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Abstract
Recently in the field of vehicular communication, there has been a concentration of research on 
the integration of a vehicle-to-vehicle (V2V) network. With vehicle-to-vehicle (V2V) commu-
nication, users can directly exchange significant information with nearby vehicles. Typically, 
automobiles tend to travel at higher speeds on highways compared to roads at intersections. As 
a result, it is necessary to have a reliable system in place that can effectively and securely facil-
itate communication. In recent times, scientists have developed different methods for distribut-
ing information. However, these systems have various issues such as latency, reliability, mobil-
ity, and communication cost. Consequently, this results in a lack of dependability for real-time 
communication. Therefore, this study introduces a novel approach to Federated Learning (FL) 
by including the Chimp Optimization Algorithm (ChOA). Federated Learning is an approach 
in the field of machine learning that enables multiple devices or nodes to collaboratively train 
a model without the need for data exchange. In the area of vehicular communication, utiliza-
tion of Federated Learning can be employed to develop a predictive model that estimates the 
trajectory of nearby vehicles by utilizing collected data. The Chimp Optimization Algorithm 
(ChOA) is designed to improve the model’s efficacy. The proposed method aims to enhance 
the accuracy of the model’s predictions regarding the conduct of nearby vehicles, while also 
reducing the amount of data exchanged between vehicles, by combining Federated Learning 
and Chimp Optimization termed FLECO. This method has the potential to enhance vehicular 
communication effectiveness and security, while also improving road safety and traffic man-
agement. Federated Learning facilitates the group control of a machine learning (ML) system 
by vehicles through the adjustment of model parameters. To enhance the energy efficiency 
of the system, the implementation of resource allocation and an energy-efficient algorithm is 
employed for Federated Learning, which integrates power and time allocation methods. This 
paper conducts a comprehensive analysis of the impact of enabling re-routing capabilities on 
(i) the mobility of vehicles and (ii) Networks for predicting traffic. To achieve this, utilize the 
SUMO simulator for road traffic to generate vehicle trajectories. Subsequently, we evaluate the 
vehicular network’s connectivity employing established graph metrics. The developed system 
is simulated using the Python tool and experimentally validated, demonstrating its effective 
accuracy in vehicular communication.
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1  Introduction

Wireless communication techniques have undergone rapid development in smart cities, and 
Vehicular Ad-Hoc Networks (VANETs) are a crucial aspect of this type of communication 
in Intelligent Transportation Systems (ITS). Establishing effective V2V communication is 
a critical prerequisite for enabling autonomous and ITS. VANETs are an essential element 
of smart cities, and they represent a rapidly developing research field that involves collabo-
ration between the research community and industry [1, 2]. Recent technological advance-
ments have significantly improved the modelling of VANET communication, resulting in 
the ability to derive vehicular communication technology to save money, energy, and time. 
Due to the advancement of technology in recent times, VANETs have become essential in 
resolving everyday vehicular issues and establishing vehicular identities [3, 4]. Therefore, 
VANETs need to be upgraded to make them compatible with traditional technologies and 
meet the increasing demand. With the constant increase in the number of smart devices 
and vehicles, predicting network traffic has become an important issue that presents several 
challenges, such as maintaining data privacy, managing large volumes of data, and ensur-
ing accuracy in prediction [5, 6].

In the context of a VANET, the user can utilize network resources by processing, rent-
ing, storing, and sharing them to run crucial applications through a software deployment 
based on a system. In addition, cloud services are utilized by vehicular nodes to acquire 
multimedia and traffic information. The architecture consists of two tiers, where vehicles 
are positioned at the network’s edge, and the centralized cloud is situated at the core [7, 
8]. A cloud-based VANET can control all automobile’s geographic locations on a macro 
level. By specifying the intended recipient and targeted area of safety alerts, the system can 
gather real-time traffic flows [9]. The significant amount of data produced by this system is 
crucial data that can serve various purposes. The data provides numerous benefits concern-
ing both commercial and eco-friendly data management system development. Therefore, a 
cloud-based VANET is an innovative system that can offer numerous benefits in the field 
of traffic management and data analysis. The data obtained from VANET can provide valu-
able insights to help make informed decisions about our Intelligent Transportation Systems 
(ITS) portfolio [10, 11]. However, with the increase in the volume of data that is expected 
in the ITS era, standard database systems may not be able to handle such a vast quantity of 
data efficiently. This creates a need to develop new and advanced data management sys-
tems that can handle large amounts of data and analyze them effectively.

Simulation is the predominant approach employed by researchers to evaluate vehicular 
network performance in today’s world. Owing to the complexity and cost of real-world 
test scenarios, simulation techniques have become a common method for studying vehicu-
lar network protocols and services in ITS [12, 13]. By using simulations, researchers can 
assess the feasibility and effectiveness of different scenarios in a controlled environment, 
without incurring the costs and risks associated with real-world experiments. Simulat-
ing inter-vehicle communication in vehicular networks usually involves combining a net-
work simulator with a realistic road traffic simulator, such as Simulation of Urban MObil-
ity (SUMO). The integration of event detection mechanisms like traffic congestion and 
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accidents, realistic maps, mobility models, and route planning capabilities are part of this 
coupling [14, 15].

An open-source, space-continuous road traffic simulator known as SUMO is extensively 
utilized to test ITS services and VANETs. With the ability to manage vast road traffic net-
works, it offers features for modelling road networks and vehicular demand, including 
right-of-way regulations, traffic lights, and lane changing. Additionally, it includes simu-
lations for pedestrians and public transportation. The SUMO package includes tools for 
defining vehicle traces manually or automatically [16].

Although machine learning (ML) algorithms are prevalent across diverse industries, 
standard algorithms typically need training and data storage in a cluster, single machine, 
or data center. FL, a new distributed ML paradigm, has been proposed to tackle this limita-
tion, and it has gained increasing popularity and interest [17]. FL offers various benefits in 
terms of performance, including lower communication overhead and stronger privacy guar-
antees since devices don’t need to transmit the entire database. Reduced communication 
overhead often results in lower latency for completing the training and decreased power 
consumption in communication when the communication bandwidth is limited. A signifi-
cant role in safeguarding privacy in machine learning for self-driving cars is predicted to 
be filled by FL. FL enables combined training of an ML model on distributed datasets 
among edge devices while preserving the privacy of data on each device. Scaling large 
models with FL remains a challenge, despite its less communication requirements in con-
trast to traditional distributed learning methods. FL’s ability to function with constrained 
communication resources, along with the mobility of edge nodes and heterogeneity of data 
distribution, is vital for vehicular networks to be successfully deployed. Effective use of 
communication resources and adoption of novel perception-based learning methods are 
crucial [18, 19].

Many researchers who focus on developing vehicular network models and validating 
results often do not consider the impact of traffic conditions when simulating the road net-
work. This research examines the effect of vehicles’ re-routing properties. To simulate traf-
fic mobility and the effect of automatic re-routing in vehicles, we utilize the widely-used 
traffic simulator SUMO on a real-world map. Graph theory concepts are utilized to assess 
inter-vehicle connectivity. Initially, we conduct an offline analysis by converting vehicle 
trajectories into snapshots at various simulation times. This allows us to assess the network 
using established graph metrics [20]. This research, introduced FLECO (Federated Learn-
ing with Chimp Optimization Algorithm), a novel approach leveraging the Chimp Optimi-
zation Algorithm to enhance the efficiency and accuracy of Federated Learning. FLECO 
optimizes model parameters collaboratively across vehicular nodes, improving predictions 
of neighboring vehicle movements while minimizing data exchange, ultimately enhancing 
vehicular communication efficacy and contributing to road safety and traffic management.

1.1 � Contribution of the work

•	 Introduced a sophisticated distributed scheme for spectrum allocation within the V2V 
communication system. This allocation scheme optimizes the usage of the wireless 
spectrum, thus significantly enhancing the overall transmission effectiveness. The 
approach minimizes interference and maximizes bandwidth utilization for improved 
communication.

•	 Utilized the powerful Federated Learning (FL) framework to train an advanced AI 
model. This approach allows for collaborative model training without the need to cen-
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tralize sensitive data. By leveraging the collective intelligence of vehicular nodes, the 
model achieves higher accuracy and efficiency while preserving individual data pri-
vacy.

•	 Developed and integrated the Chimp Optimization Algorithm (ChOA) to further opti-
mize the efficiency of the AI model. ChOA intelligently fine-tunes model parameters, 
enhancing predictive accuracy and model efficiency. This integration represents a novel 
approach to improving machine learning models within the V2V communication con-
text.

•	 Placed a significant emphasis on minimizing the latency within the V2V communi-
cation system. By optimizing algorithms and model parameters, the proposed model 
effectively reduces communication latency, leading to more efficient and prompt data 
transmission.

•	 Presented an extensive theoretical analysis of the proposed algorithm to validate its 
expected performance. The theoretical framework provides insights into how the algo-
rithm is anticipated to perform under various conditions, laying a solid foundation for 
its application in practical scenarios.

•	 Conducted thorough experimental analysis to evaluate and validate the proposed algo-
rithm. The experiments included a comparative study against existing algorithms, 
showcasing the superior performance and efficiency of the proposed model in real-
world scenarios. This rigorous evaluation provides concrete evidence of the algorithm’s 
efficacy and advantages.

•	 Demonstrated how the research contributes to vehicular safety by enabling intelli-
gent communication among vehicles. Optimized communication allows for quicker 
response times, early collision warnings, and coordinated traffic flow. These elements 
collectively enhance road safety and contribute to accident prevention, ultimately mak-
ing roads safer for all users.

•	 Focused on building a system that is highly adaptable and scalable to meet the evolv-
ing demands of V2V networks. The model can efficiently handle a growing number of 
vehicles and changing communication dynamics, ensuring the system’s continued effi-
ciency and relevance as vehicular networks expand and evolve.

The paper is structured as follows: Section 2 offers a summary of the reviewed litera-
ture that includes research on the design and implementation of vehicular communication 
systems. Section 3 outlines the stepwise methodology for the proposed approach. Section 4 
presents an extensive discussion of the simulation environment, while Section 5 provides 
the experiments and their outcomes. The final section of the paper presents a summary of 
the proposed approach and the conclusion.

2 � Literature survey

In this section, an analysis of different vehicular communication techniques that are cur-
rently in use is presented. Additionally, it describes the major advantages and limitations of 
these techniques.

A distributed Federated Learning method was developed by Samarakoon et  al. [21] 
to achieve Ultra-Reliable Low-Latency Vehicular Communications (URLLC). By for-
mulating the problem as a network-wide power minimization issue, while accounting for 
URLLC, they addressed the issue of power control and resource allocation for the V2V 
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communication network. The researchers utilized extreme value theory to model the con-
straints related to URLLC. Researchers developed a distributed learning mechanism based 
on the principles of FL. To accurately estimate traffic flow characteristics like tail distribu-
tion, a vehicle-to-infrastructure (V2I) system relies on a complex mechanism that involves 
multiple components working together. By adopting the FL approach, VUEs can learn 
the tail distribution of the network-wide queue. Then, they presented a Lyapunov-based 
approach to allocate resources and manage power usage for VUEs by combining the EVT 
and FL approaches.

In recent years, researchers have explored a variety of optimization algorithms to 
improve the efficiency and reliability of vehicular communication networks. One such 
algorithm is the enhanced whale optimization algorithm, which was developed by Valaya-
palayam et al. [22]. Even though the Roadside Unit (RSU) manages the mobility factor of 
vehicles in the traffic system, there are still unresolved challenges related to mobility man-
agement. An algorithm was presented to improve the mobility management of the system 
and avoid expensive RSUs. This algorithm organizes a clustering structure and selects a 
suitable cluster head (CH) for VANETs. To optimize network parameters for the presented 
Adaptive Weighted Clustering Protocol (AWCP), researchers developed the Enhanced 
Whale Optimization Algorithm (EWOA) to group nodes and select the optimal Cluster 
Head (CH).

Sepasgozar and colleagues [23] introduced a novel approach for predicting network traf-
fic in VANETs using the FL algorithm. Their approach, called Fed-NTP, utilizes the LSTM 
algorithm for local model training to achieve precise network traffic flow predictions while 
protecting user privacy. The authors employed a distributed approach to utilize the LSTM 
algorithm, employing the FL algorithm on the VANET dataset. By examining the most 
impactful characteristics of network congestion in both road and network environments, 
the model predicts network traffic.

Arya et al. [24] devised an Intruder Detection approach using Federated Learning for 
VANET Data Streams in Smart City Environments. Their intrusion detection technique 
is designed to save time and resources by utilizing the most efficient method, employing a 
heterogeneous neural network with a distributed FL approach. The initial phase comprises 
vehicles utilizing FL techniques to create DL-based Intrusion Detection System (IDS) clas-
sifiers for data streams in VANET. Upon request, they share their locally trained IDS clas-
sifiers with adjacent vehicles, which efficiently decreases communication overhead. For 
each vehicle, an ensemble of heterogeneous neural networks is formed through FL, which 
consists of classifiers trained locally and remotely. Finally, the local devices are updated by 
sharing the global ensemble model.

A new Clustered Vehicular FL model was introduced by Taïk et al. [25]. An architecture 
for FL in vehicular networks and the associated processes for learning and scheduling were 
presented by the researchers. To tackle the communication bottleneck, the architecture uti-
lizes V2V resources. Simultaneously, clusters of vehicles train models, and the only infor-
mation transmitted to the multi-access edge (MEC) server is the collective of each cluster. 
The clustering formation is tailored for both multi and single-task learning, considering 
both learning and communication aspects.

Yu et al. [26] proposed an FL-based scheme, Mobility-Aware Proactive Edge Caching 
for Connected Vehicles (MPCF), to enhance cache performance in vehicular edge net-
works. The scheme facilitates collaborative learning among multiple vehicles using private 
training data to predict content popularity with a Context-aware Adversarial Auto Encoder. 
Furthermore, the mobility-aware cache replacement policy is integrated into MPCF, 
enabling network edges to adjust content addition or eviction based on vehicle mobility 



72326	 Multimedia Tools and Applications (2024) 83:72321–72356

1 3

patterns and preferences. This approach significantly improves cache performance, pre-
serves users’ privacy, and reduces communication costs.

In Autonomous Vehicular Networks, Ge et  al. [27] proposed an approach to address 
URLLC. Initially, the authors introduced a function that considers both reliability and 
latency to analyze how they affect 5G autonomous vehicular networks when combined. 
The authors suggested a new network slicing approach, which spans from resource slicing 
to service and function slicing, to enhance the reliability and latency performance of auton-
omous vehicular networks in 5G. In addition, they demonstrated the interactions between 
latency and reliability through Monte Carlo simulations.

Yang et al. [28] formulated a Cluster-Based 3D-channel Model to analyze V2V Com-
munications. Their model takes into consideration the spatial distribution of MPCs in both 
the horizontal and vertical dimensions. The extraction of MPCs is done using the Space-
Alternating Generalized Expectation–maximization (SAGE) technique, and to detect and 
track dynamic MPC clusters, clustering, and tracking algorithms are utilized. The distri-
bution of MPC clusters is characterized by intra and inter-cluster parameters and catego-
rized into two types: global and scatterer-clusters. According to the model, the log-normal 
distribution characterizes the spread of both azimuth and elevation. Within a cluster, the 
power of MPCs is distributed as truncated Gaussian, while the angle of MPCs follows the 
Laplacian distribution.

Al-Shareeda et al. [29] presented a communication scheme for VANET that ensures pri-
vacy preservation. During initialization, the TA generates public parameters and computes 
private and public keys for a domain that includes multiple RSUs in a specific area. Moreo-
ver, the vehicle registration list contains the registered On-Board Units (OBUs). During 
the second phase, the OBU generates n lists of pseudo IDs based on its actual identity 
and public TA parameters. To initiate transmission and validation operations, the vehicle 
needs to establish mutual authentication with the nearest RSU located within the domain. 
The authenticity of the OBU is confirmed by the TA using the system’s private key. Sub-
sequently, a secure list of signatures for the selected timestamp, generated by the RSU, is 
received by the OBU. The value of n determines the level of security and anonymity for 
a vehicle within a region defined by the RSU, by limiting the number of unique pseudo-
identities that can be utilized. Lastly, until the timestamp expires, the OBU employs the 
signature list.

Zhang et  al. [30] proposed a self-adaptive routing service algorithm for VANET that 
predicts link reliability and develops a secure routing protocol to execute diverse Quality 
of Service (QoS) application demands. The algorithm analyzes the movement patterns of 
vehicles and factors contributing to link failures to propose a link duration model that eval-
uates link reliability. To ensure the optimal end-to-end path is maintained, the Q-Learning 
algorithm adaptively modifies the routing path through interactions with the environment. 
The self-adaptive routing algorithm called Reliable Self-Adaptive Routing (RSAR) incor-
porates the reliability parameter and a fine-tuned heuristic function, resulting in a signifi-
cant performance in VANET. Table 1 displays the summary of the existing methods.

2.1 � Problem statement and motivation of the work

In an era where technological advancements are rapidly transforming our lives, envi-
sioning a future where roadways are not just a network for transportation, but a domain 
of intelligent, interconnected vehicles is within our grasp. The potential impact of such 
a transformation is immense: safer roads, streamlined traffic flow, reduced emissions, 
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and improved overall quality of life. Vehicle-to-vehicle (V2V) communication stands as 
a linchpin in realizing this transformative vision. Every day, countless lives are affected 
by road accidents and traffic congestion. As urbanization continues to rise, the challenges 
of managing road safety and traffic flow become increasingly complex. These challenges 
necessitate innovative solutions that can seamlessly integrate with the evolving landscape 
of transportation.

The rapid growth of vehicular traffic has created an urgent demand for ITS. How-
ever, this surge in traffic also brings about detrimental effects such as strain on pub-
lic investment, persistent traffic congestion, increased accident rates, heightened fuel 
consumption, and escalated environmental pollution. An effectively managed system is 
crucial to mitigate these challenges, and Vehicular Ad Hoc Networks (VANETs) have 
emerged as a promising solution proposed by researchers. VANETs utilize vehicles as 
network nodes, forming ad hoc networks to address traffic and transportation-related 
issues, and they belong to the ad hoc network family.

3 � Methodology

The proposed framework proposes an approach for vehicular communication that uti-
lizes the Federated Learning Empowered Chimp Optimization (FLECO) algorithm. The 
model involves the use of federated learning by vehicles to train and develop the sys-
tem. The FLECO algorithm is a novel method that combines chimp optimization and 
federated learning to optimize communication between vehicles. The proposed model’s 
workflow involves Data Collection, Data Preparation, a Federated Learning model, Opti-
mization, and finally communication with vehicles. The first step is to collect data from 
various sources, including traffic patterns, road conditions, and vehicle speed, among 
other factors. The collected data is then pre-processed and prepared for training by per-
forming data cleaning, normalization, and feature selection to ensure high-quality data 
that can be used to train the FLECO algorithm. The ML technique is fine-tuned using 
chimp optimization in the next step of the proposed workflow. The FLECO algorithm 
utilizes FL to train the model, which predicts the best communication path between vehi-
cles. The training process is distributed among multiple vehicles in federated learning, 
and they work together to train the model without sharing their data. Once the FL pro-
cess is finished, the FLECO algorithm uses chimp optimization to further enhance the 
machine learning model. Mimicking chimpanzees’ behavior to find the best solution to 
a problem, chimp optimization is a nature-inspired optimization algorithm. Communi-
cation optimization is the ultimate step of the FLECO algorithm. To minimize latency, 
maximize throughput, and ensure the communication network’s reliability, the FLECO 
algorithm optimizes communication between vehicles based on the machine learning 
model’s predictions.

Overall, Fig. 1 provides an overview of the workflow of the proposed model, with 
each sub-section addressing a specific aspect of the methodology. Section 3.1 presents 
the data collection process for the proposed model. In Section 3.2, the data preparation 
steps are described. Section 3.3 focuses on the federated learning aspect of the model. 
Section 3.4 elaborates on the optimization process, and in Section 3.5, the communica-
tion optimization techniques used in the proposed model are explained.
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3.1 � Data collection

In vehicular communication, the collection of data pertains to obtaining information 
from vehicles within a vehicular network. Data generation from SUMO simulation soft-
ware is currently underway. These data serve multiple purposes, such as the optimi-
zation of routes, enhancement of safety, and improvement of traffic flow. The "DSRC 
Vehicle Communications" dataset provides valuable insights into wireless communica-
tions between vehicles and roadside units, encompassing two distinct scenarios: a nor-
mal communication scenario and a scenario in the presence of a jamming attacker. In 
each scenario, the dataset comprises a total of 10,000 instances, capturing various com-
munication parameters. There are five features associated with each instance, making it 
a relatively low-dimensional dataset. The features encompass essential communication 
metrics, namely:

1.	 Txnid (Transmitted node ID number)
2.	 Rxnid (Received Node ID number)
3.	 RSS (Received Signal Strength in dBm)
4.	 BER (Packet Error Rate)
5.	 RSSI (Received Signal Strength Indicator)
6.	 SNR (Signal-to-noise ratio)

These features represent real values, falling under the category of real feature types. 
Notably, the dataset does not contain any missing values, ensuring the completeness 
and reliability of the dataset for analysis and modelling purposes. The communication 
setups were established in accordance with IEEE 802.11p standards at a frequency of 
5.9 GHz, with 10 Basic Service Messages (BSM) transmitted per second. The Control 
Channel (Ch172) was utilized, employing a 10 MHz channel.

Normalization

Data cleaning

DATA PREPARATION Federated Learning model

CHIMP 
OPTIMIZATION

Communication 
with vehiclesPerformance 

Evaluation

Fig. 1   Block diagram of the proposed model
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3.2 � Data preparation

Data is collected, pre-processed, and fully prepared for training. The pre-processing stage 
involves cleaning and normalizing the data, as well as selecting relevant features to ensure 
that the data is of high quality and can be utilized to train the FLECO algorithm. After 
processing the data, insights, and trends can be extracted through various techniques. Our 
proposed model utilizes the Federated learning model to train the data generated.

3.3 � Federated learning (FL) model

The combined training of a single ML model among diverse participants on their respec-
tive local datasets is facilitated by the FL, which is a framework for distributed training 
that ensures privacy. Commencing the iterative training process, a centralized entity, such 
as a server, initializes the global model. During each iteration, i, a subset of N participants 
are selected to receive the current global model θt. By executing Iterative stochastic gradi-
ent descent (SGD) on mini-batches extracted from their local database, each participant 
k trains the model. Weight-update vectors Δθ t + 1 are produced and sent to the server 
after local training. Lastly, the server performs model aggregation, typically accomplished 
by using weighted aggregation [31]. The process is iterated until the model reaches con-
vergence. The algorithm provides an overview of the process, with further scheme details 
outlined below:

Step 1- Distribute the FL model and its specifications and gather feedback

The server releases a global model, accompanied by its resource requirements for com-
putation and data (e.g., CPU cycles, data types, and data sizes). After satisfying these 
requirements, each vehicle ’p’ offers affirmative feedback, including other details such as 
its current velocity and data diversity index IP (as per Eq. 1) and current velocity vk.

with i ∈ {elements diversity, dataset size, age}. Other task-specific considerations can be 
easily incorporated into the metric.

Step 2—Select and schedule CH

Cluster heads are chosen by the server based on information received, taking into 
account dataset features (including dataset quality and sample quantity), as well as wire-
less channel status and anticipated communication duration (indicated by the stay rate). In 
actuality, the quality and significance of model updates are directly correlated with local 
dataset quality, while wireless channel state and velocity dictate the feasibility of receiving 
the model update during the communication round.

(1)lp =
∑

i

�i, p�i

(2)TP =
G − xp

vp
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To establish communication with the gNodeB, the chosen cluster-head vehicle k must 
adhere to a specific standing time rate, denoted as (ttrain

k
+ t

up

k
+ Tagg + �) ≤ Tk . The esti-

mated training time and upload time of vehicle k are represented by ttrain
k

 and tup
k

 , respec-
tively. Tagg denotes the time needed for aggregation, and δ is the waiting time for collect-
ing updates. The main factors that differ significantly between vehicles are ttrain

k
 and tup

k
 . 

ttrain
k

 is influenced by the size of the dataset, while tup
k

 is determined by the channel gain and 
resource block allocation.

Step 3- Clusters formation

Once the cluster-head selection process is complete, the remaining vehicles NH are then 
paired with the cluster-heads in set H. For a successful match, the total time taken for train-
ing and uploading of vehicle k should be lower than the Link Lifetime (LLT) between p 
and h ∈ H, as defined in Eq. 8. In addition, the objective of the matching process is to opti-
mize the total weighted sum of Wp,ℎ. The symbol Wp,h represents the connection between 
p and h, and its meaning varies depending on the presence of a single overarching model 
or multiple variations (refer to Eq. 4). The clustering in a single joint model is determined 
solely by mobility. Therefore, for all pairs k ∈ NH and ℎ ∈ H, the value of Wp,ℎ is equal to 
1. In contrast, every vehicle must independently train its preferred model. The preference 
refers to the level of accuracy exhibited by the model trained by h using the local data of p. 
The reason for this definition is that not all vehicles can take part in the clustering step of 
the updates (refer to Step 5).

In Step 3, the formation of clusters occurs by considering the inter-vehicle relationships. 
The determination of the scope of this relationship is based on whether a single global 
model is trained or if multiple iterations of the model are generated. When there are mul-
tiple models, we determine the preference of a model based on how accurately it performs 
on the dataset of the kth vehicle. The relationship between two vehicles, denoted as Wk,ℎ, is 
defined as follows:

Since not all vehicles are capable of participating in the update clustering phase, the 
preference is established depending on the model’s accuracy that is trained by h on p’s 
local data.

Step 4—Broadcasting the model and training

Each vehicle can train on its local data for a specific number of local epochs, denoted 
by ϵ, and then send the update to its corresponding cluster head after the model has been 
aggregated to the participants. The next step involves the cluster head collecting the models 
it received and sending the update to the server [32]. Hierarchical FL aggregation, which 
promotes more participation, is commonly used to aggregate the global updates of the clus-
ters on the server. To enhance resilience against client drop-out, it is necessary to have mul-
tiple global models that can be trained across several clusters, thus providing redundancy. 

(3)LLTP,h =
−Δuph × GPh +

|||Δuph | × TW

(Δuph)
2

(4)WP,h =

{
accuracy of h if more than 1mod el

1 otherwise
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Therefore, performing update aggregation at the server level becomes a requirement. This 
is particularly relevant in vehicular networks.

Step 5—Updates Clustering

If the global model fails to converge or the desired accuracy is not achieved, multiple 
communication rounds may be executed, which will involve a significant number of vehi-
cles in training the joint model globally. The updates are collected at the MEC server with-
out intermediate aggregation by CHs in this step. This is because aggregated models may 
conceal the divergence of the various techniques. The gathered updates are subsequently 
employed to evaluate the similarity among participants utilizing the hierarchical clustering 
algorithm (defined in Eq. 5).

The OEM defines a maximum number of clusters, and participants are iteratively 
merged based on their similarity until the maximum number is reached. Limiting the num-
ber of circulating models is accomplished by establishing a predetermined upper bound for 
cluster formation, enabling clusters to be formed without any prior understanding of the 
potential distances between updates. After clusters are built, novel designs are developed 
via aggregation and then broadcast to available automobiles. The models are then sent back 
to the MEC server after being evaluated for each vehicle p using local data. Later, these 
values are employed to evaluate RP and h for the particular vehicle p. Each resulting model 
is then individually trained using utilizing a similar process. Our work differs from the ear-
lier works on federated learning with clustering as we evaluate preferences, which allows 
for partial participation instead of requiring all nodes to participate.

3.4 � Chimp optimization

Our model has developed a novel algorithm, ChoA, that takes inspiration from the intelli-
gence abilities and social dynamics exhibited by chimpanzees during group hunting. Unlike 
other social predators, this strategy is distinct. ChoA can be utilized to optimize vehicular 
communication networks, particularly in the context of VANETs. In VANETs, vehicles 
share data about traffic conditions, road hazards, and other relevant data by communicat-
ing with each other and with roadside infrastructure. Optimizing the communication routes 
between vehicles can be achieved by utilizing chimp optimization, which considers vehicle 
speed, network congestion, and signal strength as influencing factors. Through this tech-
nique, latency can be minimized, throughput can be maximized, and the overall reliabil-
ity of the communication network can be improved. To simulate various forms of intel-
ligence, including attacker, barrier, chaser, and driver, chimp optimization employs four 
distinct phases. The mathematical model of the proposed algorithm is presented in a step-
by-step manner, detailing how targets or prey are driven and chased using the following set 
of equations (Eqns. ((6)-(7))).

(5)sim(p, l) =
⟨Δ�p,Δ�j⟩
‖�p‖‖�j‖

(6)D =
|||z.qprey(n) − xaCHIMP(n)

|||
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The total number of iterations is denoted by ’n’, and the coefficient vectors are repre-
sented by ’q’, ’z’, and ’x’. Equation (8) is used to calculate these coefficients.

During the iteration process, the chaotic vector x, which exhibits chaotic behavior, 
is utilized, with rv1 and rv2 being randomly generated values within the interval [0, 1]. 
Furthermore, the parameter ’l’ is gradually decreased in a non-linear manner from 2.5 
to 0.

The behavior of chimps has been mathematically implemented in this step. It is assumed 
that the attacker, driver, barrier, and chaser possess an initial solution, as they have better 
information about the target’s location. The locations of the remaining chimps are updated 
based on the best chimp locations, while the four optimal solutions that have not yet been 
obtained are stored for the next iteration. Mathematical Eqs. (9)-(12) illustrate this process.

A chimp’s next location can be any point between its current location and the target or 
prey’s location, provided that the random vectors fall within the range of [-1, 1].

The mathematical Eq. (14) expresses how the position of the chimps is updated during 
the search process using the overall equations.

The following mathematical Eq. (15) is employed to update the chimp’s location during 
the search process within the search domain.

Optimizing the placement of roadside infrastructure, such as wireless access points or 
communication relays, using the Chimp optimization algorithm can ensure that vehicles 
remain within the range of a dependable communication signal at all times. Chimp optimi-
zation’s capacity to adjust to dynamic conditions in real time is its key advantage. Network 

(7)achimp(n + 1) = qprey − q.d

(8)
q = 2.l.rv1 − l

z = 2.rv2
x = CHOTICvalue

(9)dbarrier =
||z1qbarrier − x1y|

(10)dbarrier =
||z2qbarrier − x2y|

(11)dchase =
||z3qchase − x3y

(12)ddrive =
||z4qdrive − x4y

(13)

y1 = qattack − q1.dattack
y2 = qbarrier − q2.dbarrier
y3 = qchase − q3.dchase
y4 = qdriver − q4.ddriver

(14)yn+1 =
y1 + y2 + y3 + y4

4

(15)qCHIMP(n + 1) =

{
qprey(n) − y.d, if𝜑 < 0.5

CHAOTICValue, if𝜙 > 0.5
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congestion and changes in vehicle speed, for instance, can significantly affect the commu-
nication network’s performance in vehicular communication networks. The network can 
optimize communication routes according to changing conditions quickly by utilizing 
chimp optimization.

3.5 � Communication optimization

In the realm of vehicular communication optimization, integrating Federated Learning 
(FL) stands as a fundamental strategy. Communication optimization is the ultimate step in 
the FLECO algorithm, which focuses on optimizing communication between vehicles and 
infrastructure elements, such as roadside units or access points, in vehicular communica-
tion. Communication optimization aims to enhance the efficiency, reliability, and safety 
of the communication network. The FLECO algorithm leverages machine learning model 
forecasts to minimize latency, maximize throughput, and ensure the communication net-
work’s reliability by optimizing communication between vehicles.

Federated Learning facilitates collaborative model training without the need to share 
raw data, preserving data privacy while enhancing the overall model. Within vehicular 
networks, this integration manifests through a decentralized approach: initially, a global 
machine learning model is established with basic parameters, followed by local model 
training on individual vehicles using their respective datasets. These local models’ updates, 
in the form of model parameters, are then aggregated at a central server, allowing the con-
struction of an improved global model through iterative optimization. This integration 
ensures that sensitive data remains on the respective vehicles, addressing privacy concerns, 
while collectively leveraging the intelligence from various vehicles to refine the global 
model, ultimately optimizing communication efficiency and prediction accuracy in vehicu-
lar networks.

Complementing Federated Learning, the Chimp Optimization Algorithm (ChOA) 
emerges as a pivotal tool for enhancing communication efficiency. The Chimp Optimi-
zation Algorithm (ChOA) draws inspiration from the foraging behavior of chimpanzees 
to create an efficient optimization technique. At the core of ChOA lies a population of 
solution agents, akin to chimpanzee communities, initially placed within the problem’s 
search space. Each agent represents a potential solution, and their fitness, akin to food 
quality in chimpanzee foraging, is evaluated based on the problem being addressed. Mir-
roring chimpanzee behavior, the algorithm introduces collaboration among agents, ena-
bling information sharing and a collective search for better solutions. ChOA dynamically 
balances exploration and exploitation by adapting its search strategy based on the quality 
of solutions encountered. It intelligently explores diverse areas of the solution space ini-
tially and then narrows down the search to promising regions as the algorithm progresses, 
imitating how chimpanzees concentrate their efforts where food is abundant. The agents 
iteratively update their positions based on collaboration and prior experiences, gradu-
ally converging toward optimal or near-optimal solutions. Termination occurs based on 
predefined criteria, signalling the end of the optimization process. This adaptive, col-
laborative, and nature-inspired approach in ChOA makes it a powerful tool for efficiently 
optimizing models and enhancing communication within vehicular networks, aligning 
with the algorithm’s biological inspirations. The pseudocode for the proposed model is 
shown in algorithm 1.



72337Multimedia Tools and Applications (2024) 83:72321–72356	

1 3

4 � Simulation environment

The SUMO (Simulation of Urban Mobility) framework is a well-known open-source tool 
utilized to simulate and analyze vehicular communication in urban settings. Evaluating 
the performance of various vehicular communication protocols and applications is made 
possible by simulating different traffic scenarios. Traffic flow, vehicle density, and road 
infrastructure can all be modeled by configuring the simulation to represent different traf-
fic conditions. Several statistics are provided by SUMO based on simulations. We exam-
ine key traffic measures, which include: (i) the trip distance, which represents the total 
path travelled from starting to the ending point; (ii) the trip duration, which indicates the 
estimated travel time for a vehicle to complete the journey from starting point to the end-
ing point; and (iii) the count of route modifications experienced by each vehicle.

ChimpOptimizationAlgorithm():

    Initialize the population of solution agents randomly within the search space

    Evaluate the fitness of each agent

    repeat until the stopping criterion is met:

        Share information among agents

        Update exploration and exploitation strategy based on fitness

        for each agent in the population:

            Explore the solution space:

                Generate a random direction vector (e.g., [-1, 1, 0.5, -0.5])

                Update agent position by adding a weighted sum of the direction vector
and step size to the current position

            Evaluate fitness for the updated position

            if the fitness of the updated position is better:

                Update the agent's position to the updated position

                Store the best position found so far (global best)

    return the best solution found

Algorithm 1   Pseudocode of FLECO.
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4.1 � The effect of re‑routing on the mean travel time of vehicles

Redirecting vehicles to alternative routes through re-routing to avoid congestion or other 
road conditions can significantly affect the average travel time of vehicles. If a vehicle 
experiences congestion on its primary route, it might take longer to reach its destination 
than if it had opted for a less congested path. The total travel time can be decreased by redi-
recting the vehicle through re-routing. However, this reduction in travel time may require 
the vehicle to travel an additional distance and/or time. The influence of re-routing on the 
mean travel time is reliant on various factors, such as the congestion levels on the original 
and alternative routes, the number of vehicles using the alternative route, and the delay 
caused by the re-routing process.

Travel time enhancement resulting from enabling re-routing capabilities is demonstrated 
in Fig. 2a. The most substantial enhancement is noticeable in the case of "R—2 min" with 
30% of the traffic demand. Figure 2b displays the mean travel time during medium traffic, 
indicating that the "R—2 min" case is the minimum scenario with an average traffic volume 
of 60%. Figure  2c demonstrates the mean travel time during high traffic. The reduction 
in mean travel time can be achieved through re-routing if the alternate path has less con-
gestion and the delay incurred by re-routing is insignificant. The simulation framework, 
SUMO, is utilized to determine the impact of re-routing on mean travel time. Researchers 
can simulate various traffic situations and analyze the effect of re-routing on the transpor-
tation system’s efficiency. By comparing the outcomes of different re-routing strategies, 
researchers can identify the most efficient re-routing algorithms and evaluate the potential 
advantages of implementing re-routing in real-world transportation systems.

4.2 � Simulation scenario

For the simulations conducted in this study, a practical scenario, as presented in Fig.  3, 
was employed. This scenario is representative of the Pankow district and adjacent areas in 
Berlin, Germany, and covers an area of 9 km. The road network was created by importing a 
genuine map from OSM using the Net-convert SUMO tool.

5 � Performance evaluation

To evaluate the performance of vehicular communication, an analysis of the effectiveness 
of communication between vehicles and other vehicles or infrastructure in a specific net-
work is required. Several factors, such as mobility, network traffic, mean score error, mean 
travel time, reliability, latency, accuracy, and loss rate, are utilized to assess the efficiency 
of vehicular communication.

5.1 � Latency model

Vehicles communicate information through vehicle-to-vehicle (V2V) links. The latency 
between vehicles can be classified into two categories, namely handling latency and propa-
gation latency, without loss of generality. Therefore, the total delay in transmitting vehicu-
lar data is represented by,
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a

b

c

Fig. 2   a Mean trip time under 
Low traffic (30%), b Mean 
trip time under Medium traffic 
(60%), c Mean trip time under 
High traffic (100%)
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where handling latency is denoted by THL , and propagation latency in the wireless connec-
tion is denoted by TPL.

The density of vehicles on the road can have a major impact on latency, making it 
a significant challenge in vehicular communication. With an increase in the number of 
vehicles, the probability of congestion and network saturation rises, leading to increased 
latency. The time delay that arises when a signal travels from one point to another in a 
communication system is known as propagation latency. The distance between vehicles 
is one of the most crucial factors that impact propagation latency in vehicular commu-
nication, along with signal strength and the presence of obstacles or interference. As the 
distance between communicating vehicles increases, the signal takes longer to travel, 
leading to increased latency. This latency can pose a significant challenge in situations 
where quick response times are crucial, such as in collision avoidance systems. Sev-
eral other factors can also influence propagation latency in vehicular communication, 
including signal strength and obstacles or interference.

(16)T = TPL + THL

Fig. 3   Simulation scenario 
exported from the Pankow 
district of Berlin (Germany). 
The speed limit for each road is 
illustrated in meters per second 
(m/s)

Fig. 4   Relationship between 
propagation delay and vehicle 
density
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Exploring various vehicular densities, Fig. 4 displays the relationship between propa-
gation latency and vehicle density. The chart displays the propagation latency for vehic-
ular densities of n = 10, 30, and 50. As the density of vehicles increases, the propaga-
tion latency also increases. Employing various techniques can help mitigate propagation 
latency in vehicular communication systems. Examples include the use of low-latency 
wireless communication protocols, optimization of communication node placement to 
minimize the distance between communicating vehicles, and implementation of signal 
amplification technologies.

Figure 5 shows the handling delay with the vehicle density at various densities. As 
the density of vehicles increases, the handling latency also increases. The total latency 
of a vehicular communication system is the combination of both the propagation latency 
and the handling latency.

Figure  6 shows the overall delay for various RSU densities with the density of vehi-
cles. Keeping the number of vehicles stable, an increase in vehicular density results in an 
increase in the total latency. However, as the number of RSUs increases, the total latency 
decreases for a given vehicle density. Therefore, reducing total latency in a communication 
system can enhance the system’s responsiveness and reliability.

Fig. 5   Regulating latency with 
vehicle density

Fig. 6   Relationship between total 
latency and vehicle density
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5.2 � Reliability

Ensuring reliability in vehicular communication systems is crucial as it directly impacts 
the effectiveness and safety of the system. Several factors can affect reliability in vehicular 
communication systems, including interference, mobility, and communication range. The 
reliability of V2V communication is a crucial factor in achieving widespread deployment 
of cooperative vehicular systems. Ensuring the reliability of vehicular communication sys-
tems requires extensive testing and validation. This process can detect possible issues and 
guarantee that the system complies with the necessary safety and reliability standards.

With regards to the density of vehicles, Fig.  7 shows the reliability in relation to the 
number of vehicles ‘n’. When the value of ‘n’ is kept constant, the reliability increases as 
the density of vehicles on the road network increases. On the other hand, reliability rises 
as ‘n’ grows while the vehicle density is constant. To enhance the reliability of communi-
cation systems, a combination of design, testing, and operational strategies is necessary. 
Achieving high levels of reliability for safety–critical applications in vehicular communica-
tion systems can be accomplished by implementing redundancy, monitoring and diagnos-
tics, and fault tolerance. One common metric for reliability is the Packet Reception Ratio 
(PRR), which represents the ratio of successfully received packets to the total transmitted 
packets. The formula for PRR is:

5.3 � Mobility analysis

The effectiveness and dependability of communication systems in vehicles, which involve 
transmitting and receiving data, can be optimized by analyzing g the mobility patterns and 
the potential impact of these patterns on the system. Mobility analysis in vehicular com-
munication involves assessing how the movement of vehicles influences communication 
performance. Mobility in V2V communication is often quantified using metrics related 

(17)PRR =
Number of succesfully received packets

Total number of transmitted packets
× 100%

Fig. 7   Reliability in terms of 
vehicle density
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to vehicle movement and its impact on communication. One common metric for mobility 
is Relative Velocity, which measures the velocity difference between the sender and the 
receiver. The formula for Relative Velocity (Vrel) is:

A graphical representation of mobility analysis with respect to traffic flow rate can be 
seen in the figure below.

Different techniques, including AWCP, AWCP-EWA, VCP, and the novel FLECO Algo-
rithm, were used to analyze the mobility of VANET systems, as illustrated in Fig. 8. The 
mobility of nodes in VANET is heavily influenced by the road structure and vehicle density 
in urban environments. The FLECO Algorithm, which employs an enhanced chimp optimi-
zation process, achieved the highest mobility compared to existing algorithms. The figures 
above demonstrate that the proposed FLECO algorithm’s mobility analysis improves the 
system’s efficiency, surpassing the compared methods in various aspects, such as energy 
efficiency.

5.4 � prediction of network traffic

Monitoring network traffic in vehicular communication is crucial for optimizing commu-
nication system performance and improving transportation network efficiency. Accurately 
predicting network traffic has become increasingly important in modern times for effective 
traffic analysis. The need for monitoring network traffic has grown significantly over the 
years. In the past, administrators only monitored a small number of network devices or 

(18)Vrel =
||Vsender − Vreceiver

||

Fig. 8   Mobility analysis with traffic flow rate
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less than a thousand computers. To predict network traffic, Fig. 9 depicts the correlation 
between the number of vehicles and the sender’s speed. The figure also shows the actual 
and predicted range of network traffic.

In Fig. 9a, the existing Fed-NTP model is used for network prediction, while in Fig. 9b, 
the proposed FLECO algorithm is employed. The graph in Fig. 9a displays the predicted 
outcomes for the “sender speed” parameter in network traffic flow. The predicted model 
is represented by the red line and the real data is represented by the blue line. As demon-
strated in Fig. 9b, the proposed FLECO algorithm outperforms other algorithms with the 
smallest disparity between the predicted and actual data.

a

b 

Fig. 9   a Results of network traffic prediction for the existing Fed-NTP, b. Results of network traffic predic-
tion for the novel FLECO model
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5.5 � Accuracy and loss curve

Evaluating the performance of learning models in vehicular communication involves using 
accuracy and loss curves. The loss curve measures how well the model fits the data, while 
the accuracy curve evaluates the model’s prediction ability. The accuracy curve typically 
illustrates how the model’s accuracy changes over time on both the training and valida-
tion data. As the model is trained on more data, its accuracy on the training data increases, 
while its accuracy on the validation data may eventually level off or decrease if the model 
starts to over-fit the data. Overfitting occurs when the model becomes too complex, fitting 
the noise in the data rather than the underlying patterns.

The accuracy curve of the federated learning model is depicted in Fig. 10, which illus-
trates that the accuracy value varies as the number of iterations (i.e., vehicles) increases. 
The accuracy of prediction is low for high vehicle density, while it is high for low vehicle 
density. Consequently, there is not much variation in accuracy between them.

Fig. 10   Accuracy curve

Fig. 11   Loss Curve
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A federated learning model’s error on the training and validation data is typically 
displayed in the loss curve over time. The error is determined by comparing the model’s 
predictions to the actual values in the data. As more data is used to train the model, the 
error on the training data typically decreases. However, if the model begins to over-fit 
the data, the error on the validation data may eventually increase. A good federated 
learning model for vehicular communication should ideally have high accuracy on 
both the training and validation data, with a low loss on both sets. This implies that the 
model can generalize well to new data without overfitting the training data.

The loss curve of the federated learning model is shown in Fig. 11, where it can be 
observed that the loss value varies as the number of iterations (i.e., amount of vehicles) 
increases. For high vehicle density, the loss of prediction is high, whereas, for low vehi-
cle density, the obtained loss is small. Hence, accuracy and loss curves are valuable 
tools for evaluating the performance of federated learning models in vehicular commu-
nication and can assist in identifying potential problems. The proposed approach uti-
lizes ensemble learning to enhance the accuracy by integrating predictions from multi-
ple FL models.

The proposed system has exhibited significant enhancement in performance in compari-
son to benchmark algorithms and existing techniques. This improvement is achieved by 

Fig. 12   Comparison of Accuracy

Fig. 13   Variation of Loss func-
tion as the FL proceeds
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Fig. 14   a. MSE of trained and 
tested data for the existing 
Fed-GRU Algorithm, b. MSE 
of trained and tested data for 
the existing Fed-NTP, c. MSE 
of trained and tested data for 
FLECO

a 

b 

c
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using the FL technique for model training and the ensemble approach for integrating pre-
dictions from multiple FL models.

Compared to other existing techniques like VCP, AWCP, and AWCP-EWA, the pro-
posed FLECO algorithm shows a high accuracy of approximately 97.5%, as depicted in 
the accuracy comparison chart of Fig.  12. The selection of the loss function in FL can 
vary based on the application’s specific requirements and the stage of the FL process. The 
main objective is to achieve excellent model performance while maintaining the privacy 
and security of the decentralized data sources.

As the iteration increases, Fig. 13 demonstrates the variations in the loss function for 
all traffic, covering training data from both weekdays and weekends, across different maxi-
mum prediction timeframes. The decrease in loss functions for all three types of traffic data 
with an increase in communication rounds ensures the efficacy of the proposed multi-task 
FL framework. Additionally, it can be observed that the loss function for a shorter maxi-
mum prediction horizon is lower than the one for a longer maximum prediction timeframe. 
The decline in prediction performance can be attributed to the fact that, with a larger pre-
diction horizon, a longer traffic speed series needs to be predicted, including traffic condi-
tions in the future.

5.6 � Mean square error of the existing model and the proposed model

The accuracy of the communication system in vehicular communication is often evaluated 
using the Mean Square Error (MSE) metric. Vehicular communication refers to the trans-
mission of information between vehicles and other entities to support applications such 
as safety and traffic management. The MSE metric in vehicular communication is used 
to determine the average squared difference between the transmitted and received data. 
The calculation involves finding the difference between the actual received signal and the 
expected received signal, squaring the difference, and averaging it over all the received 
signals. By measuring the amount of interference in the communication system, the MSE 
metric plays a critical role in the evaluation process. Achieving lower MSE values is criti-
cal for enhancing the reliability and effectiveness of vehicular communication systems 
as higher MSE values indicate a greater likelihood of errors and reduced accuracy of the 
received signal. To calculate MSE, it is necessary to train the model on a set of training 
data and then use it to generate predictions on a set of test data. Figure 14a illustrates the 
MSE of the data used for training and testing for the existing methodology.

In measuring the performance of a model in vehicular communication, the MSE for the 
training data determines how well the model fits it, while the MSE for test data evaluates 
how well the model generalizes to new, unseen data. A low MSE for both sets of data rep-
resents accurate prediction and a well-performing model. On the other hand, if the MSE for 
test data is considerably higher than that of the training data, it could imply that the model 
is overfitting to the training data, which leads to poor generalization of new data.

Measuring the MSE of a Fed-NTP model would assess the model’s ability to generalize 
to new, unseen data by evaluating its performance on the test data. When the MSE is lower, 
it indicates that the model is capable of making more precise predictions, while a higher 
MSE may indicate that the model has limitations in generalizing to new data. Figure 14b 

Fig. 15   Different methods were used to analyze the distributions of transmission delay for various sizes of 
V2V packets. (a) 10 V2V pairs. (b) 20 V2V pairs (c) 30 V2V pairs

▸
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demonstrates that the MSE for the test data is notably higher than the MSE for the training 
data, indicating that the model is overfitting to the training data and not generalizing well 
to new data.

The federated learning approach distributes the training data across multiple devices, 
avoiding the need for centralized data storage. The model is trained collaboratively through 
local updates from individual devices and global updates from a central server. The final 
goal is to develop a model that can precisely forecast the target variable on new and unseen 
data, despite the distributed training data. Figure 14c shows that the testing and training 
data are similar, indicating that the model is stable and has a low MSE. Therefore, the 
evaluation of the proposed model suggests that it has high accuracy, low latency, and reli-
ability, with a low loss metric.

In addition, Fig.  15 illustrates that when the number of V2V pairs remains constant, 
the transmission delays for all methods rise as the packet size increases. This is because 
larger V2V packets require more time for transmission and higher transmit power for V2V 
communication. Figure 15 presents multiple observations that serve to validate the advan-
tages of our proposed method. The suggested technique has two distinct advantages: 1) 
its average transmission delay (represented by the colored horizontal line) is shorter than 
that of the other two ways; and 2) its transmission delay variations are smaller across all 
V2V pairs, as seen by the boxplots’ vertically narrower gaps. The proposed algorithm is 
designed to handle different packet sizes effectively.

Furthermore, it can be observed from Fig. 15 that as the packet size increases, the trans-
mission delays for all methods increase, while keeping the number of V2V pairs constant. 
The reason for this is that when V2V packets are larger, it takes longer to transmit them 
and requires a higher transmit power for V2V communication. The advantages of our pro-
posed method are supported by multiple observations, as shown in Fig. 15. There are two 
main benefits to using the suggested technique. Firstly, the average transmission delay is 
shorter compared to the other two methods. This can be observed by looking at the colored 
horizontal line. Secondly, the transmission delay variations are smaller for all V2V pairs. 
This can be seen by the narrower gaps in the boxplots. The algorithm that has been sug-
gested is specifically created to efficiently manage various sizes of packets.

5.7 � Link stability analysis

The observed packets transmitted per second are depicted in Fig. 16, specifically in relation 
to the intersection (Int) and independent vehicles (ind). Consideration is given to the inter-
section of a highway and a road intersecting. The data indicates that when the link stability 
is high, the quality of packet transmission improves, but when the link stability is low, the 
quality of packet transmission decreases.

5.8 � Impact of vehicle density

Figures 17, 18, and 19 are used to analyze the impact of vehicle density on message deliv-
ery ratio, average delay, and outage time. The proposed method has a higher message 
delivery ratio compared to the existing methods, as observed in Fig. 17. The probability 
of establishing a connection is an essential requirement for data or message delivery. The 
probability of establishing a connection is low when approaching an intersection with a 
vehicle coming from the opposite direction. As a result, the level of congestion increases.
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The delay experienced in the network is influenced by the density of vehicles and how 
it affects message transmission. In this particular situation, two factors contribute to the 
delay: congestion and paused transmission. Congestion occurs when there is an excessive 
amount of data being transmitted, leading to a backlog and slower processing. Addition-
ally, when the system is unable to handle the load, it can result in outages and further exac-
erbate the delay. Additionally, the contention window may be decreased in certain trans-
missions to address issues related to transmission losses. This opportunity allows for the 
transmission of a smaller amount of data or message. Delay is increased when the transmit-
ting vehicle retains the messages that fall within the interval of "to" or "tc—TTLl". The pro-
posed approach for linear optimization of metaheuristics involves filtering vehicles based 
on link stability and service capacity during data dissemination. In addition to these advan-
tages, neighbor selection is restricted using metaheuristic routing, reducing the delay. The 

Fig. 16   Analysis of Intersection and Independent Vehicle for Avg. Packets/Sec

Fig. 17   Message Delivery versus Vehicles
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sequential operation reduces delay in FLECO. The neighbor selection process is similar in 
encountering any number of vehicles (Fig. 18).

Figure 19 illustrates the comparison of outage times between the proposed methods and 
the existing methods. The metric for measuring link stability is selected by considering the 
duration of outages. The estimated outage, which is calculated as (tc—TTLl), applies to vehi-
cles that are traveling in the same lane and the same direction. On the other hand, the outage 
(tc—TTLl) refers to the longest duration of link disconnection at a point where lines intersect.

Analyzing the Dissemination vs. Message Delivery graph, which compares the perfor-
mance of the proposed model against LACC, Double DQN, and Stacked LSTM, it is evi-
dent that the proposed model stands out as efficient and effective in disseminating mes-
sages. Figure 20 illustrates that as the number of disseminated messages increases from 100 
to 700, the proposed model consistently achieves a higher message delivery rate compared 

Fig. 18   Average Delay versus Vehicles

Fig. 19   Outage Time versus Vehicles
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to the other techniques—LACC, Double DQN, and Stacked LSTM. This demonstrates the 
superior efficiency and effectiveness of the proposed model in delivering messages across 
the varying dissemination range. The proposed model showcases a robust ability to dis-
seminate a higher number of messages while maintaining a commendable message deliv-
ery rate. This efficiency is particularly vital in vehicular communication, where timely and 
reliable message delivery is crucial for effective coordination and safety on the road.

5.9 � Cost of computation

Computation cost encompasses both the latency of computation and the latency of vehicle 
communication. The time it takes to form groups, have vehicles join them, and perform other 
necessary computations for implementing privacy schemes contributes to the computation 
latency. The time it takes for vehicles to communicate with each other to establish a privacy 
protection scheme for vehicle behavior is known as communication latency. Table 2 displays 
the average communication latency at various levels of traffic densities. The results in com-
putation and communication latency are improved by our proposed scheme.

Fig. 20   Message Delivery versus Message Disseminated

Table 2   Communication costs at 
a different number of vehicles

Number of 
Vehicles

Average communication cost (ms)

Proposed LACC​ Stacked LSTM Double DQN

100 21.32 32.67 45.12 55.61
200 23.56 25.45 34.65 45.62
300 31.35 35.31 43.12 64.32
400 43.12 55.34 60.45 75.18
500 56.32 63.24 68.23 79.34
600 67.25 75.64 89.76 101.25
700 70.34 80.23 97.45 120
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6 � Conclusion

The implementation of federated learning in vehicular communication offers a promising solu-
tion to enhance the performance of ITS and provide better services to drivers and passengers. By 
facilitating the exchange of data and collaborative training of machine learning models among 
vehicles, this technology ensures the privacy of sensitive information. The application of FL in 
vehicular communication can enhance the accuracy of predictive models used in ITS, including 
traffic flow prediction and vehicle routing. This, in turn, can minimize traffic congestion, improve 
safety, and optimize the efficiency of transportation systems. In addition, the approach of feder-
ated learning can tackle concerns regarding privacy and security associated with the sharing of 
sensitive information in vehicular communication. The decentralized nature of federated learn-
ing, where data is stored locally on each vehicle and only model updates are exchanged, mini-
mizes the chances of data exposure and malicious attacks.
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