks embedded into the host image to obtain the watermarking image. In general,
the authentication information is the feature generated from the host image or a random
bit-stream obtained by a pseudo-random number generator. Because the embedded data is
fragile if the watermarking image has attacked then the embedded watermarks are likely
different from the extracted ones and thus the tampered regions can be defined.

The image authentication methods can be divided into two classes: irreversible methods
[5–10] and reversible methods[11–15]. In the irreversible image authentication methods,
the lossy data hiding techniques [16–19] often are used for embedding watermarks. Because
lossy data hiding techniques often provide a large embedding capacity, the irreversible image
authentication methods have a good detection ability while maintaining high watermarking
image quality. However, in the lossy data hiding techniques, the original image cannot be
restored exactly from awatermarking image. Therefore, the irreversible image authentication
methods are not suitable for applications where the original image is demanded such as
medical and military images, or for the image carrying secret data mentioned above.

In these cases,we can use the reversible image authentication (RIA)methods, they not only
detect the tampered regions but also can restore the original image from the watermarking
image. Reversible data hiding (RDH) techniques have been extensively developed in the
past decades. The difference expansion (DE) [20] and histogram shifting (HS) [21] are the
two most important techniques used in RDH techniques. DE method is the first remarkable
RDH method, in which the difference of each pixel pair is expanded to the left enough for
embedding one bit on the right. The method has been improved and developed by many
researchers to enlarge its embedding capacity such as the methods based on pixel blocks
[22–24], the methods for reducing the location map [25–28], and especially the prediction
error expansion (PEE) methods [29–32]. In general, DE-based RDHmethods provide a high
embedding capacity, but stego image quality is still low.

Ni et al. [21] proposed another important RDH method called histogram shifting (HS).
First, the histogram of pixels is generated by using a statistical method. Then the bins at
which the histogram reaches the largest values are selected to embed the data. In the HS
method, each pixel must be modified at most one unit, so its stego image quality is very high,
however, the embedding capacity is not very large. To overcome this drawback, prediction
error histogram shifting (PEHS) is proposed in [33–37], in which prediction errors of pixels
are calculated, and then a histogram of errors is shifted. Recently, Li et al. [38] proposed
a new RDH method based on pixel value ordering (PVO), in which firstly the host image
is divided into non-overlapped blocks, and the pixels of each block are sorted in ascending
order. Then the largest pixel is predicted by the second-largest pixel and the smallest pixel is
predicted by the second-smallest pixel. Next, one bit is embedded in the largest pixel (or the
smallest pixel) if the prediction error is 1 (or -1), respectively. The advantage of this method
is that it has very high stego image quality, but its embedding capacity is still low. The PVO
method has attracted the attention of many researchers and recently there have been many
improvements to enlarge the embedding capacity as in [39–45].

Since the RIA methods often detect the tampered regions of an image in a block-wise
manner, the block-basedRDH techniques are therefore suitable to be used in theRIAmethods.
Lo and Hu [12] proposed an RIA method in which a sequence of authentication codes (AC)
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is generated by a random seed. Each 4 × 4 pixel block is used to embed an AC bit using
a PEHS technique. Later, Nguyen et al. [13] proposed an RIA method based on adaptive
prediction-error expansion (PEE).

Yin et al. [15] also proposed an RIA method in which the pixels of an original image are
visited by the Hilbert curve and divided into non-overlapped blocks of size 4× 4. Since four
consecutive pixels in the Hilbert curve are always within a 2 × 2 sub-block, the Yin method
essentially embeds the authentication bits on the 2 × 2 blocks using the IPVO technique.
This method used two thresholds to classify blocks into three types: flat, normal, and rough.
At most eight bits and four bits are embedded in a flat and a normal block, respectively.
Whereas rough blocks are skipped, and no bit is embedded in them. Nguyen and Vo [14]
used an idea similar to in [13] to create an RIA method in which an original image is divided
into non-overlapped blocks with the size of 3 × 3. The pixel in the centre of the block is
selected as a prediction value of pixels on the left and right sides. This method has the same
stego image quality as in [13], but an embedding capacity smaller.

All four abovemethods used a pseudo-random bit sequence as authentication information.
So the validation content will remain the same even if the pixel values have been changed.
This is one reason for the inability to detect attacked blocks.Moreover, the authentication bits
only are embedded in embeddable blocks. That means non-embeddable blocks will not be
protected. Hong et al. [11] proposed an RIA method in which, the above two disadvantages
have been overcome. This method used the same embedding algorithm as in [15], namely
an original image is divided into non-overlapped blocks with the size 4 × 4, then at most
eight bits are embedded in four 2×2 sub-blocks by the IPVO technique. Authentication code
(AC) bits of a block are generated by using the hash functionMD5 of the block’s pixel values
and location information. The non-embeddable blocks are not ignored. In each such block
one AC bit is embedded by the LSB replacement technique. Due to these improvements,
the method of Hong et al. has a higher ability to detect and locate tampered blocks than the
aforementioned methods.

In addition to the RDH methods, dual-image RDH techniques have also been proposed,
that generate two stego images after embedding data bits into a single host image. Because
of using two stego images, the dual-image RDH methods have a larger embedding capacity
and higher security than the RDH methods. Without two stego images being simultaneously
obtained, hackers can’t extract the complete secret data. A dual-image RDH scheme was first
proposed byChang et al. [46], inwhich a 256×256modulus functionmatrix is used. Qin et al.
[47] used Exploiting Modification Direction (EMD) to construct a dual-image RDH method
in which four bits are embedded in a pixel pair. Lu et al. [48] applied the LBS matching [17]
to enhance stego image quality in which four bits are embedded in a pixel pair (x, y). Lee
and Huang [49] proposed a dual image RDH method using 25 orientation combinations to
embed more than 4 bits in a pair of two pixels. Lu et al. [50] proposed a dual image RDH
method by using the center folding strategy (CFS) to reduce the distortion of the image. Yao
et al. [51] proposed an improvement of Lu et al.’s method in which an extra bit is embedded
when a bit sequence embedded in a pixel consists of all bits equal to 1. Recently, Chen et al.
[52] proposed an efficient dual-image reversible data hiding method by using EMD.

To correctly authenticate a pixel block, it is important to embed multiple authentication
bits on the block. If the number of embedded bits is n, the conclusion that the block is attacked
has an average accuracy rate of 1− ( 12 )

n . Since dual-image RDH methods have a very large
embedding capacity, applying them in RIA schemes will achieve high detection accuracy.
Peng et al. [53] proposed a new reversible image authentication scheme based on a dual
image RDH method developed from Yin et al.’s irreversible hiding technique [54] in which
four bits are embedded in a pixel pair. In this scheme, AC bits are made from pseudo-random
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numbers and the original image is divided into non-overlapped pixel blocks with the size of
4×4. Two stego images are used to embed data bits independently. the 16 AC bits and the 16
data bits used to restore the original image are embedded alternately in each 4 × 4 block of
two stego images. Since only half of the pixel pairs of each watermarking image are used to
embed the AC bits, if pixel pairs that do not contain the AC bits are hacked, then this attack
cannot be detected. This is why Peng et al.’s scheme is not able to detect tampered blocks
with high accuracy.

This paper has the following contributions:

+ Based on Lu et al.’s paper [50], proposed a new dual-image reversible data-hiding algo-
rithm that can embed about m × n × log25 = m × n × 2.32 AC bits in an m × n sized
block. This embedding capacity is higher than related methods.

+ Using the above hiding algorithm to construct the RI A method in which an original
image is divided into m × n non-overlapping blocks. The AC bits are generated from the
MD5 hash with input data including pixel values and the position of each block. Both
watermarking images are used to embed the AC bits.

+ The proposed method can detect forged blocks with 100% accuracy with 3×3 and 4×4
blocks in all attack types. Existing methods have only an attack detection ability for 4×4
block sizes with about 0% to 85.91 % accuracy depending on every case.

The paper consists of an Introduction and the following sections. Section 2 introduces
related works and gives some remarks on their disadvantages and advantages. The proposed
method is presented inSection3.The experimental results comparing the embedding capacity,
watermarking image quality, and ability to detect tampered blocks between methods are
shown in Section 4. Finally, Section 5 provides some conclusions.

2 Related works

2.1 Lu et al.’s method

Lu et al. [50] used the central folding strategy to create a dual image RDH method in which
embedding s bits b1, .., bs in a pixel x of an original image I to obtain the two watermarking
pixels x ′ and x ′′. In the case of s = 2, the embedding algorithm is performed as follows.
First, convert b1, b2 into a decimal value d with 0 ≤ d ≤ 3. Fold d in the centre by the
operation d − 2, then embed d − 2 in the pixel x to get x ′ and x ′′ as follows

x ′ = x + �d − 2

2
�, x ′′ = x − �d − 2

2
�. (1)

When two stego pixels x ′ and x ′′ are known, the original pixel x is restored by the formula:

x = � x
′ + x ′′

2
�, (2)

and two embedded bits are extracted as follows:

d = (x ′ − x ′′ + 2) → b1b2. (3)

That means converting the decimal number d into the two binary bits.
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2.2 Yao et al.’s method

Yao et al.’s method [51] is an improvement to Lu et al.’s algorithm for embedding an extra bit
when both first bits are equal to one. Specifically, when d ≤ 2 Yao et al. embed two bits by
formula (1). But when d = 3, i.e. b1b2 = 11, Yao et al. have embedded an extra as follows:

x ′ = x, x ′′ = x − 1, if b3 = 0,

and

x ′ = x + 1, x ′′ = x − 1, if b3 = 1.

When knowing x ′ and x ′′, the original pixel x is restored by the formula (2), and embedded
bits are extracted as follows. Compute d = x ′ − x ′′ + 2. If d ≤ 2, two bit b1b2 are extracted
by formula (3). Otherwise, the three bits are extracted according to formulas:

b1b2b3 =
{
110, if d = 3,

111, if d = 4.

To avoid underflow/overflow, only pixels with values between 1 and 254 are used for embed-
ding. Pixels with a value of 0 or 255 are ignored. The embedding ratio of Lu et al.’s algorithm
is 2 bits per pixel (2 bpp), while the embedding ratio of Yao et al.’s algorithm is 2.25 bpp.
The maximal magnitude of the difference between each watermarking pixel and the corre-
sponding original pixel of both methods is equal to one. That proves that both methods have
high image quality.

2.3 Image authenticationmethod of Yin et al.

Yin et al. [15] divided the original image I into 4× 4 non-overlapped pixel blocks {Bk}Nk=1 .
Then embed AC bits in four consecutive pixels of the Hilbert Curve. As these four pixels are
in a sub-block with the size of 2× 2, so the embedding technique used in Yin et al.’s method
is IPVO in sub-blocks of 2 × 2 pixels. Yin et al. used two thresholds T1 and T2 to classify
4 × 4 blocks into three categories: flat, normal and rough. The flat and normal blocks can
embed at most 8 AC bits and 2 AC bits, respectively. While the rough blocks will be omitted
in the embedding procedure. When both thresholds T1 and T2 are equal to 255, all 4 × 4
blocks can embed at most 8 bits, then the method has the highest embedding capacity.
Consider a 4×4 pixel block Bk that consists of four sub-blocks Bt

k with t = 1, ..., 4. Suppose
that Bt

k has four pixels B
t
k,i , i = 1, ..., 4. The embedding algorithm IPVO in sub-blocks Bt

k
is carried out as follows. First sort the sequence of pixels Bt

k,i in ascending order to get:

Bt
k,σ1 ≤ Bt

k,σ2 ≤ Bt
k,σ3 ≤ Bt

k,σ4.

Then compute dmin and dmax by formulas:

dtk,min =
{
Bt
k,σ1

− Bt
k,σ2

, if σ1 < σ2,

Bt
k,σ2

− Bt
k,σ1

, if σ2 < σ1,

dtk,max =
{
Bt
k,σ3

− Bt
k,σ4

, if σ3 < σ4,

Bt
k,σ4

− Bt
k,σ3

, if σ4 < σ3.
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Next a bit w1 is embedded in Bt
k,σ1

and a bit w2 is embedded in Bt
k,σ4

(if possible) to obtain
Ct
k,σ1

and Ct
k,σ4

as follows:

Ct
k,σ1 =

{
Bt
k,σ1

− w1, if dtk,min = 0 or dtk,min = 1,

Bt
k,σ1

− 1, and no bit is embedded, otherwise,

Ct
k,σ4 =

{
Bt
k,σ4

+ w2, if dtk,max = 0 or dtk,max = 1,

Bt
k,σ4

+ 1, and no bit is embedded, otherwise.

In Yin et al.’s method, authentication code bits (AC bits) are a sequence of N pseudo random
bits generated by a secret key, where N is the number of 4 × 4 blocks obtained from the
original image I . Non-embeddable blocks are ignored in the embedding procedure, and as
such, they are not protected. An AC bit is embedded repeatedly in each embeddable block
by mentioned above formulas. After embedding AC bits in the image I is completed, the
watermarking image I ′ consisting of 4 × 4 blocks Ck, k = 1, ..., N is obtained. During
authentication, if all bits extracted from an embeddable block Ck are equal to the embedded
AC bit, the k-th block is considered unchanged. On the contrary, it is considered an attacked
block.

Remark of Yin et al.’s method
It is easily noted that if a 4× 4 block Ck of the watermarking image I ′ is modified in the

following ways, then Yin et al.’s method cannot detect.

1. All pixels of a sub-block Ct
k with t ∈ {1, ..., 4} are increased or decreased by the same

value. Because then the result of extracting information according to IPVO does not
change.

2. The last sub-blocks of a 4 × 4 block Ck are modified such that these sub-blocks become
non-embeddable. Because thenCk becomes non-embeddable or all bits extracted are equal
to the embedded AC bit.

3. A non-embeddable 4 × 4 block Ck is modified so that it remains non-embeddable.
Moreover, because the number of embedded AC bits is not large, the accuracy of the
detection is not high.

2.4 Image authenticationmethod of Hong et al.

Hong et al. [11] used the same block division and embedding technique as in [15]. So symbols
of [11] are used here. The original image I is partitioned into non-overlapped 4 × 4 pixel
blocks {Bk}Nk=1. Each 4 × 4 block Bk is divided into 4 sub-blocks with the size of 2 × 2 Bt

k
with t = 1, ..., 4. Embedding data bits are implemented in 2 × 2 sub-blocks by using the
technique IPVO as in Section 2.3. Thus each 4 × 4 block can embed at most 8 bits. A block
with the number of embedded bits greater than zero is called embeddable, otherwise is called
non-embeddable.

In this method, AC bits are generated for each 4 × 4 block. Specifically, eight values
Bt
k,σ2

and Bt
k,σ3

with t = 1, ..., 4 and the location position of the block Bk are used as
the input data of the hash function MD5 to generate 128 AC bits for block Bk . To enlarge
detection capacity, an AC bit is embedded into the LSB of the first pixel of a key-selected
sub-block of each 4 × 4 non-embeddable block by using the LSB replacement technique.
The LSB of pixel used in the LSB replacement technique and AC bits will be embedded in
embeddable 4× 4 blocks by formulas described in Section 2.3. After embedding AC bits in
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4× 4 blocks Bk of the original image I , the watermarking image I ′ consists of 4× 4 blocks
Ck is obtained.

Compared with Yin et al.’s method, Hong et al. introduced two critical improvements:
AC bits are generated from the features of each block and an AC bit is embedded in a
non-embeddable block.

Remark of Hong et al.’s method
Although the attack detection ability of Hong et al.’s method is significantly improved com-
pared to Yin et al.’s method, it still cannot detect the change of blocks in the following
cases:

1. For a non-embeddable 4 × 4 block Ck consisting of four sub-block Ct
k , each C

t
k has four

pixels Ct
k,σ1

≤ Ct
k,σ2

≤ Ct
k,σ3

≤ Ct
k,σ4

if decreasing Ct
k,σ1

or/and increasing Ct
k,σ4

by an
even value for at least t ∈ {1, 2, 3, 4}, thenCk is still non-embeddable and the bit extracted
from Ck is still equal to the AC embedded bit. Therefore, in this case, the modification of
Ck cannot be detected.

2. For an embeddable 4 × 4 block Ck , if Pixels Ct
k,σ1

and Ct
k,σ4

with t = s, ..., 4 (where
s is a number between 2 and 4) are modified so that sub-blocks Ct

k, t = s, .., 4 become
non-embeddable, but Ck is still embeddable. Then the bits extracted from Ck are still
equal to the AC bits. Therefore in this case the change of Ck cannot be detected.

In this method, the number of embedded AC bits is not large, so the accuracy of the detection
is not high. In addition, since an embeddable block contains the LSB value of a pixel in a
non-embeddable block, a change in the latter block can lead to false conclusions about the
change in the former block. For example, supposeCs is embeddable that can embed two bits.
In the embedding process, an AC bit and an LSB from a non-embeddable Cr are embedded
in Cs . Now if Cr is attacked so that it becomes embeddable, then two bits embedded in Cs

are considered as two AC bits. Then the bits extracted from Cs can be different from the AC
bits. This leads to the false conclusion that Cs was attacked.

2.5 Image authenticationmethod of Peng et al.

In Peng et al.’s scheme [53], authentication information is the pseudo random bits which are
generated by keys. The original image I with pixels xi is copied into two images denoted as
I1 with pixels pi and I2 with pixels qi , that means xi = pi = qi with i = 1, ..., H × W ,
where H × W is the size of the image. Peng et al. improved the irreversible data hiding
algorithm SOS [54] of Yin et al. to get a reversible data hiding method in two images and
then use this method to create a reversible image authentication scheme.

First, four AC bits b1, b2, b3, b4 are embedded in the pair of two pixels p1, p2 of I1 based
on matrix MB (Fig. 1) as follows. Convert b1, b2 and b3, b4 into two decimal numbers d1

Fig. 1 Matrix MB of size 4 × 4
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and d2 with values between 0 and 3. Define two stego pixels p′
1, p

′
2 from p1, p2 and d1, d2

by formulas

MB(p′
1%4, p′

2%4) = d1,

MB(p′
1%4, (p′

2 + 1)%4) = d2,

p1 − 1 ≤ p′
1 ≤ p1 + 2,

p2 − 1 ≤ p′
2 ≤ p2 + 2.

To be able to recover p1, p2 from p′
1, p

′
2 can calculate values:

e1 = 2 + (p1 − p′
1), e2 = 2 + (p2 − p′

2),

where 0 ≤ e1, e2 ≤ 3. Embed e1, e2 in the pair of two pixels q1, q2 of the image I2 according
to the same formulas above. That means

MB(q ′
1%4, q ′

2%4) = e1,

MB(q ′
1%4, (q ′

2 + 1)%4) = e2,

q1 − 1 ≤ q ′
1 ≤ q1 + 2,

q2 − 1 ≤ q ′
2 ≤ q2 + 2.

To ensure that both images I
′
1 and I

′
2 contain the same number of authentication bits, the

embedding of the authentication bits and the recovery information are performed alternately
on the I1 and I2 images. That is, use the pair of pixels q3, q4 of I2 to embed the 4 AC bits
and the pair of pixels p3, p4 of I1 to embed recovery information, and so on.
It is easy to see that only the pairs (pi , pi+1) as well as (qi , qi+1) satisfy the condition

1 ≤ pi , pi+1, qi , qi+1 ≤ 253,

can be used to embed AC bits without causing underflow/overflow.
In Peng et al.’s scheme, the original is divided into non-overlapped pixel blocks with the size
of 4 × 4, so each block of I ′

1 and I ′
2 contains at most 16 AC bits.

For i = 1, 5, 9, ...,, extracting the AC bits and restoring the original pixels (xi , xi+1) from
(p′

i , p
′
i+1) and (q ′

i , q
′
i+1) are carried out as follows:

ei = MB(q ′
i%4, q ′

i+1)%4,

ei+1 = MB(q ′
i )%4, q ′

i+1 + 1)%4,

xi = p′
i + ei − 2,

xi+1 = p′
i+1 + ei+1 − 2,

and

di = MB(p′
i%4, p′

i%4),

di+1 = MB(p′
i%4, (p′

i+1 + 1)%4).
(4)

Convert di and di+1 into 4 AC bits:

di = (b1, b2)2, di+1 = (b3, b4)2 (5)

For i = 3, 7, 11, ..., extracting the AC bits and restoring the original pixels is done similarly
but with a change of roles between p′

i and q
′
i .
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Remark of Peng et al.’s method
Although the number of embedded AC bits is large, this method has some limitations in its
ability to detect attacks as follows.

1. From (4) and (5) , it follows that if p′
i or/and p′

i+1 (with i=1,5,9,…) are incremented or
decremented by a positive integer that is a multiple of four, then the same AC bits are
extracted, so the change of I ′

1 is undetectable.
2. Since with i = 3, 7, 11, .., p′

i và p′
i+1do not contain AC bits, so if they are modified in

any way, this change will not be detected.
3. From (a) and (b), deduce that if each pixel of I

′
1 is increased or decreased by a positive

integer equal to a multiple of 4, such modification is also undetected.

The limitations in attack detection ability for the watermarking image I
′
2 are similar to the

image I
′
1.

3 Proposed reversible image authentication scheme

3.1 Improvements of Lu et al.’s andYao et al.’s algorithms

The algorithm used in the proposed scheme is an improvement of Lu et al.’s [50] and Yao
et al.’s [51] algorithms by embedding a 5-nary digit d in a pixel x according to the following
formula:

x ′ = x +
⌊

(d − 2)

2

⌋
, x ′′ = x −

⌈
(d − 2)

2

⌉
. (6)

Consider a block X of size m × n consisting of k = m × n pixels with a value between 1 and
254. Then can embed k 5-nary digits in the block X . Now we will evaluate the embedding
capacity of this technique. Set:

k5Max = 5k − 1,

bk5Max : binary representation of k5Max,

l : length of bk5Max,

where k5Max is the maximum 5-nary value of k digits and is the maximum value that can
be embedded in the block X . Denote

l2Min = 2l−1, l2Max = 2l − 1,

are the minimum l−bit binary value and the maximum l−bit binary value, respectively. Let
emValue be a embedded binary number of l bits, then it can be divided into the following
cases:

1. emValue is between l2Min and k5Max , emValue can be embedded in block X . In this
case, l bits are embedded.

2. emValue is greater than k5Max , then can not embed emValue in X . In this case, can
only embed the first (l − 1) bits of emValue.

3. emValue is smaller than l2Min, then the first bit of emValue is equal to zero. Although
we can embed all l bits of emValue, but to avoid ambiguity with case 2, only the first
(l − 1) bits of emValue are embedded.

123



64450 Multimedia Tools and Applications (2024) 83:64441–64465

Since can consider that values of emValue are uniformly distributed over the domain from
zero to l2max , so it is deduced that the average number of embedded bits in X is:

Cap(X) = [(k5Max − l2Min + 1) × l + (l2Max + l2Min − k5Max)

×(l − 1)]/(l2Max + 1).

For block X with sizes 2×2, 3×3 and 4×4 corresponding to 4, 9 and 16 pixels, the value
of Cap(X) is equal to 9.1104, 20.4313 and 37.0551, respectively. Finally, the embedding
ratio of the proposed algorithm is 2.2776, 2.2701 and 2.3159 corresponds to block sizes 2×2,
3× 3 and 4× 4. All these embedding ratios are higher than Lu et al.’s embedding ratio of 2
bpp and Yao et al.’s embedding ratio of 2.25 bpp.

Our other improvement is using the pixels with the value of 0 or 255 to embed, while these
pixels are ignored in the methods of Lu et al. and Yao et al. Namely, a bit b is embedded in
the pixel x with the value of 255 as follows:

x ′ = 255, x ′′ = 255 if b = 0,

x ′ = 254, x ′′ = 255 if b = 1.
(7)

For a block X consisting of all pixels with the value of 0 (x(i) = 0, i = 1, ..., k), one-bit b
is embedded in the first pixel of the block by formulas:

x ′(1) = 4, x ′′(1) = 0, if b = 0,

x ′(1) = 3, x ′′(1) = 0, if b = 1,

x ′(i) = x ′′(i) = 0, i = 2, ..., k.

(8)

From formulas (6)-(8) it is easy to see that the embedding algorithms in cases: 0 < x <

255, x = 255, and x = 0 will not give ambiguous results.

3.2 Embedding data bits in a pixel block

Let X be a block of sizem×n consisting of k (with k = m×n) pixels xi = 1, ..., k, and B =
b1, b2, ... be a given bit sequence. For embedding B in X , consider three cases:

The first case: All pixels x(i) of X with a value of 0. In this case, one bit of B is embedded
in x(1) by formula (8) to get x ′(i) and x ′′(i), i = 1, ..., k.

The second case: There is at least a pixel of X with a value of 255, the remaining pixels
with a value of 0. In this case, a bit of B is embedded in each pixel of X with a value of 255
by formula (7). For x(i) = 0, no bit is embedded, and x ′(i) = x ′′(i) = 0.

The third case: X has at least a pixel with a value between 1 and 254. Suppose there are
s such pixels.

First, scan by rows pixels of X . Each pixel with a value of 255 (if any) is used to embed one
bit according to formula (7). For a pixel x(i) = 0, no bit is embedded, and x ′(i) = x ′′(i) = 0.
Then scan again X to find s pixels with a value between 1 and 254. The subsequent bits will be
embedded in these s pixels according to Section 3.1. Namely, calculate the s5Max = 5s −1,
the length l of the binary representation of s5Max . Then compute l2Min = 2l−1. Select l
bits from B to generate a binary number called emValue. Compare emValue with s5Max
and l2Min. If emValue is in the domain between l2Min and s5Max then emValue is
preserved, otherwise, emValue is adjusted by obtaining only the first (l − 1) bits. Convert
emValue to a 5-nary number consisting of s digits: D = (d1, d2, .., ds) with 0 ≤ d j ≤ 4.
Embed each digit of D in a pixel of X with a value from 1 to 254 according to the formula
(6).
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The illustrating examples:

1. Consider the block:

X =
[
255 255
255 0

]
,

and : B = (1,0,1). Scan pixels by rows, as far as the second case goes, there are:

X
′ =

[
254 255
254 0

]
, X

′′ =
[
255 255
255 0

]
.

2. Consider the block:

X =
[
0 0
0 0

]
,

and : B = (0). By the formulas in the first case we get:

X
′ =

[
4 0
0 0

]
, X

′′ =
[
0 0
0 0.

]
.

3. Consider the block:

X =
[

0 6
255 4

]
, and : B = (1, 1, 0, 1, 1, 1).

First, embed one bit in a pixel x3 with a value of 255. Since b1 = 1, so x
′
3 = 254,

and x
′′
3 = 255. Two pixels x2 = 6 and x4 = 4 will be used to embed next bits. In this

case, s = 2, s5Max = 52 − 1 = 24, bs5Max = 11000, l = 5, and l2Min = 10000.
Select the next 5 bits: 10111, it is between l2Min and s5Max , so five of these bits can
be embedded in pixels x2 and x4. Convert this binary value to a 5-nary number to get
emValue = (43)5. Embed numbers 4 and 3 in the pixels x2 and x4 according to formula
(6), we obtain:

x ′
2 = 7, x ′′

2 = 5

x ′
4 = 4, x ′′

4 = 3

Thus, the obtained watermarking blocks are:

X
′ =

[
0 7
254 4

]
, X

′′ =
[

0 5
255 3

]
.

4. Consider the block:

X =
[
3 5
6 5

]
, and B = (1, 0, 0, 0, 1, 0, 0, 0, 0, 1).

This block belongs to the third case with s = 4. In this case, no pixel has a value of
255, so all bits will be embedded in pixels with values 1 to 254. We have s5Max =
54 − 1 = 624, bs5Max = 1001110000, l = 10, and l2Min = 2l−1 = 29. Select 10
bits of B : emValue = 1000100001. It is clear that emValue is smaller than s5Max
and greater than l2Min, so convert this binary value to a 5-nary number to get (4140)5.
Embed the 5-nary digits 4, 1, 4 and 0 in pixels with the values 3, 5, 6 and 5 of X according
to formula (6), respectively, we get:

X
′ =

[
4 4
7 4

]
, X

′′ =
[
2 5
5 6

]
.
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3.3 Extracting and restoring from a pair of two watermarking blocks

Suppose X
′
and X

′′
are a pair of known watermarking blocks of size m × n. The process

of extracting embedded bits and restoring the original block is performed by the following
steps:
First restoring the original block X = (x1, ..., xk), with k = m × n by formulas:

xi =
{
0, if i = 1 , x

′
1 ∈ {3, 4} and x ′′

1 = 0,⌈ x ′
i+xi ′′
2

⌉
, otherwise.

(9)

where i = 1, ..., k. Then we divide X into three cases as in Section 3.2. In the first case, one
bit is extracted by the formula:

b =
{
0, if x

′
1 = 4,

1, if x
′
1 = 3.

(10)

In the second case, one bit is extracted from each x ′ ∈ {254, 255} by the formula:

b =
{
0, if x ′ = 255,

1, if x ′ = 254.
(11)

In the third case, first scan X ′ and X ′′ by rows to get pairs of x ′
and x

′′
. If x

′
and x

′′
correspond

to a pixel x with a value of 255, extract a bit by formula (11). Then scan again X
′
and X

′′
,

for each pair of pixels x ′ and x ′′ corresponds with an original pixel x with a value between
1 and 254, extract a 5-nary digit by the formula:

d = x
′ − x

′′ + 2. (12)

Suppose have s such original pixels. Compute values s5Max, l, and l2Min as in Section 3.2.
Convert s of obtained 5-nary digits into a decimal number denoted emValue. If emValue
is between l2Min and s5Max , convert emValue in to l binary bits. Otherwise, convert
emValues into l − 1 binary bits. The sequence of embedded bits is obtained by collecting
bits extracted. The illustrating example:

1. Consider a pair of two watermarking blocks (example 4 of 3.2)

X
′ =

[
4 4
7 4

]
, X

′′ =
[
2 5
5 6

]
.

First, restore the original block X by (9), obtain:

X =
[
3 5
6 5

]

We see that the original pixel block belongs to case 3. In this case, have s = 4,
s5Max = 624, bs5Max = 1001110000, l = 10, l2Mins = 512. Extract four 5-nary
digits by formula (12), we obtain a 5-nary number: (4, 1, 4, 0)5. Convert it into a decimal
number denoted emValue, we have emValue = 545. Since emValue is between l2Min
and s5Max , so convert emValue to a sequence of l bits.We obtain 1000100001, that are
the bits to be extracted.
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2. Consider two watermarking blocks (example 2 of 3.2)

X
′ =

[
4 0
0 0

]
, X

′′ =
[
0 0
0 0

]
.

From formulas (9) and (10) it follows

X =
[
0 0
0 0

]
,

and an embedded bit is 0.

3.4 Embedding AC bits in an original image

Let I be an original image of size H × W . Divide I into non-overlapped blocks Ir ,c with
the size of m × n where r = 1, ..., �H/m�, c = 1, ..., �W/n�. The process of embedding
authentication information on image I is carried out according to the following steps:

Step 1: For each block Ir ,c with pixels Ir ,c(i), i = 1, ..., k (with k = m × n), first generate
128 AC bits by applying hash function MD5 as follows

Ir ,c AC = hashMD5(r , c, Ir ,c(1), ..., Ir ,c(k))

= (ac(1), ..., ac(128)).
(13)

Step 2: Choose AC bits defined in the previous step as the embedded bits:

(b(1), ..., b(128)) = (ac(1), ..., ac(128)). (14)

Embed bits b(1), b(2), ..., b(α) in the block Ir ,c by formulas in Section 3.2 to get two water-
marking blocks I

′
r ,c and I

′′
r ,c, where α is a maximum number of bits that can be embedded.

Step 3: Repeat steps 1 and 2 for all blocks Ir ,c with r = 1, ..., �H/m� and c = 1, ..., �W/n�
to get all watermarking blocks I

′
r ,c and I

′′
r ,c.

Step 4: Combine blocks I
′
r ,c to get the watermarking image I

′
and blocks I

′′
r ,c to get the

watermarking image I
′′
. The watermarking images I

′
and I

′′
are sent to a certain recipient.

This person needs to check if each block of the watermarking images is hacked or not. If a
pair of two watermarking blocks is not attacked, then from those two blocks we can restore
the corresponding original block correctly. Therefore, if both watermarking images are not
attacked or the number of tampered block pairs is small, the recovered image is still available.

3.5 Authenticating the watermarking images

After embedding AC bits in the original image I of size H ×W as in Section 3.4 we get two
watermarking images I

′
and I

′′
of the same size as I . These images are sent, but the recipient

receives images Ĩ ′ and Ĩ ′′ that can be equal to or different from I
′
and I

′′
. If images I

′
and

I
′′
are attacked, then Ĩ ′ and Ĩ ′′ are different from I

′
and I

′′
, otherwise, they are equal. To

detect and locate attacked regions, first divide images Ĩ ′ and Ĩ ′′ into non-overlapped blocks
Ĩ ′
r ,c and Ĩ ′′

r ,c with the size of m × n as in Section 3.4. Then the process of authenticating each

pair of blocks Ĩ ′
r ,c and Ĩ ′′

r ,c is carried out according to the following steps:
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Step 1: Preliminary Check: First from Section 3.4, it is easy to see that the pair of two blocks
I

′
r ,c and I

′′
r ,c has the following two properties:

1. All pixels of I
′
r ,c and I

′′
r ,c are between 0 and 255.

2. Except for the case I
′
r ,c(1) ∈ {3, 4}, I ′′

r ,c(1) = 0, and I
′
r ,c(i) = I

′′
r ,c(i) = 0, i = 2, ..., k.

In other cases, the values of pixels I
′
r ,c(i) and I

′′
r ,c(i) differ by no more than 2, that is

abs(I
′
r ,c(i) − I

′′
r ,c(i)) ≤ 2, with i = 1, ..., k.

Therefore, we check if Ĩ ′
r ,c and Ĩ ′′

r ,c satisfy these two properties. If the condition is not

satisfied, then it can be confirmed that I
′
r ,c and I

′′
r ,c have been attacked, and skipped steps

2-5. Otherwise, go to step 2.

Step 2: From the pair of two blocks Ĩ ′
r ,c and Ĩ ′′

r ,c, restore the block Ĩr ,c by formula (9). Note

that if blocks I
′
r ,c and I

′′
r ,c are not attacked, then Ĩr ,c is the original block, that is: Ĩr ,c = Ir ,c.

Step 3: Generate AC bits for Ĩr ,c by formula (13):

Ĩr ,c AC = hashMD5(r , c, Ĩr ,c(1), ..., Ĩr ,c(k))

= (ãc(1), ..., ãc(128))

Step 4: From blocks Ĩ ′
r ,c and Ĩ ′′

r ,c extract bits by formulas in Section 3.3. Denote extracted

bits as B̃ = (b̃(1), ..., b̃(α)).

Step 5: Compare b̃(i) with ãc(i)), i = 1, ..., α. If all are equal, we conclude that I
′
r ,c and

I
′′
r ,c are not attacked, that is Ĩ

′
r ,c = I

′
r ,c and Ĩ ′′

r ,c = I
′′
r ,c. Otherwise consider as I

′
r ,c and I

′′
r ,c

are attacked.

Step 6: Repeat steps 1-5 to authenticate and locate tampered pairs of two watermarking
blocks. In the case I

′
r ,c and I

′′
r ,c are not attacked then block Ĩr ,c defined in step 2 is the

original block Ir ,c. Thus, we can locate the attacked blocks and recover the original blocks
correctly in case of no attack.

3.6 Accuracy of the authentication algorithm

First, it is noted that almost original pixel blocks Ir ,c satisfy the condition:

Ir ,c(i) ∈ {1, ..., 254} (15)

with i ∈ {1, ..., k}. For such pixel blocks, restoring original pixels and extracting embedded
bits are performed according to formulas (9) and (12), respectively.

For simplicity, in this section only blocks satisfying condition (15) are considered. The
authentication accuracy of the proposed method in the below three attack types of a block
will be discussed. .

The first type of attack: Together increase or decrease I
′
r ,c(i) and I

′′
r ,c(i) by the same

value, that is,

Ĩ ′
r ,c(i) = I

′
r ,c(i) + �(i), Ĩ ′′

r ,c(i) = I
′′
r ,c(i) + �(i), i = 1, ..., k

with at least one �(i) 
= 0. Then by formula (9)b, pixels Ĩr ,c(i) restored by step
2 of Section 3.5 differ from the original pixels. That means ( Ĩr ,c(1), ..., Ĩr ,c(k)) 
=
(Ir ,c(1), ..., Ir ,c(k)) . So, AC bits obtained in step 3 of the authentication procedure
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(Section 3.5) are not equal to AC bits created in the process of embedding AC bits
(Section 3.4), which means

(ãc(1), ..., ãc(128)) 
= (ac(1), ..., ac(128)). (16)

While from (12), the bits extracted in step 4 of Section 3.5 are the same as the embedded
bits, which means

b̃(i) = b(i), i = 1, ..., α.

From this and (14) it follows that

b̃(i) = ac(i), i = 1, ..., α. (17)

By formulas (16)-(17), deduce that

(̃b(1), ..., b̃(α)) 
= (ãc(1), ..., ãc(α))

So, by step 5 of Section 3.5, we conclude that blocks I
′
r ,c and I

′′
r ,c are attacked.

However, when the value of α is small, from (16) it can still deduce that

(ãc(1), ..., ãc(α)) = (ac(1), ..., ac(α)) (18)

From this and (17)wehave (̃b(1), ..., b̃(α)) = (ãc(1), ..., ãc(α)).So, by step 5 of Section 3.5,
we conclude that blocks I

′
r ,c and I

′′
r ,c are not attacked. Thus, we get the wrong conclusion.

However, from (16) it follows that the probability of occurrence of the condition (18) is 1
2α .

When α is greater than 10, this probability is very low.
The second type of attack: Increase I

′
r ,c(i) by one value and decrease I

′′
r ,c(i) by the same

value or vice versa, that is

Ĩ ′
r ,c(i) = I

′
r ,c(i) + �(i), Ĩ ′′

r ,c(i) = I
′′
r ,c(i) − �(i), i = 1, .., k,

with at least one �(i) 
= 0. Similar to the first case, by formula (9), have

Ĩr ,c(i) = Ir ,c(i), i = 1, .., k.

It follows that
ãc(i) = ac(i), i = 1, .., 128.

On the other hand, from (12), deduce that

b̃(i) 
= b(i),

with at least one i . From this and (14), deduce (̃b(1), ..., b̃(α)) 
= (ãc(1), ..., ãc(α)). So, by
step 5 of Section 3.5, we conclude that blocks I

′
r ,c and I

′′
r ,c are attacked. Similar to the first

case, the probability of a false conclusion in this case is 1
2α .

The third type of attack: This attack type differs from both the first type and the second
type. Then we have

(ãc(1), ..., ãc(128)) 
= (ac(1), ..., ac(128),

(b̃(1), ..., b̃(α)) 
= (b(1), ..., b(α)).

If
(ãc(1), ..., ãc(α)) = (b̃(1), ..., b̃(α)) (19)

According to step 5 of Section 3.5, we conclude that two blocks I
′
r ,c and I

′′
r ,c are not attacked.

In this case, bits ãc(i) and b̃(i) do not have any relationship, so the probability of occurrence
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of the condition (19) is equal to is 1
2α . In summary, for the proposed method, the true attack

detection rate is (1 − 1
2α ), with α is the number of AC bits embedded in a pixel block. This

rate depends on the size of the block Ir ,c. For the block sizes of 4 × 4, 3 × 3 and 2 × 2, the
embedding capacities α are 37, 20 and 9, respectively. In all of these cases, the correct attack
detection rate is close to 100%.

4 Experimental results

This section presents experiment results to compare the detection effectiveness of the pro-
posed method with the methods of Yin et al. [15], Hong et al. [11], and Peng et al. [53]. The
computations ofmethods have been performed usingMATLAB running on Lenovo computer
IdeaPad Slim 5 15 ITL 05 with Intel Core i5, 8-GB Ram, 512-GB SSD. The experiments are
performed on the 12 standard grayscale images of size 512 × 512 as shown in Fig. 2.

4.1 Embedding capacity and image quality comparisons betweenmethods

The embedding capacity of each method is measured by the average number of AC bits
embedded in 12 standard grayscale images. Similarly, stego-image quality is calculated by
the averagePSNRvalueobtained in these 12 test images.The comparison results are presented
in Table 1. The information in the second column is the number of non-overlapping blocks

Fig. 2 Experimental images
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Table 1 Embedding capacity and image quality comparisons

Methods Number of
blocks

Number of Embedable
blocks

Number of AC bits
Embedded in a block

PSNR

Yin 16384 13418 3.3060 51.9780

Hong 16384 13418 3.3060 51.1981

Peng 16384 16384 15.9851 46.3635

Proposed 4x4 16384 16384 37.0350 50.3362

Proposed 3x3 28900 28900 20.4219 50.2876

Proposed 2x2 65536 65536 9.1045 50.2889

partitioned from each 512 × 512 test image. For methods using 4 × 4 blocks, such as Yin
et al., Hong et al., Peng et al., and the proposed method with 4 × 4 blocks, the number of
blocks in each test image is 16384. With the proposed method using 3× 3 and 2× 2 blocks,
the numbers of blocks are 28900 and 65536, respectively. The third column presents the
average number of embeddable blocks in 12 test images. This number for methods of Yin et
al. and Hong et al. is 13418 over 16384 blocks. For the remaining methods, all blocks are
embeddable.

The fourth column introduces the embedding capacity ofmethods. In Sections 2.3 and 2.4,
it is noted that the methods of Yin et al. and Hong et al. used the IPVO technique in 2 × 2
sub-blocks. So, in each block of 4× 4 pixels at most 8 AC bits are embedded and at least no
pixel is embedded, the average number is 4 bits. The average number of embedded bits in
each 4 × 4 block of these two methods is 3,3060 as shown in Table 1 which is in agreement
with the theoretical analysis. Section 2.5 showed that in each 4 × 4 block of 16 pixels with
values from 1 to 253, the method of Peng et al. can embed 32 bits, but only half of the bits
are AC bits, the remaining bits are used to restore the original image. The mean number of
embedded AC bits of Peng et al’s method in a block is 15.9851. It is shown in Section 3.1
that for a pixel block X of sizes 2 × 2, 3 × 3, and 4 × 4, the proposed method can embed a
number of 9.1104, 20.4313 and 37.0551 bits, respectively. Thus, the embedding capacity of
the proposed method presented in Table 1 is consistent with the theoretical analysis.

The 5th column presents the average PSNR values of the methods. In Peng et al.’s method
and the proposed method, PSNR is the mean of PSNR1 and PSNR2. For Yin et al.’s method,
only 50% number of pixels in an image is increased or decreased by one, so its average
PSNR is the largest. Compared with Yin et al.’s method, Hong et al.’s method must perform
embedding in non-embeddable blocks. Therefore, the PSNR of Hong et al.’s method is
smaller than that of Yin et al.’s method. In the proposed method, each pixel is also increased
or decreased by one, but the number of modified pixels is larger than that of Yin et al.’s
method. Therefore, the PSNR of the proposed method is slightly smaller than the PSNR of
Yin et al.’s method. The pixels in Peng et al.’s method are modified at most two units, so the
PSRN coefficient of this method is the smallest.

4.2 Detection capacity comparison betweenmethods

4.2.1 Small and uniform distribution attack

In this attack manner, first, a noise matrix of size 512×512, denoted by NM , is created. This
matrix consists of non-overlapped 4× 4 blocks, denoted by NMr ,c with 1 ≤ r , c ≤ 128. All
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Fig. 3 The first part of noise matrix NM

blocks are equal to zero except blocks NMr ,c with r , c satisfy the condition:

(r − 1) mod 4 = 0 and (c − 1) mod 2 = 0 (20)

Each of these blocks has two elements with values belonging to the set {−2,−1, 1, 2}, other
elements are equal to zero. The positions and values of non-zero elements are determined
randomly. For example, a sub-matrix consisting of the first 20 rows and 20 columns of NM
is shown in Fig. 3. The matrix NM used for attacking a watermarking image I

′
of size

512 × 512 to get an attacked image Ĩ
′
as follows:

Ĩ
′
(i, j) =

{
I

′
(i, j) + NM(i, j), if 0 ≤ I

′
(i, j) + NM(i, j) ≤ 255

I
′
(i, j) − NM(i, j), otherwise.

(21)

For Peng et al.’s method and the proposed method, the second watermarking image I
′′
will

be modified according to formula (21) to get an attacked image Ĩ
′′
but with a noise matrix

NM2 that only differs NM in positions of non-zero elements in each block NMr ,c. These
attacks make a small modification to the watermarking images. Even this change is difficult
to perceive with the naked eye. Figure 4 below illustrates a watermarking image I

′
and an

attacked image Ĩ
′
obtained by attacking it in the above manner.

The average detection ability of attacked blocks on 12 test images of the methods is
presented in Table 2.

We now explain some notations in Table 2. The T P in column 2 is the exact number of
blocks detected as fake. In other words, T P is the number of blocks that are confirmed to
have been hacked and that has in fact been modified. FN is the number of blocks that are
confirmed to be unchanged but in fact, they have been tampered with. T N is the exact number
of blocks detected as not being hacked. FP is the number of blocks detected as hacked but in
reality, they have not changed at all. T PR is the ratio of the exact number of blocks detected
as hacked to the total number of hacked blocks. This coefficient evaluates the ability to detect
hacked blocks. If T PR = 1, it means that 100% of hacked blocks are detected. The FPR
is the ratio of the number of blocks that are falsely detected as hacked to the total number
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Fig. 4 Watermarking image and attacked image by the small and uniform distribution attack

of blocks that are not attacked. If FPR = 0, it means that 100% of not-hacked blocks are
correctly detected. According to Table 2, Yin et al.’s method detects 42.30% andHong et al.’s
method detects 64.59% of the number of tampered blocks. Peng et al.’s method can detect
85.91 % of tampered blocks. The attack detection ratio of the proposed method is 99.91%
if 2 × 2 block sizes are used and is always 100% if 3 × 3 and 4 × 4 block sizes are used. It
should also be mentioned that for all methods except Hong’s method, every block that is not
attacked is detected as unmodified. Particularly for Hong’s method, FPR = 0.05%. This
means there are some blocks that do not change, but the method of Hong et al. concluded
that they have been attacked. This is explained in Section 2.4.

4.2.2 A special attack on the watermarking images of Sailboat image

This section presents a special attack that is performed in each 4 × 4 block bI
′
of the

watermarking image I
′
independently. Denote mi

′
(ma

′
) as the smallest (largest) value of

pixels in the bI
′
. Now we want to define a quantity, denoted deV

′
, that is a multiple of 4 with

Table 2 Attack detection ability comparison between methods

Methods Correct attack
detected block
number (TP)

False not-attack
detected block
number (FN)

Correct not-attack
detected block
number (TN)

False attack
detected block
number (FP)

TPR=
TP/(TP+
FN) (%)

FPR=
FP/(FP+
TN) (%)

Yin 866.25 1181.75 14336.00 0 42.30 0

Hong 1322.75 725.25 14328.75 7.25 64.59 0.05

Peng 2 1759.50 288.50 14336.00 0 85.91 0

Proposed
4x4

2048.00 0 14336.00 0 100 0

Proposed
3x3

5191.00 0 23709.00 0 100 0

Proposed
2x2

6655.00 5.00 58876.00 0 99.91 0
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as large a value as possible, such that after decreasing all pixels of bI
′
by deV

′
, the decreased

pixels are retained in segment [0, 255]. Obviously, deV
′
is determined by the formula:

deV
′ = 4 × �(mi

′
/4)�.

Similarly, if define
inV

′ = 4 × �(255 − ma
′
)/4)�,

then inV
′
is the largest possible multiple of 4 such that after increasing all the pixels of

bI
′
by inV

′
, the increased pixels will be retained in the [0,255] segment.

To make bI
′
as variable as possible, deV

′
is chosen If deV

′ ≥ inV
′
, and inV

′
is chosen,

if otherwise. The following are some illustrative examples. Consider a block:

bI
′ =

⎡
⎢⎢⎣
103 150 152 154
208 156 160 134
200 150 170 144
228 158 180 124

⎤
⎥⎥⎦ ,

In this case, mi
′ = 103, ma

′ = 228, deV
′ = 100, inV

′ = 24. Choose deV
′ = 100 to attack

bI
′
. In other words, all pixels of bI

′
are decreased by deV

′
. The attacked block is equal to:

b̃ I
′ =

⎡
⎢⎢⎣

3 50 52 54
108 56 60 34
100 50 70 44
128 58 80 24

⎤
⎥⎥⎦ ,

Consider a block:

bI
′ =

⎡
⎢⎢⎣
23 150 152 150
108 153 140 134
100 150 130 144
128 148 120 124

⎤
⎥⎥⎦ ,

In this case, mi
′ = 23, ma

′ = 153, deV
′ = 20, inV

′ = 100. Choose inV
′ = 100 to attack

bI
′
. In other words, all pixels of bI

′
are increased by inV

′
. The attacked block is equal to:

b̃ I
′ =

⎡
⎢⎢⎣
123 250 252 250
208 253 240 234
200 250 230 244
228 248 220 224

⎤
⎥⎥⎦ ,

In Peng et al.’s method and the proposed method, there are two watermarking images I
′

and I
′′
. Therefore, for a pair of two blocks bI

′
and bI

′′
. First, need to compute deV

′
,

inV
′
of bI

′
, and deV

′′
, inV

′′
of bI

′′
. Then define deV = min(deV

′
, deV

′′
), and inV =

min(inV
′
, inV

′′
). Finally, if deV ≥ inV , using deV to attack both blocks bI

′
and bI

′′

simultaneously. Otherwise, inV is used. Figure 5 illustrates a watermarking image of the
Sailboat image and an image obtained after attacking this watermarking image by modifying
7680 blocks of size 4 × 4 located in the first 240 rows of the image.

This attack makes significant changes to the watermarking images that we can easily
perceive with the naked eye. However, according to Table 3, both Yin et al.’s and Peng
et al.’s methods failed to detect any block that is attacked. This has been explained in
Sections 2.3 and 2.5. The method of Hong et al. detected 55.29% of 4 × 4 blocks being
hacked.
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Fig. 5 Watermarking image and attacked image by the special attack

While the proposed method with block sizes 4× 4, 3× 3 and 2× 2 have a detection ratio
of 100%, 100% and 99.80% respectively.

In summary, the experimental results confirmed that the proposed method has superior
attack detection ability compared to other methods, while always maintaining high water-
marking image quality (PSNR more than 50).

4.3 Computational complexity comparison

The proposed method and the method of Hong et al. used the characteristics of each block
as input data to the MD5 hash function to generate AC bits for each block. Both of these
methods achieve higher attack detection capabilities than the other two methods. Therefore
their computational complexity is also higher. The running time of the proposed method and
the method of Hong et al. are similar. This conclusion holds for the methods of Peng et al.
and Yin et al. Specifically, the running time in the AC bit embedding phase is 1.0552, 0.7716,
4.9216 and 4.8619 (seconds) for the methods of Peng et al., Yin et al., Hong et al., and the
proposed method. The running time in the hacked block detection phase is 0.8741, 1.0636,
4.9498 and 5.1961 for the above methods. Thus, the proposed method has a significantly
higher ability to detect attack blocks than existing methods, but its computational complexity
is only approximately that of Hong et al.’s method.

Table 3 Detection ability comparison for a special attack on the Sailboat image

Method Number of
blocks

Number of
attacked blocks

TP FN TN FP TPR (%)

Yin 16384 7680 0 7680 8704 0 0

Hong 16384 7680 4274 3406 8704 0 55.29

Peng 16384 7680 0 7680 8704 0 0

Proposed 4x4 16384 7680 7680 0 8704 0 100

Proposed 3x3 28900 13600 13600 0 15300 0 100

Proposed 2x2 65536 30720 30661 59 34816 0 99.80
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5 Conclusion

In this paper, we have improved the reversible data hiding methods on two images of Lu et
al. and Yao et al. by embedding a 5-nary number of k digits on k pixels with values from 1 to
254. The average embedding ratios of our improvement are 2.3159, 2.2701 and 2.2776 bpp
for block sizes of 4×4, 3×3 and 2×2 respectively, which is larger than the embedding ratios
2 and 2.25 bpp of Lu et al.’s and Yao et al.’s methods. Due to the large embedding capacity
and the AC bits generated for each block individually by using the MD5 hash function on the
information about the value and location of the block, the proposed method can detect any
type of attack with high accuracy. For the attack type of modifying slightly 2048 blocks that
are distributed uniformly out of a total of 16384 blocks of size 4 × 4, the correct detection
ratios of Yin et al.’s, Hong et al.’s and Peng et al.’s methods are 42.30%, 64.59%, and 85.91%,
respectively, while the correct detection ratios of the proposed method with block sizes of
4 × 4, 3 × 3 and 2 × 2 are 100%, 100%, and 99.91%. In the second attack, all 7680 blocks
of size 4 × 4 in the first 240 rows of a watermarking image are transformed by increasing
or decreasing all pixels of each block 4 × 4 by the same value which is the largest possible
multiple of 4. For this attack, the methods of Yin et al. and Peng et al. can not detect any
hacked block, Hong et al.’s method has a correct detection rate of 55.29%,while the proposed
method with block sizes of 4×4, 3×3 and 2×2 has a correct detection rate of 100%, 100%
and 99.80%, respectively. In summary, the proposed reversible image authentication method
has a superior attack detection ability compared to existing methods, while maintaining high
watermarking image quality (values of PSNR greater than 50 dB).

Data Availability No data were used to support this study.
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