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Abstract
Unsupervised domain adaptation (UDA) aims to solve the lack of annotation in a new dataset
which has non-independent identity distribution compare with training data. It has the poten-
tial to help the annotation process in medical image segmentation. Existing self-training
based UDA approaches utilize the pseudo labels as ground truth labels for domain adapta-
tion, whereas the generated pseudo labels inevitably introducing the noise when training the
model for the target domain, which make the training process unstable and the model is diffi-
cult to converge. In themeanwhile, most of themethods ignore the class imbalanced problem.
To tackle the issue, we propose a class-aware multi-stage unsupervised domain adaptation
framework for prostate zonal segmentation task. We devise a class-specific knowledge guid-
ance strategy for training a better pseudo labels generation model. Extensive experimental
results show the effectiveness of our approach against existing state-of-the-art approaches on
the UDA problem of prostate zonal segmentation benchmark.
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1 Introduction

Human-centric multimedia analysis has a wide range of applications, including human re-
identification, human activity analysis, and human body pattern analysis. This is an important
topic in the field of multimedia tools and applications. The analysis of human-body is highly
related to the evaluation of health state, while health issues are of particular concern in
today’s society. With the advance of technology, Non-invasive computer-aided diagnostic
(CAD) techniques have become one of the most important tools for assessing human health.
Magnetic resonance imaging (MRI) is one of non-invasive and radiation-freeCAD technique,
which has been widely used in organ and soft tissues imaging, including various human-body
part such as head, neck, chest, and abdomen. In this paper, we are going to conduct a study on
the application of multimedia analysis technology to Prostate cancer (PCa). PCa is a common
abdominal male disease, which has a serious impact on male’s life expectancy and quality of
life. To make diagnosis and treatment planning of PCa, doctors demand precise and accurate
identification of tumors and surrounding tissues. Therefore, prior to executing PCa clinical
diagnostic tasks, it is essential to segment the subdivision of prostate fromMRIs.However, the
correct contour segmentation of the anatomical structures is time-consuming, that demands
proficiency in healthcare. With the success of deep learning in medical image segmentation
tasks, deep learningmodels achieve even surpasses human experts in some applications, such
as prostate whole gland segmentation, where one of the important reason is a large number
of annotated public datasets [1, 2]. However, diagnosis of PCa requires segmentation of
prostate substructures, the lack of refined zonal annotation datasets of the prostate with its
surrounding tissues, limits the development of deep learning based PCa diagnosis. As shown
in Table 1, there are more than six MRI public datasets for prostate and PCa segmentation
tasks, with nearly two hundred cases of multi-center, multi-parametric T2 MRI, whereas
only two datasets for prostate substructure (peripheral zone, central zone/transition zone)
segmentation. Moreover, only one dataset for prostate substructure and peripheral tissue
segmentation studies, which just has a few annotations.

Since medical image segmentation task requires pixel-level annotation, it is time-
consuming and labor-intensive, which also requires strong anatomical knowledge, making it
impossible to generate large-scale annotations through crowdsourcing as the natural images
domain. Meanwhile, data heterogeneity prevents us from effectively using the existing anno-
tation data to train a model that is applicable to the new central data. This is because the
distribution drift caused by data heterogeneity, which makes the performance of the model
trained on existing annotation data by traditional supervised learning degrade significantly
when directly applied it to data from other centers. The problem of data heterogeneity often
exists in medical image due to its multi-centric nature, the non-identity distribution (non-
IID) as well as Out-of-Distribution (OOD) [3] problems arising from data collected from
different medical institutions due to differences in collection devices, physician practices,
and individual cases. Figure 1(a) shown the 2D slice sample from T2 prostate MRIs from
two publicable datasets, we analyze their intensity distribution by Kernel Density Estima-
tion(KDE) plot. According to the KDE plot, we can see the obvious difference of intensity
distribution between two datasets, which has been defined as data heterogeneity in [4].

Unsupervised domain adaptation (UDA) aims to adapt amodel on unlabeled target domain
data by transferring knowledge from labeled source domain data, provides a promising way
that can fast adapt on a bunch of new datasets which is non-IID compare with the labeled data,
without anymanual annotations. The study of the non-IID problem for semantic segmentation
tasks has a wide range of application scenarios such as autonomous driving [5] and the
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Table 1 Publicly available datasets for prostate segmentation

Dataset MR Modality Organ / Lesion Case num

PROMISE12 T2 WP 50

Decathlon T2, ADC WP, TZ, PZ 32

NCI-ISBI13 T2 WP, TZ, PZ 80

I2CVB T2, DWI WP, Lesion 19

Prostate-X T2, DWI, DCE Lesion 182

Prostate-Dianosis T1, T2, DWI WP, TZ, PZ, SV, NVB 5

around 11 organs

WP-Whole Prostate, TZ-TransitionZone, PZ-Peripheral Zone,NVB-NeurovascularBundle, SV-SeminalVesi-
clexzio

annotation of medical image data [6]. There are two major solutions for the non-IID problem
in semantic segmentation: one is adversarial learning based methods and the other is self-
training based methods. Adversarial learning based methods approximate the distribution
of source and target domain data by implicit feature alignment in the input space or output
space, Although the adversarial based methods can learn domain invariant features which
are also discriminative for the source domain, while the separability of target samples is
always being ignored since the conditional distributions are not explicitly aligned.while. Self-
training based methods change the learning of target domain data to supervised learning by
generating pseudo labels for the target domain, whereas generated pseudo labels often along
with noise, which makes the model training seriously biased (i.e. overfitting on noisy data).
Although existing works reduce the noise of pseudo labels either by epistemic uncertainty
qualification [7] or by loss correction [5], both of them ignore the class imbalanced problem,
and the other thing is that jointly optimize the pseudo generation task and self-training
with noisy labels correction task may made the training process unstable. Considering the

Si
te

 B
 

Si
te

 A
  

(a) 2D slice example of 
source and target domain    

(b) KDE Plot of source and target domain   

D
en

si
ty

  

Fig. 1 Visualization of 2D slice example from two prostate T2 MRI Datasets and intensity distribution by
KDE plot
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problems mentioned above, we propose a class-aware multi-stage UDA framework, which
first reduces the gap between source and target domains by an unsupervised image translation
model without additonal registration step, and then trains a pseudo labels generation model
for the target domain by an adversarial learning based approach, in which multi-level output
space adaptation and domain-specific parallel adapters are introduced to enhance domain-
specific features; and we devise a class-specific knowledge guidance strategy for solving the
foreground class imbalanced problem. In second stage, We retrain the segmentation model
by using the target domain pseudo label generated by the model trained in the first stage, a
meta-learning based loss correction strategy is introduced to correct the pseudo labels during
the training process, and they are used in the training of the new target domain model. Our
contributions including:

• Wepropose a class-awaremulti-stage unsupervised domain adaptation (UDA) framework
incorporatedwith input space, output space adaptation, and self-trainingwith noisy labels
method, which is able to solve the non-IID problem between train and test data better.

• We design a Class-Specific Knowledge Guidance (CSKG) strategy to solve the class
imbalanced problem in foreground classes, and introduce a Domain-Specific Parallel
Adapter (DSPA) module to retain the domain discriminative information with very few
of parameters non-shared.

• We conduct extensive experiments and ablation studies on the benchmark datasets for
prostate multi-zonal segmentation tasks. The results show that our approach has better
performance than the state-of-the-art methods.

2 Related work

2.1 UDA in semantic segmentation

Adversarial learning based method Some of methods put image translation as a part of
the method, in a tandem way [8] or end-to-end fashion [6]. Concretely, it is an indirect
way, which need translate from source domain to target domain, so that the labels from
source domain can be used to train segmentation model. While another methods directly use
adversarial learning in models training: One network behaves as a generator to obtain the
segmentation maps for source and target inputs, the other network serves as a discriminator
to derive domain predictions. The generator intends to fool the discriminator to ensure the
cross-domain alignment of feature level [9] or output level [10, 11]. However, all of them
above retain a shared parameter network, ignored the domain-specific information, weaken
the domain discriminative ability [12].

Self-trainingbasedmethodThe self-training basedmethod entails using highly confident
network predictions inferred onunlabeled data to generate pseudo-labels, then use these labels
to reinforce the training of the target domain network with the self-taught supervision. While
there are two problems in the process of pseudo labels generating and using: the design of
filtering rules for getting the high confident predictions to be pseudo labels, and learn with
noisy labels.

Some methods [7, 13] rely on various forms of pseudo-label filtering, [13] proposed to
threshold the argmax values of predictions and selected high-confidence pseudo-labeled sam-
ples. Zheng and Yang [7] utilized uncertainty estimation and enabled the dynamic threshold
to obtain rectified pseudo labels. However, these methods only involved confident samples
for training, which may result in biased prediction in minor classes and cannot distinguish
confused categories. An alternative way is learn with noisy labels, by adjusting the loss
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of all training samples before updating model per iteration. It can be categorized into three
strategies: i) loss correction [14–17] that correct loss in forward or backward process through
construct noise transition matrix; ii) loss reweighting [16, 18] that imposes every samples
have different importance; iii) label rectify [19] that adjusts the loss using the rectified label
obtained from a convex combination of noisy and predicted labels.

2.2 Class imbalanced problem in semantic segmentation

The class imbalance problem not just exist between background and foreground, but also
between inter-class of foreground. Some ofworks [20, 21] focus on the architecturemodifica-
tion of segmentation network. Gao et al. [20] considering the inter-class imbalance problem
in foreground, they devise a framework that introduce an auxiliary branches to localize and
segment the small organ, using the heat map of small-organ center location to train , improv-
ing the segmentation performance on small organ. Feng et al. [21] combining two pyramidal
modules to dynamically fuse multi-scale context information. While other works [22, 23]
focus on the loss optimization, [22] introduce a class-weighting strategy to weight the vote
of each class via condition the weights of loss, and a equally patches extraction strategy for
multi-class brain tumor segmentation. Sugino et al. [24] make a comprehensive comparison
of five loss weighting strategies and select the optimal one for multi-class brainstem structure
segmentation. Yeung et al. [23] define a new hierarchical framework to encompass various
Dice and cross entropy-based loss functions, and used this to derive the Unified Focal loss,
which is associated with a better recall-precision balance.

Different from the methods mentioned above, [25] devise a ‘X’ shaped network, which
consist of twoU-Net architecture, distribution based loss for oneU-Net, and region based loss
for anotherU-Net, then the logits of these two sub-networkwas concatenated tomake the final
output, it was validated on the cell segmentation task, shown the effectiveness of solving class
imbalanced problem about inter-class of foreground. In this paper, we tackle class imbalance
problem with an curriculum learning strategy, distill the class specific knowledge to further
guide the main segmentation network training.

3 Overview of framework

3.1 Problem formulation

We focus on the non-IID problem in prostate multi-zonal segmentation tasks. In the source
domain, there is a set of images XS =

{
xs ∈ R

H×W×3
}
s∈S and the corresponding pixel-wise

one-hot labels YS =
{
ys ∈ {0, 1}H×W×C

}
s∈S . While in the target domain, only images XT ={

xt ∈ R
H×W×3

}
t∈T are available. The goal is to train a model that can correctly categorize

pixels for target data XT . Note that H ,W ,C denote the height, width, and categories of
images respectively.

We propose a framework concurrently learn from labeled source data and unlabeled target
data, which can generate more comparable pseudo labels for target data, then use them as
ground truth labels for training the target segmentation model. Specifically, We first utilize
an input space adaptation module to translate the source domain images to the target domain
for mitigating data heterogeneity. After image translation, our framework goes through two
training stages, as shown in Fig. 2:
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Fig. 2 Overview of Our Framework. Firstly, we employ an image translation model (in light blue) to transform
source domain images into ones approximating the style of the target domain in ‘Stage 0’. Subsequently, in
‘Stage 1’, we conduct adversarial training using labeled source domain data and unlabeled target domain data
to train a target domain image segmentation model (in green) and a domain discriminator (in green). Lastly,
in ‘Stage 2’, we utilize the segmentation model (in gray) trained in ‘Stage 1’ to generate pseudo segmentation
labels for target domain data. We employ a domain discriminator (in gray) to filter pixel-level domain features,
which is used for correcting pseudo labels. Finally, we retrain a target domain image segmentation model (in
teal) using the corrected pseudo labels

Stage 1: We concurrently train a model for generating preliminary pseudo labels for the
target domain and a domain predictor that could select target-like pixels from source images
for each class, which will be used in stage 2.

Stage 2: Based on the noisy labels correction, we correct pseudo labels and then use it to
retrain the segmentation network for the target domain.

3.2 Image translation from source to target domain

Considering the source and target domains are different, which havemultiple acquisition pro-
tocols, resulting in data heterogeneity, we introduce an input space adaptation module based
on MUNIT [26], which is an indeterministic image translation method and was applied to
translate MRI between different modalities without pairing [6]. As illustrated in Fig. 3, the
input space adaptation module consists of dual domain disentangled reconstruction (DDDR)
and source-based pseudo target image distribution matching (SPTIDM) processes. For con-
venience, we only describe the process of translating source image to target image. The
training objective is given by:

min
Ec
S ,E

s
S ,E

c
T ,Es

T ,GS ,GT

max
DS ,DT

λGAN

(
LS
GAN + LT

GAN

)
+ λx

(
LS
recon + LT

recon

)

+λc
(LcS

recon + LcT
recon

) + λs
(LsS

recon + LsT
recon

) (1)
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Fig. 3 Illustration of input space adaptation module. Considering the domain gap between the source and
target domain, we first utilize an unpaired image translation network which can translate the source image to
target domain for mitigating the domain shift problem

where λGAN , λx , λc, λs , λcyc are are the weighting factors to balance corresponding loss
terms for image translation.

Dual Domain Disentangled Reconstruction (DDDR) There are two parallel ways in
reconstruction process: i) image reconstruction, which follows the “image-latent-image”
loop; ii) latent reconstruction, which follows the “latent-image-latent” loop. Note that in
i), the images from source domain was disentangled into content space C which is domain-
invariant and style space S which is domain-specific, then the decoder of the source domain
GS reconstruct the source image. In ii), the content feature c of the source image and the
style feature s of the target domain were fed into the target domain decoder GT to generate
images that conform themarginal distribution of the target domain. The style feature of target
domain sT is randomly sampled from Gaussian prior q (sT ) ∼ N (0, I). Finally the synthetic
image xS→T was encoded by style encoder Es

T and content encoder Ec
T of the target domain

again. The object functions in DDDR including LxS
recon for image reconstruction:

LxS
recon (Ec

S, E
s
S,GS, xS) = Exs∼XS [‖GS(E

c
S(xS), E

s
S(xS)) − xS‖1] (2)

and LcS
recon , LsT

recon for latent representation reconstruction:

LcS
recon (Ec

S,GT , Ec
T , xS, sT ) = ExS∼XS ,sT ∼ST [‖Ec

T (GT (Ec
S(xS), sT )) − Ec

S(xS)‖1]
(3)

LsT
recon (Ec

S,GT , Ec
T , xS, sT ) = ExS∼XS ,sT ∼ST [‖Es

T (GT (Ec
S(xS), sT )) − sT ‖1] (4)

Source-Based Pseudo Target Image Distribution Matching (SPTIDM) The distribu-
tion of synthetic imageswasmatched to the target domain distribution via adversarial training:
DT discriminates whether the image is real from the target domain or was synthesized from
the source domain, and the target domain decoder GT trying to synthesize images that are
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indistinguishable to the discriminator. The training objective is defined as:

LxT
GAN (Ec

S,GT , DT , xS, sT ) = ExT ∼XT [log DT (xT )]
+ ExS∼XS ,sT ∼ST [log(1 − DT (GT (Ec

S(xS), sT )))] (5)

3.3 Stage 1: target domain pseudo labelingmodel and pixel-level domain predictor
pre-training

For the purpose of generatingmore credible pseudo labels for the target domain, we introduce
an output space adaptation module [11] to align the source and target domain in output space,
which has richer semantic information and smaller domain gap. There are two components
in stage 1: i) Segmentation Network and ii) Pixel-level Domain Discriminator. The sketch of
stage 1 was shown in Fig. 2 top right part.

The pseudo target imageswith corresponding ground-truth labels and unlabeled real target
images were both used for training. We use an adversarial way to train i) and ii). The training
objective of stage 1 is:

min
Segstage1main−enc,Seg

stage1
main−dec,Segcs

max
Ddp

Lseg + λadvLadv + λdLd (6)

where λadv , λd are the weighting factors to balance two loss terms for adversarial training.
Ladv is the adversarial loss that adapts predicted segmentation masks of target images to
the distribution of source predictions, Ld is the discriminative loss that discriminates the
predicted outputs(masks) belong to source domain or target domain, andLseg is the total loss
that makes supervision for segmentation network training:

Lseg = Lmain−seg + Lcs−seg = (λceLce + λcskg

I∑
i=1

Li
cskg) + λcs−seg

I∑
i=1

Li
cs−seg (7)

whereλce,λcskg ,λcs−seg are theweighting factors to balance three loss terms for segmentation
network training, and λce + λcskg = 1 for the CSKG strategy. Lce is the cross entropy loss
for learning the class-invariant representations of data, Li

cs−seg is the dice loss, and Li
cskg is

the class-specific knowledge guidance loss for learning the class-specific knowledge from
class-specific decoders indirectly.

Specifically, Segstage1main−enc, Segstage1main−dec, and Segcs−dec denotes main encoder, main
decoder, and class-specific decoders of the segmentation network respectively, Ddp denotes
a domain predictor. In each iteration, a batch of the pseudo target images xS→T with its
ground-truth labels yS was forwarded for optimizing the combination of Segstage1main−enc and

Segcs−dec (i.e. Segcs), and the combination of Segstage1main−enc and Seg
stage1
main−dec (i.e. Seg

stage1
main ),

alternately. Then Segstage1main predict the softmax output PT for target image yT , the predictions
P of source and target domain (i.e., PS and PT ) was fed to Ddp to discriminate the input
whether from source or target domain pixel by pixel, which encourage PS and PT close to
each other.With the adversarial training, the gradients was propagated from Ddp to Seg

stage1
main ,

which would encourage Segstage1main to predict similar prediction between the target domain
and the source domain.

Class-Specific Knowledge Guidance (CSKG) The class-imbalanced problem in multi-
class semantic segmentation alwaysmakemodel to focus on themajority classwhich has a big
ratio whereas ignore the minority class, so it is necessary to extract robust representations for
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domain transfer and class-specific representations to better identifyminority foreground class
concurrently. The original intention of curriculum learning aims to learn a small network to
meet the low-memory and fast execution requirements, it starts with the big teacher network
which is deeper and wider, then trains a smaller network to mimic teacher [27, 28]. Learning
to mimic teacher turns out to be much easier than directly learning from ground truth, some
of them mimic the teacher’s class probabilities [27] or feature representation [28], including
richer information beyond the traditional supervised learning.

The studiesmentioned above inspire us to design a curriculum learning based paradigm for
mitigating the class imbalanced problem in semantic segmentation, i.e. CSKG, to enhance
the domain-specific feature learning of weight-shared CNN kernels in our segmentation
network, especially for minor foreground class. As shown in Fig. 4(a-i), we synergistically
train the main segmentation network Segstage1main with the supervision by ground truth labels
and class-specific knowledge learning from a pair of class-specific decoders Segcs , a class-
specific decoder Segics for category i has the same architecture as the main segmentation

network decoder Segstage1main−dec. The class specific decoders serve as an independent logits
predictor for each category, which could learn the class-specific knowledge compared with
the main segmentation network Segstage1main . As we know, dice loss [29] is the region metric
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Fig. 4 Illustration of segmentation network training procedure with in GSKG strategy stage 1. Note that the
line in red denote the DSPA module for processing pseudo target images, the line in green denote the DSPA
module for processing real target images
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based loss that is aware to the region, so we trained each Segics with dice loss for distilling
the class-specific information.

The training process in alternating in each iteration, instead of transferring the class-
specific knowledge from Segics sequentially into Segstage1main , we conduct knowledge transfer

from all class-specific decoders Segcs into the Segstage1main−enc , encouraging the CNN kernels

which are weight-shared in Segstage1main to capture class-agnostic and class-specific represen-
tations concurrently.

Specifically, the class-specific knowledge guidance lossLi
cskg for each category i is defined

as follows:

Li
cskg(P

i , Q) = 1 − 2
∑

(pi,q)∈(Pi ,Q)

∑K
k=1 p

i
kqk∑

(pi,q)∈(Pi ,Q)

∑K
k=1

(
(pi)2k + q2k

) (8)

where pi ∈ Pi , q ∈ Q , K denotes the total number of pixels per batch of data. Note that we
transform the groud truth masks into one-hot format to keep the dimensions consistent with
the probability maps. Denote the activation value following the sigmoid function of Segics as

Q = Segics−dec(Seg
stage1
main−enc(x)) ∈ R

b×h×w×1, the activation values following the softmax

function of Segstage1main as P = Segstage1main−dec(Seg
stage1
main−enc(x)) ∈ R

b×h×w×c, Pi ∈ R
b×h×w×1

is each category of P , where b is the batch size, h andw are the spatial dimensions of feature
map, c is the category number.

Segmentation network training For training the segmentation network in each iteration,
we first train it on the pseudo target images xS→T with its corresponding labels yS . In this
step,we update the parameters ofmain segmentation network encoder Segstage1main−enc and class-
specific decoders Segcs−dec by the class-specific dice lossLcs−seg , as shown in Fig. 4(a-i) top

part. Given the segmentation sigmoid output QS→T = Segics−dec(Seg
stage1
main−enc(xS→T )) ∈

R
b×h×w×1, the class-specific dice loss Li

cs−seg for each category i is defined as:

Li
cs−seg(QS→T , yS

i ) = 1 − 2
∑

(q,yi)∈(QS→T ,yS i )
∑K

k=1 qk(y
i)k∑

(q,y)∈(QS→T ,yS i )
∑K

k=1

(
q2k + (yi)2k

) (9)

In the next step, we update the parameters of Segstage1main−enc and decoder Segstage1main−dec for
learning the class-specific knowledge by class-specific knowledge guidance loss Lcskg and
universal representation by cross entropy loss Lce, as shown in Fig. 4(a-i) bottom part.
Given the segmentation softmax output PS→T = Segstage1main−dec(Seg

stage1
main−enc(xS→T )) ∈

R
b×h×w×c:

Lce(PS→T , xS→T , yS) =
−

∑
b

∑
h,w

∑
c∈C

ExS→T ∼XS→T ,yS∼YS [y(b,h,w,c)
S log

(
PS→T

(b,h,w,c)
)
] (10)

the class-specific knowledge guidance loss Li
cskg for each category i is defined as (8).

As shown in Fig. 4(a-ii), after forwarding the pseudo images XS→T with its corresponding
labels YS to the main segmentation network encoder and decoder, we forward target images
to Segstage1main , obtain the prediction PT = Segstage1main (xT ). An adversarial loss to make the
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distribution of PT to PS :

Ladv(PT , xT ) = −
∑
b

∑
h,w

ExT ∼XT [log(Ddp(PT )(b,h,w,1))] (11)

We use this loss to train the segmentation network and fool the domain predictor by
maximizing the probability of the target prediction being considered as the source prediction.

Pixel-level domain predictor training As shown in Fig. 5, we forward P to a fully-
convolutional domain predictor Ddp using a cross-entropy loss Ld for the two classes (i.e.,
source and target). The loss can be written as:

Ld(P, Ddp, x) = −
∑
b

∑
h,w

(1 − z) log
(
Ddp(P)(b,h,w,0)

)
+ z log

(
Ddp(P)(b,h,w,1)

)

(12)
where z = 0 if the sample is drawn from the target domain, and z = 1 for the sample from the
source domain.

Multi-level adaptation For retaining the low-level feature, we utilize additional adver-
sarial module on the layer before last feature map layer to further enhance the adaptation
capacity. Then the object loss paradigm can be extended from (6) as:

∑
j

λ
j
segL j

seg +
∑
j

λ
j
advL

j
adv (13)

where j indicates how many layers of feature map in was used to adapt in the output space
adaptation. Note that the segmentation outputs were predicted on each layer individually,
L j
seg and L j

adv keep the same form as (7) and (11) respectively.

Fig. 5 Illustration of domain discriminator training procedure in stage 1. The weight of domain discriminator
was fixed while the weight of segmentation network was learnable in step (i), The weight of segmentation
network was fixed while the weight of domain discriminator in step (ii). After adversarial training, we obtain
a segmentation network that was adapted on unlabeled target domain, and a pixel-level domain predictor
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3.4 Stage 2: pseudo labels correction and final segmentation network training

We reduce the noise of pseudo labels by adjusting the loss of all training examples before
updating the objective DNN [30], it estimates the noise transition matrix(NTM) to correct
the forward or backward loss. Concretely, loss correction assume that pseudo labels can be
shifted to ground truth labels via NTM T ∈ [0, 1]C×C , which specifies the probability of
ground truth label j flipping to pseudo label k by Tjk = p (ŷt = k | yt = j), it encourages
the similarity between noise adapted class probabilities and the noisy pseudo labels. The
self-training loss is defined as:

LST = −
∑
t∈T

ŷt log [ f (xt ,w) T ] . (14)

where ŷt denote the pseudo labels of target domain which were generated from stage 1, .
Another importance thing is the construction and optimization ofNTM.Rather than construct
it by inherent noise type [14, 15] or by cleaned and labeled target domain data [17], we utilize
a meta learning based NTM construction strategy [5, 16], it tackles the problem of lacking
annotated and clean target domain data by just using source data tomake clean data, enhancing
the generalization capability of NTM.

As shown in Fig. 2 bottom part, there are two steps in stage 2: i) Noisy Labels Generation
and Meta Set Construction; ii) Noisy Labels Correction and Self-Training. In step i), we
construct the meta data set {XM, MM} = {xm, ym}m∈M from labeled source data, then in
step ii), we optimize the NTM(T) to T ∗ via:

T ∗ = argmin
T∈[0,1]c×c

−
∑
m∈M

ym log f
(
xm,w(T )∗

)
, (15)

where
w(T )∗ = argmin

w
−

∑
t∈T

ŷt log [ f (xt ,w) T ] , (16)

w(T )∗ represents the optimal segmentation net with the minimal corrected loss on the noisy
pseudo-labeled target data, the updated T ∗ should minimize the empirical risk loss on meta
data. The training objective of the final segmentation network for target domain (Segstage2main )

can be formulated as:
LST = −

∑
t∈T

ŷt log
[
f (xt ,w) T ∗]

(17)

3.4.1 Noisy labels generation andmeta set construction

Model agnostic gradient based meta-learning methods [31, 32] can learn more invariant
feature via second-order back-propagation. MAML [31] can make fast adaptation on few
shot classification tasks, which use the large annotated classes to execute the first-order
approximation of the gradient, and evaluate the error on few shot classes, then calculate
the second-order gradient to update the parameters in each iteration. MLDG [32] extends
meta-learning to domain generalization problem by randomly split the train set to “meta-
train”, which was used to train the model at each iteration, and “meta-test”, which was
used to validate the model at each iteration, can well simulate the potential distribution shift
for solving the non-IID or OOD problems of unseen domain generalization. Meta-learning
could help constructing a more robust NTM to against the noisy of pseudo labels from target
domain, without using any additional annotations in target domain.
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(a) Noisy Labels Generation and Meta Set Construction

(i) Meta Set Construction step

(ii) Noisy Labels Generation step

Fig. 6 Illustration of training process in stage 2. First, we generate the pseudo labels for target domain and
meta dataset for optimizing the Noisy Transition Matrix(NTM), as shown in (a)

In this step, the train set of target image was fed to the pre-trained target domain segmenta-
tion network Segstage1main to generate initial target pseudo labels, then a pre-trained pixel-level
domain discriminator Ddp(·)v, which was obtained from stage 1, was used to select the
target-like pixels to construct a meta set {XM, MM} = {xm, ym}m∈M from source data.
The illustration of this step was shown in Fig. 6. Samples with predictions Ddp(xs, v) larger
than the pre-defined threshold will be meta set to the following meta-learning based NTM
construction procedure.

3.4.2 Noisy labels correction and self-training

The training procedure alternatively optimize the T and final target segmentation network
Segstage2main within each iteration including three sub-steps:meta net virtual optimization, meta
net meta optimization, and segmentation net actual optimization, as shown in Fig. 7. The
first two sub-steps aim to optimize T . The third sub-step aims to optimize Segstage2main with

optimized T ∗. Note that while whole three sub-steps were completed, Segstage2main finished
optimization in one iteration.

In the sub-step of meta net virtual optimization, as shown in Fig. 7(i), given a NTM T i in
i th iteration, a meta net Segmeta is copied from Segstage2main with its parameters wi . Segmeta
with its current parameters wi was updated to wi+1 along the gradient descent direction of
corrected loss by T i with learning rate γv:

ŵi+1
(
T i

)
= wi + γv∇w

∑
t∈T

ŷt log
[
f
(
xt ,wi

)
T i

]
(18)

Then in the sub-step of meta net meta optimization, as shown in Fig. 7(ii), following the
(4), T i was updated to T̃ i+1 by minimizing the cross entropy loss on meta dataset with :

T̃ i+1 = T i + γm∇T

∑
m∈M

ym log f
(
xm, ŵi+1

(
T i

))
(19)
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Fig. 7 Illustration of training process in stage 2. After acquiring the refined pseudo labels, we retrain a new
segmentation network by the these labels, which was rectified by the meta-learning based NTM correction
strategy, the process of the noisy labels correction and self-training were shown in (b)

where γm is the learning rate for NTM optimization. The intuition of the meta net meta
optimization is to obtain an optima of T̃ i+1 with low empirical risk and high generalization
via second-order back-propagation [31]. For preventing the negative values of T̃ i+1 after
updating parameters, [5] set the lower bound constraint T̃ i+1 = max

(
T̃ i+1, 0

)
to enable

the non-negative matrix and then perform normalization along the row direction T i+1
jk =

T̃ i+1
jk /

∑
T̃ i+1
j , which ensure the transition probabilities of class j summed to 1.

In the sub-step of segmentation net actual optimization, as shown in Fig. 7(iii), the noisy
pseudo labels of target domainwhichwas generated by Segstage1main was forwarded in Segstage2main .

The optimized T̃ i+1 was used to optimize Segstage2main :

wi+1 = wi + γa∇w

∑
t∈T

ŷt log
[
f (xt ,w) T i+1

]
(20)

where γa is the learning rate for Segstage2main optimization. Through the gradient based meta-

learning optimization strategy, both the T and Segstage2main (·)w can be gradually ameliorated
based on the optimal solution computed in the last step.
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3.5 Domain-Specific Parallel Adapter (DSPA)

Considering the heterogeneity still exist between real target domain andpseudo target domain,
it is not an effective way to share batch normalization layer due to the statistical difference of
heterogeneous domains might bring difficulty for learning generic representations, since the
shared kernels would bother with the nonessential domain-specific variations, and the shared
BN layers may result in inaccurate estimation of global mean and variance in the training
phase given inter-site statistical differences, it would lead to performance degradation on the
target domain in the validation and testing phase. To overcome the limitations mentioned
above, we introduce domain specific batch normalization(DSBN) to replace plain batch
normalization(BN) layer first, by allocating domain specific affine parameters γd , βd for
domain d ∈ {S, T }. Let xd ∈ R

H×W×N denote activations of each channel belong to domain
d , the DSBN layer is defined as follows:

DSBNd (xd ; γd , βd) = γ d · x̂d + βd (21)

where
x̂d = xd − μd√

σ 2
d + ε

(22)

and

μd =
∑

n
∑

i, j xd
N · H · W (23)

σ 2
d =

∑
n
∑

i, j (xd − μd)
2

N · H · W
(24)

To further retain for statistical differences of source and target domain, we introduce a
domain-specific parallel adapter (DSPA) [33] module to each residual block [34] of the main
segmentation network. Specifically, letφl be the convolutional layer in themain segmentation
network and Fl ∈ R

k×k×Ci×Co be corresponding filters for the layer, where k × k denotes
the kernel size and Ci , Co are the number of input and output feature channels respectively.
Z
l
d ∈ R

1×1×Ci×Co is a set of DSPA filters of domain d , it is introduced in a parallel way.
Given an input xl ∈ R

H×W×Ci , the output yl ∈ R
H×W×Co of layer l is defined as follows:

yld = Fl ∗ xd [i, j, ci ] + Zl
d ∗ xd [i, j, ci ] (25)

Figure 8 shows the DSPAmodule with residual block. In each block, an additional convo-
lution operation was installed in parallel, and DSBN for each domain individually. In stage 1,
the module shifted through source and target data in each iteration, while in stage 2, only the
target domain part was activated to train the final segmentation model for the target domain.

3.6 Network and training details

Image translation network Following the configuration of [6], The adaptive instance nor-
malization (AdaIN) layers was applied both in content encoders, style encoders and decoders
to adjust the style of the output image. The one different thing compare with [6] is we remove
the cycle consistency part to keep the image translation network to have the capacity of unde-
terministic mapping.

Segmentation network We adopt CE-Net [35] with ResNet-34 [34] encoder pre-trained
on ImageNet as our segmentation network. In the main segmentation network, all residual
blocks was introduce a 1x1 convolution operation parallel with the original 3x3 convolution,
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Fig. 8 The DSPA module for UDA. The input feature map choose one of the branches according to its
domain. Note that all parameters except those of DSPA are shared across the real target domain and pseudo
target domain

and all normalization layers was replaced to DSBN layers for solving the problem of the
inter-site discrepancy. The class-specific branch has the same architecture as the decoder of
the main segmentation network, but substitutes the DSBN layers with BN layers, and no 1x1
convolution operation parallel with 3x3 convolution in each residual block. For multi-level
output space adaptation, we use the original segmentation logits output, and apply an up-
sampling layer for the feature map layer before the original segmentation output to match
the size of the input image.

Pixel-level domain predictor Following the configuration of the AdaptSegNet [11], the
feature maps used for multi-level output space adaptation are also utilized for pixel-level
domain prediction. We adopt an architecture similar to DCGAN [36], while instead of utiliz-
ing fully-convolutional layers. It consists of five cascade convolution layers with kernel size
4x4 and the stride of 2, with output channel number s {64, 128, 256, 512, 1}, respectively.
Each convolution layer is followed by a Leaky ReLU expect for the last layer. Because we
jointly train the segmentation network with pixel-level domain predictor using a small batch,
hence no batch normalization layers was used in the domain predictor.

Training details Our method is implemented using Pytorch toolbox on Nvidia RTX
3090. For training the image translation network, with a batch size of 16 and the learning
rate of 10−4. To train the segmentation network, the Stochastic Gradient Descent (SGD) is
utilized as the optimizer, the momentum is 0.9 and the weight decay is 5× 10−4. The initial
learning rate of the segmentation network is set as 2.5× 10−4, with the polynomial learning
rate scheduling with power of 0.9. To train the pixel-level domain discriminator, we adopt
the Adam optimizer with the learning rate as 10−4 and the same polynomial learning rate
scheduling as the segmentation network. The momentum is set as 0.9 and 0.99. For training
the meta net, the inner learning rate for meta net virtual optimization was set as 10−4, and the
outer learning rate for meta net meta optimization was set as 10−2. In each fold, we totally
trained 9000 iterations and the batch size was set as 8.

4 Experiment

4.1 Datasets and evaluationmetric

We use two public datasets: NCI-ISBI 2013 [2] and Decathlon [39] for evaluating our pro-
posed approach, collected from twomedical institutions: Radboud University Medical Cente
(Site A), Boston Medical Centre (Site B), as summarized in Table 2. Note that Site B is
the subset of NCI-ISBI 2013, which encompassing all 1.5T MRI data. Following the UDA
problem setting, let 3.0T T2 MRI from Site A as the source domain, 1.5T T2 MRI from Site
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Table 2 Details of the scanning protocols for two sites

Dataset Case Field Resolution Coil Manufactor
num strength (in-/through-

(T) (plane)(mm)

Site A 32 3 0.4/3 Endorectal Siemens

Site B 40 1.5 0.6-0.625/3.6-4 Surface Philips

B as the target domain, we utilized 30 training samples from Site B as unlabeled target data to
perform UDA training and 10 remain samples for evaluation. Based on the experiments from
[40, 41], We conduct pre-processing as following steps before inputting to our framework:
normalized data to have zero mean and unit variance value, bias field correction and noise fil-
ter to reduce the intensity variance among source and target data. We conduct four-fold cross
validation, using mean value of Dice coefficient(%) as evaluation metric for evaluating the
segmentation performance in terms of prostate peripheral zone(PZ) and transition zone(TZ),
respectively.

4.2 Effectiveness of our framework

In this section, we first compare our approach with baseline and the state-of-the-arts
approaches, and then conduct comparison with other self-training based methods in different
pseudo labels generation settings for validating the robustness of our framework. In addition,
we make comparisons of mean Dice gap between the results of adapted (i.e. unsupervised)
and oracle (i.e. fully supervised) setting.

4.2.1 Comparison with baseline and state-of-the-art methods

The results are listed in Table 3 with first and second best results highlighted in bold and
underline. We first make comparison with baseline setting, the source-only approach means
we train the model just on labeled source data, and directly make inference on target data, our

Table 3 Comparison with baseline and state-of-the-arts results

Methods Mechni. DSC
PZ TZ Overall

Source-only – 28.48 ± 3.51 52.57 ± 2.93 40.53 ± 3.22

AdaptSegNet [11] AL 39.37 ± 3.80 69.13 ± 3.06 54.25 ± 3.43

PatchAlign [37] AL 39.12 ± 4.25 72.52 ±3.24 55.82 ± 3.75

LTIR [10] AL 40.71 ±4.96 75.35 ±3.83 58.03 ± 4.40

CBST [13] ST 38.22 ±3.54 70.14 ±3.04 54.18 ± 3.29

MRENT [38] ST 40.82 ±3.62 72.39 ±3.08 56.61 ± 3.35

MaxSquare [9] ST 37.45 ±3.27 69.61 ±2.76 53.53 ± 3.02

MetaCorrection [5] ST 43.25 ± 5.22 74.31 ± 3.92 58.78 ± 4.57

Ours ST 45.81 ± 5.35 80.25 ± 4.59 63.03 ± 4.97

“AL” and “ST” denote adversarial learning and self-training respectively. The first and second best results
highlighted in bold and underline
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approach outperforms the source-only approach by a significant increment of 22.5% in Over-
all Dice. Then we conduct comparison with the state-of-the-art UDA semantic segmentation
approaches in prostate zonal segmentation area [5] and natural image area [9, 10, 13, 37,
38], including adversarial based approaches [10, 37] and self-training based approaches [9,
13, 38]. Our proposed approach shows better performance compare with LTIR [10], the best
performance in adversarial learning based approach, or MetaCorrection [5], the best perfor-
mance in self-training based approach. Concretely, it outperforms LTIR and MetaCorrection
with increments of 5% and 4.25% in overall Dice, 4.1% and 2.56% in Peripheral Zone Dice,
4.9% and 5.94% in Transition Zone Dice, respectively.

Figure 9 presents some example quantitative segmentation results of target data on three
benchmarkmethods.We note that the self-training basedmethod [5] could obviously promote
the performance in comparison to the source-only method. Besides, in contrast to the state-
of-the-art self-trainingmethod on non-IID problem of prostate multi-zonal segmentation, our
proposed framework has better delineation of small-scale and irregularly shaped objects.

4.2.2 Robustness to various types of noisy labels

We evaluate the robustness of our proposed approach under various type of noise. Concretely,
we make a comparison under four different methods of pseudo labels generation:

• AdaptSegNet [11]: An adversarial learning based UDA semantic segmentation method
that utilize multi-level adaptation in output space, tackling the unsupervised domain
adaptation for semantic segmentation.

• Source: Standard reference approach in UDA, directly training a model via source data,
then infer on target domain to generate pseudo labels.

• MUNIT-MRI [6]: An input space UDA approach for semantic segmentation, which
could translate the source data to target domain, transfer the labels from source domain

Fig. 9 Qualitative segmentation results on each site of the target domain. From top to bottom are the results
of Baseline approach, state-of-the-art approach and our approach, respectively
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Table 4 Comparison with different pseudo label generation models

Methods Pseudo Label Type Average DSC �

AdaptSegNet [11] AdaptSegNet 54.25 –

Self-Training(MRENT [38]) – 56.61 2.28

Self-Training(Threshold [13]) – 55.22 0.97

MetaCorrection [5] – 58.78 4.53

Ours(+DSPA, +CSKG) – 60.49 6.24

MUNIT-MRI MUNIT-MRI 52.32 –

Self-Training(MRENT [38]) – 54.17 1.85

MetaCorrection [5] – 56.99 4.67

Ours(+DSPA, +CSKG) – 58.3 5.98

Source-only Source Model 40.53 –

Self-Training(MRENT [38]) – 44.73 4.2

MetaCorrection [5] – 49.43 8.9

Ours(+DSPA, +CSKG) – 51.65 11.12

AdaptSegNet+MUNIT-MRI AdaptSegNet+MUNIT-MRI 56.08 –

Self-Training(MRENT [38]) – 57.39 1.31

MetaCorrection [5] – 59.49 3.41

Ours(+DSPA) – 60.88 4.8

Ours(+DSPA, +CSKG) – 63.03 6.95

“�” denote the promotion of performance compare with current category of pseudo label generation method.
The best result highlighted in bold

to target domain, solving the challenge of adapting to a more informative target domain
where multiple target samples can emerge from a single source sample.

• AdaptSegNet + MUNIT-MRI: Incorporate input and output space adaptation methods
in a tandem way to mitigate the discrepancy between source and target domain.

As listed inTable 4, our proposed approach(row6) in “AdaptSegNet” setting have the supe-
rior result than other self-training based methods, including entropy minimization(row 3),
threshold rule(row 4), loss correction(row 5), yielding increments of 3.88%, 5.27%, 1.71%
overall Dice respectively. Another observation is different type pseudo labels generation
model could obviously improved performance via our proposed approach. For example, in
“Source” setting, our approach(row 14) could gain extra 2.22% increment in overall Dice
than MetaCorrection(row 13), which reported the best performance on Decathlon adapt
to NCI-ISBI13 dataset. We further incorporate input and output space adaptation to gen-
erate pseudo labels in our approach and achieve the best result(row 18), in this setting,
all approach could have an increment around 1%-2% than other pseudo labels generation
models.

4.2.3 Comparison of performance gap between adapted setting and oracle setting

To evaluate the adaptation performance, we make the measurement that how much gap is
narrowed between the UDA model and fully-supervised model. Hence, we train the model
using ground-truths in the target domain as oracle results. We show the performance gap
under baseline, state-of-the-art and our proposed methods in Table 7, the characteristics of
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methods including three part: i) adaptation module, it denotes which methods were used
for domain adaptation; ii) segmentation module, it denotes which module were used for
segmentation; iii) pseudo label module, it denotes which methods was used for self-training.
We make a comparison between our proposed approach, a model train without using target
ground truth labels, i.e.Adapt, and a model train on target domain with target ground truth
labels, i.e.Oracle. Our approach achieves sub-optimal dice gap compare with oracle setting,
and just lower than MetaCorrection 0.36%.

4.3 Ablation study of our framework

4.3.1 CSKG with different loss ratio

We evaluate the effect of different hyper-parameter settings for λcskg in CSKG, as shown
in Table 6. We can found that CSKG strategy could consistently improve the segmentation
performance when the loss weight range around 0.4, it is also obversed that λcskg can not be
set too high, when λcskg = 1, i.e. just training universal segmentation network part with class
specific knowledge lead to performance degradation compare with λcskg = 0, i.e. without
class specific knowledge during universal network training. In addition, we conduct extra
study as shown in Table 5 last two row, we can see that after introduce the CSKG strategy
in Plain method(i.e. AdaptSegNet + MUNIT-MRI), the result achieve a higher performance,
increase the overall DSC by 1.17%. These results show that the CSKG strategy can indeed
perform as class aware feature regularization to the universal network by jointly training the
auxiliary branches and universal network (Table 6).

4.3.2 Experiments with different segmentation, feature adaptation and feature
extraction modules

Our approach isflexible that could be easily incorporatewith different segmentationnetworks,
feature extraction backbones and output space adaptation modules. Note that the single-level
adaptation denotes the output space adaptation module was only used in the last feature
map, the dual-level adaptation denotes the output space adaptation module was jointly used
in last feature map and the feature map before it. To find an optimal combination of these
modules for our framework,we comparewith different combination of different segmentation
networks, including DeepLab-v2 [42], U-Net [43] and CE-Net [35], with feature extraction
backbones including ResNet-34 and ResNet-101 [34]. And two type of feature adaptation
modes, including single-level and dual-level adversarial output space adaptation [11]. The
results of various modules combination are present in Table 7. The best result of our proposed
approach is CE-Netwith ResNet-34 backbone, with dual-level adaptation, it achieves 63.03%
in overall Dice.Moreover, comparewith the corresponding results in Oracle setting(i.e. target
domain fully supervised), it achieves the sub-optimal Dice gap. By the way, compare with
others, CE-Net with ResNet-34 backbone(row 3,4) also achieves the best result in oracle
setting.

4.3.3 Experiments with different FOVs and image size

The size of FOV would obviously effect the performance of prostate segmentation task [44],
because the region of prostate is too small compare with whole slice, especially for the PZ
segmentation. There are two dominant FOV in source and target domain, here we choose a
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Table 6 Comparison of proposed
method with different class
specific knowledge guidance
ratio, where “Plain” method
denotes we incorporate
AdaptSegtNet and MUNIT to
generate the pseudo labels for
target domain

Methods λcskg DSC
PZ TZ Overall

Ours 0 44.21 79.55 61.88

– 0.1 45.14 79.52 62.33

– 0.2 45.49 78.83 62.16

– 0.3 45.97 79.65 62.81

– 0.4 45.81 80.25 63.03
– 0.5 44.23 80.63 62.43

– 0.6 45.02 79.52 62.27

– 0.7 45.36 79.68 62.52

– 0.8 44.96 79.24 62.1

– 0.9 44.19 79.33 61.76

– 1 42.8 79.06 60.93

Plain – 39.53 72.63 56.08

Plain + CSKG 0.6 40.35 74.15 57.25

The best results highlighted in bold

smaller FOV, i.e. 160. Because of the difference of the intra-plane resolution, the pixel size
of 2D slice varying in 256, 320, and 400. We first keep the same FOV, i.e. 160, and crop or
interpolate three size images to a same size. As shown in Table 8, the result shows that when
the FOV size is 160, and the image size is 256, the performance is the best. It may because
when the size is set to 256, both images just need to crop or keep its original size, without
introducing any pseudo pixels via interpolation. Moreover, we zoom the FOV into 140, the
result shows the dice of PZ achieves best when FOV is 140, whereas TZ dice is degrade, the
reason might be: PZ is considerable small than TZ, so it is good for PZ segmentation when
FOV is small, the region of TZ could not be too small because it may need larger region
context information. Note that after cropping the original 2D slice to a smaller region around
prostate zone, the segmentation results improved, whereas the prostate zone in these slices

Table 7 Optimal segmentation module and adaptation module selection

Methods Adapt type Backbone Adapt Oracle Dice Gap

U-Net Single-Level ResNet34 56.31 73.63 −17.32

– Multi-level – 57.25 – −16.38

CE-Net Single-level – 62.31 78.82 −16.51

– Multi-level – 63.03 – −15.79

Deeplabv2 Single-level – 51.03 70.25 −19.22

– Multi-level – 52.56 – −17.69

U-Net Single-Level ResNet101 50.13 70.08 −19.95

– Multi-level – 50.91 – −19.17

CE-Net Single-level – 52.69 70.58 −17.89

– Multi-level – 54.28 – −16.3

Deeplabv2 Single-level – 57.44 74.21 −16.77

– Multi-level – 59.49 – −14.72

The first and second best results highlighted in bold and underline
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Table 8 Optimal FOV selection

Origin FOV Target FOV Origin size Target size DSC
(mm) (mm) (pixels) (pixels) PZ TZ Overall

160,200 140 256,320,400 224 46.06 78.76 62.41

160,200 160 256,320,400 256 45.81 80.25 63.03

160,200 160 256,320,400 320 45.12 78.38 61.75

160,200 160 256,320,400 400 44.21 75.13 59.67

were located in the center, it may expire when the scans are not standard, i.e. prostate zone
close to the margin of the slice. It may need to predict a bounding-box first, rather than simply
make a center crop operation.

5 Conclusion

In this paper, we propose a class-aware multi-stage unsupervised domain adaptation
framework to tackle model performance degradation when the train and test datasets are non-
identity distributed and there is no available annotations for model fine-tuning or retraining.
The proposed framework takes the heterogeneous and unlabeled image as input and outputs
central gland and peripheral zone masks, which makes the high availability of the pre-trained
deep-learning-based segmentationmethod to the heterogeneous data without introducing any
extra annotation. Our multiple-step adaptation strategy between heterogeneous domains and
class-specific knowledge guidance strategy for the class-imbalanced problem is the key to
a better result. We also introduce DSPA module for heterogeneous image segmentation to
encourage model to learn domain-specific representation. It not only does our framework
deliver good results, but also bridges the gap of different data distribution between train and
test scenarios. The experimental results demonstrate that our framework achieve superior
results to state-of-the-art UDA semantic segmentation approaches in prostate multi-zonal
segmentation task. In future work, we are going to extend our approach to more complex
medical images, such as 3D and multi-view prostate MRIs.
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