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Abstract
Nowadays the detection of fabric defects is an active research topic to detect and resolve 
the difficulties faced in processing fabric in printing and knitting in textile industries. The 
traditional approach of visual screening of human fabrics is exceedingly time consum-
ing and it is not reliable as it is much susceptible to human errors. There are two major 
issues in defect inspection like defect identification and classification in fabric. Automatic 
identification of defects is quite important in the current scenario. For enhancing the qual-
ity of the fabric, this paper proposes a Texture Defect Detection (TDD) algorithm. This 
TDD algorithm utilizes pre-processing for the extraction of luminance plane and Discrete 
wavelet frame decomposition for dividing the image into several subbands with same reso-
lution as input image. Statistical features are extracted using Gray Level Co-occurrence 
Matrix and these features are applied to Support Vector Machine for classifying the defec-
tive images. This improves the quality of texture segmentation and classification of visible 
defects. The experimental setup is done with the fabric conveyor and three high resolution 
industrial cameras acA4600-7gc for covering the entire width of the fabric while running. 
This TDD algorithm is developed under LabVIEW platform. Textile Texture Database 
(TILDA) multi-class dataset is used for testing the proposed algorithm. This algorithm is 
tested for 4 different classes of fabric defects including 2800 defective and 400 non defec-
tive fabric images. The success rate of detection of fabric defect is 96.56% with the images 
from the database. The validation results with real time fabric images show 97% of accu-
racy in the detection of defects in fabric images.

Keywords  Fabric defects,Texture defect detection · TILDA · Classifiers · LabVIEW

1  Introduction

The textile industry is the most important source of income and expenditure for many 
countries because of the basis for many consumables such as clothing, bags, furniture, and 
covers. Quality management in the textile industries is of vital importance because it can 
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avoid significant financial losses. The traditional quality control processes depend mainly 
on human intervention, but manual defect labeling systems detect 45–65 percent of fab-
ric defects. Therefore, automated defect detection systems are vital to reduce costs and to 
speed up the quality control process [1].

Detection of fabric defects in textile manufacturing industries is much essential. The 
traditional approach of quality control uses manual examination. This has to be done at 
the front of the machine, monitoring the fabric continually and resolving the issues during 
detection. Although the quality control inspector is properly qualified and experienced, the 
detection is likely to be limited in accuracy, consistency and efficiency in spotting the prob-
lems. The quality control inspector can be tired or bored, and hence uncertain and partial 
outcomes can be expected. In automated inspection, the challenge of detecting minor faults 
that locally breaks the homogeneity of texture patterns is resolved and various kinds of 
defects are classified. Different strategies for fabric defect inspection have been proposed, 
and such strategies are based on statistics, spectral, model learning, structural and hybrid 
approaches. Both frequency and spatial information is needed for fabric defect detection. 
Frequency information is required for fabric image recognition, and spatial information is 
needed for identifying the position of defect [1].

Quality assurance (QA) in manufacturing is vital to ensure products meet standards, yet 
manual QA processes are expensive and slow. Artificial Intelligence (AI) offers an appeal-
ing solution for automation and expert assistance. Convolutional Neural Networks (CNNs) 
are increasingly popular for visual inspection tasks. These networks excel in analyzing vis-
ual data, making them valuable for QA in manufacturing.

Explainable Artificial Intelligence (XAI) systems complement AI methods by providing 
transparency and interpretability. They offer insights into how AI makes decisions, crucial 
for quality inspections in manufacturing. XAI systems aid in understanding AI’s decision-
making processes, ensuring confidence in automated inspections while maintaining trans-
parency and interpretability, vital for QA in manufacturing.

Santhosh et  al. (2020)  [2] have described the ways to use a CNN to identify fabric 
defects. The repeated texture in the fabric is calculated by the autocorrelation value of a 
fabric image [2].

Meenakshi Garg et al. (2020) [3], H. Li et al. (2020) [4] have proposed the CNN based 
fabric defect detection. Deep learning approach is proposed for the detection of fabric 
defects using CNN. Here minimization of the mean square error was used because of its 
best performance.

Subrata Das et al. (2020) have developed an artificial feed forward neural network based 
defect detection. The system consists of two parts: image feature vectors and performance 
assessment of the attributes using a neural classifier to find faults [5].

Chetan Chaudhari et al. (2020) [6] have proposed the use of wavelet transform for defect 
detection. The wavelet transform is applied on the input image to extract the approximate 
sub-image of appropriate level. The energy of the sub images is calculated using Parseval’s 
theorem. The energy that deviates from the threshold value contains defects in the corre-
sponding input image.

Chang et al. (2018) have presented a templatebased correction technique for the identifi-
cation of fault. A fabric image is split into arrays by regularity and the impact of mismatch 
between arrays is also minimized. Non-defect image arrays are selected for a consistent 
reference to an average template [7].

Gharsallah et al. (2020) [8], have developed a fabric defect detection method based on 
the filtering technique. A filter combined with image features is proposed and the threshold 
value is used to isolate the defects.
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A new method based on deep fusion and non-convex called regulated Robust Princi-
pal Component Analysis (RPCA) is proposed by Yan Dong et al. (2020) to detect fabric 
defects. The study extracts deep multilevel functions to distinguish between complicated 
and diversified textile defects and the RPCA separates the defects from the backdrop. To 
improve the outcome of detection, a new RPCA based fusion approach is implemented [9].

In the same way, a fault detection method has been developed by Zhang et al. (2020) 
by using the saliency analysis of the Local Steering Kernel (LSK). The study converts 
an RGB image of the fabric into the colour space of Commission International Eclairage 
(CIE) L*a*b and then calculates LSK for the singular decomposition value in each colour 
channel. The cosine matrix correspondence of the desired defective maps is used for meas-
uring similarity among different LSK features. Finally, a multi-scale average fusion system 
is applied to integrate the defective maps in the final defective map in different scales [10].

Khowaja et  al. (2019) have proposed a fabric defect detection using histogram tech-
niques. In this, the defective fabric image is converted into a grayscale image and a well-
defined threshold function is utilized to find the fault from histogram [11].

The fabric defect detection problem is resolved under complex lighting conditions by 
Huang Wang et al. (2020). Recurrent Attention Model (RAM) is used to isolate defects, 
which is insensible to light and noise differences [12].

Liu et al., (2021) The study presents an upgraded YOLOv4 algorithm for fabric defect 
detection, integrating a novel SoftPool-based SPP structure that enhances accuracy by 6% 
while incurring only a 2% decrease in FPS. Employing contrast-limited adaptive histogram 
equalization for image enhancement fortifies the model against interference, demonstrating 
improved defect localization precision and speed. [24]. Jia et al. (2022) An advanced fabric 
defect detection system is introduced, employing transfer learning and an enhanced Faster 
R-CNN. By utilizing pre-trained Imagenet weights, integrating ResNet50 and ROI Align, 
and combining RPN with FPN, the system significantly improves detection accuracy, con-
vergence, and identification of small target defects. The cascaded modules and varied IoU 
thresholds further enhance sample distinction, demonstrating superior performance com-
pared to existing models and offering valuable insights for future fabric defect detection 
methodologies.. The study aims to fine-tune pre-trained models using adaptive learning 
techniques for improved accuracy in identifying different types of defects [25]. Alireza 
Saberironaghi et al., (2023) reviewed various deep learning techniques for defect detection 
for industrial products. Deep learning-based detection of surface defects on industrial prod-
ucts is discussed from three perspectives: supervised, semi-supervised, and unsupervised. 
Also, the common challenges and its solution for defect detection with respect to real time 
images were discussed [26].

In this paper, by considering the need for textile industries at Tirupur and Erode dis-
tricts, this TDD algorithm is proposed. This camera setup may be fixed on the top of the 
fabric conveyor and may be connected with the proposed system, so that this fabric defect 
detection process will be automated and it will reduce the manpower and the error rate. 
This TDD algorithm detects defects in a texture based on a texture classifier trained with 
texture samples without any defect. During inspection, the algorithm identifies the defec-
tive regions that do not match with the trained defect-free texture samples. The defects 
identified appear in the output image as blobs. The particle analysis tools in the National 
Instruments Vision library are utilized to analyze the properties of the defects detected.

The other sections of the paper are organized as follows. Section 2 details the proposed 
modelwith TDD algorithm. Section  3 describes the experimental setup of the proposed 
algorithm. Section 4 the results are analyzed with TILDA dataset and experimental dataset 
and Section 5 concludes the paper withfuture scope.
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2 � Proposed methodology

In general, the running fabric with may be around 1.5  m to 1.7  m. Each camera cover 
0.65 m width of the fabric. So in our experimental setup three cameras are fixed to cover 
the entire width of the fabric with 0.1 m overlapping. These three real time images are sent 
to the proposed TDD algorithm which is given in Fig. 1.

2.1 � TDD algorithm

The step-by-step procedure of the TDD algorithm is as follows.

Step 1: Acquire Image
Fabric images are acquired using a real time camera with the resolution of 4608 × 3288 
or from TILDA dataset (768 × 512).
Step 2: Pre-Process the Image
The TDD algorithm processes the gray scale image so that if the input image is a colour 
image, then its single plane (Red plane or Green plane or Blue plane) will be extracted.
Step 3: Locating Fault Area
The geometric pattern matching algorithm finds Region of Interest to find the fault area.

Fig. 1   Texture Defect Detection Algorithm
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Step 4: Discrete Wavelet Frame Decomposition.

•	 The defective image is divided into several subbands using wavelet frames [13]
•	 The subband image is of the same resolution as the input image and this improvesthe 

texture classification and the segmentation capability

Step 5: Statistical Feature Extraction

•	 TDD algorithm considers second order statistics for feature extraction
•	 The gray-level co-occurrence matrix (GLCM) is used to create the second-order statis-

tical parameters
•	 The algorithm divides each subband image into non-overlapping windows and evalu-

ates the coefficient distribution of each window using GLCM [I(x, y)]
•	 The GLCM calculates the probability of a pixel value that occurs at a distance vector �⃗d 

from another pixel value
•	 A texture image I(x, y) is an N × M matrix that consists of G different grey shades 

andthe displacement vector �⃗d = (dx, dy) is a G × G matrixas given in the Eq. (1):

where δ{true} = 1 and δ{false} = 0.
•	 The number in the element (i, j) of the GLCM matrix Pd(i, j) indicates the number of 

times the pixel level i occurs at the displacement vector �⃗d from pixel level j.
•	 The TDD extracts the five Haralick features such as entropy, dissimilarity, contrast, 

homogeneity and correlation from the GLCM calculated at each partition of the sub-
band texture given in Eq. (2) to (6) [25].

Where,
μi ∑GiP and μj = ∑GjP are the mean values of GLCM.

(1)P
d⃗
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∑M
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σi  ∑GP(1 – μi)2 and σj = ∑GP(1 – μj)2 are the variances of GLCM [14].

Step 6: Support Vector Machine Classifier

•	 SVM classifiers find a separating or a hyperplane surface that is positioned as far as 
it is feasible in any one ofthe twoclassesfromthe closestdatapoint

•	 The classifier considers the spatial distribution information for each sample to 
determine whether the sample belongs to the known class or not

•	 The objective of training is to reduce the error function:

Subject to WTK(Xi) ≥ ρ – ξi; ξi ≥ 0, i = 1... l;ρ ≥ 0.
where,
W is the hyperplane’s normal vector to the origin, v(nu) is the parameter for the upper 

bound and lower bound of error and vector classesand ξ is the slack variable [15].

Step 7: If there is no defect in the texture image, go to Step 10
Step 8: If there is a defect in the texture image, segment the defect in the texture 
image
Step 9: Indicate the defect area in the texture image and go to Step 10
Step 10: Continue the same process with the next texture image

2.2 � Dataset

This proposed algorithm is initially tested with the TILDA dataset which is a standard 
dataset for fabric defects. After validating this algorithm, it tested with the real time 
captured data. In TILDA dataset four primary classes (c1-c4) are given and are aligned 
according to the surface structure. For every class, two representative (r1 & r2 or r2 & 
r3 or r1 & r3) subgroups are included. The details of this dataset’s main class are given 
in Table  1. Each subgroup contains 50 faultless images (e0) and seven error classes 
(e1-e7). The images are in Tag Image File Format (TIFF) and have a dimension of 
768 × 512 pixels. For each image, an accompanying text with a brief description of the 
Error (location and size) is provided in the dataset itself. The TILDA dataset contains 
a total of 3,200 images, 2,800 text reads with error descriptions and a data volume of 
1.2 Giga Bytes [16]. Figure  2 depicts the directory structure of the dataset. Table  2 
describes each sub-error class and the type of fault in the mainclass. The images in the 
dataset are designated to the CREN.tif convention and are described in Table 3.

For example, the image in the TILDA dataset c3r1e0n40.tif represents the class 3 
(c3) with the representative subgroup 1 (r1), the error class 0 (e0) and the 40th image 
[16].

In this paper, totally, 3200 images are used for training and testing purposes with 
the error class from e0–e7 from the TILDA dataset which is described in Table 4. The 
sample images from the four main classes of the TILDA dataset are provided in Fig. 3.

(7)
min

w, b, �
=

1

2
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Fig. 2   Directory structure of the TILDA dataset

Table 2   Description of the error class and the type of fault Zhang et.al.,(2015)

Error Class Type of fault

e0 No defects in the fabric
e1 Mechanical grievance causes holes and cuts in the material
e2 Oil corners and color defects
e3 Thread error, compaction of threads (without mechani-

cally caused cracks). absence of individual threads in the 
fabric

e4 Foreign bodies on the tissue (called flight)
e5 Wrinkles in the tissue (without mechanical damage)
e6 Lighting has been changed
e7 A distortion from the tilting of the camera and changes in 

the distance from the camera to the test

Table 3   Conventional symbols Conventional symbol Explanation

C Indicates the main class number
R Indicatesthe representative sub-

group of the class number
E Indicatesthe error class number
N Indicates the image number
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Table 4   Number of images in 
TILDA data Zhang et. al., (2015)

Main Class Representative 
Subgroups

Error Class Number of images

c1 r1 e0-e7 8 × 50 = 400
r3 e0-e7 8 × 50 = 400

c2 r2 e0-e7 8 × 50 = 400
r3 e0-e7 8 × 50 = 400

c3 r1 e0-e7 8 × 50 = 400
r3 e0-e7 8 × 50 = 400

c4 r1 e0-e7 8 × 50 = 400
r3 e0-e7 8 × 50 = 400

Total 3200

(a) c1r1e5n22.tif

(b) c2r2e4n27.tif

(c) c3r1e4n4.tif

(d) c4r1e5n29.tif

Fig. 3   Sample images from c1, c2, c3 and c4 classes with the corresponding image name given in TILDA 
data set. (a) image with a single fold across the fabric. (b) a medium-sized piece of paper on the top of the 
fabric, (c) image with single thread across the fabric and (d) image with a twofold across the fabric
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3 � Experimental setup

The experimental setup is shown in Fig. 4 for the proposed detection of fabric defect 
and shade variation using TDD algorithm. Experiments are conducted using LabVIEW 
software, an Industrial Controller 3173—1P20 with the Intel Core i7-5650U @ 2.2 GHz 
and Xilinx Kintex-7 XC7K160T Processor. Three acA4600-7gc Basler cameras arecon-
nected to capture the image with the resolution of 4608 × 3288. They are connected to 
the controller using Ethernet cable and powered by a basler power cable.

3.1 � Working of the experimental setup

The working table consists of a motor with roller which moves the fabric continuously 
with a constant speed on the working table. The images of the fabric are captured by the 
three Basler Industrial cameras with 7 frames per second. The three cameras cover the 
whole breath (1.5 m) of the fabric. Then the images captured are fed continuously to the 
industrial controller which processes them using the TDD algorithm. The defects of the 
fabric detected are continuously displayed in the monitor.

Fig. 4   Experimental setup for the detection of faults in fabrics
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4 � Results and discussion

4.1 � Results for TILDA dataset

The confusion matrix is calculated by applying the TDD algorithm on TILDA dataset.
The performance parameters utilized are:

Sensitivity  It is the accurate determination of bad samples. It is also known as a recall it is 
represented in Eq. (8).

Specificity  It is the proper detection of non-defect samples as shown in Eq. (9):

Detection Success Rate (DSR)  It demonstrates how the model anticipates proper outputs 
on a consistent basis. It is referred to as Detection Accuracy (DA) and can be calculated 
using the Eq. (10):

False Alarm Rate (FAR)  It is likely that a false alarm will be raised if the true value is 
negative.It can be calculated using Eq. (11):

Detection Rate (DR)  This is a result of the model that predicts the positive class accu-
rately. Equation (12) can be used to compute DR:

Positive Predictive Value (PPV) or Precision  It gives the number of correct outputs out 
of all the correctly predicted positive values by using the TDD algorithm.It determines 
whether analgorithm is reliable or not.For calculating the precision, Eq.  (13) is utilized 
[17].

(8)Sensitivity (SE) =
TP

TP + FN

(9)Specificity (SP) =
TN

TN + FP

Detection Accuracy (DA) = DSR =
Total No. of valid prediction by the classifier

Total No. of prediction by the classifier

(10)DSR =
TN + TP

TN + FP + FN + TP

False Alarm Rate (FAR) =
No. of samples detected to be defective

No. of defect-free image samples

(11)FAR =
FP

FP + FN

Detection Rate (DR) =
No. of defective image samples detected correctly

No. of defective image samples

(12)DR =
TN

TP + TN
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Totally, 50 images from the error free e0 of c1 and r1 class and 350 images from the 
error class e1-e7 from the same c1 and r1 class are testedand the confusion matrixis 
obtained. The same process is repeated for the remaining classes c2-c4 and the confusion 
matrix is given in Table 5.

The validation results of c1 are shown in Fig. 5 and that of c3 are shown in the Fig. 6. 
The Figs. 5 and 6 shows the incorrect results as 18/400 and 9/400 respectively. The param-
eters are evaluated using Eqs. (8) to (13) and shown in Table 5 for the TILDA dataset.

Furthermore, Table 6 depicts the highest accuracy scores of 95.50%, 96.25%, 97.75% 
and 98% for c1, c2, c3 and c4 texture class respectively based on TILDA dataset using the 
proposed algorithm with SVM classifier. The average accuracy of 96.65% is achieved by 
using the algorithm. The defect detected image with the source images of c1 and c2 classes 
are shown in Fig. 7. The defect detected is covered with the red outline.

The TDD algorithm works under LabVIEW software environment which is a new plat-
form utilized for detection of the fabric defect. The comparison of the existing defect detec-
tion techniques with the proposed model is given in Table 7. In most of these studies, self-
made datasets have been employed, but TILDA, which has a public and extensive database, 
has been the most regularly used. Table  7 compares the accuracy rates of the proposed 
model with the TILDA based investigations. Based on the volume of classes and images, 
it is observed from the results that the proposed algorithm is better than the existing ones.

In addition, the proposed approach clearly appears to be the most comprehensive study 
using all classes and images in the TILDA dataset. In addition to all these, Zhang et  al. 
(2015), Salem and Nasri (2011), Salem and Abdelkrim (2020), and Deotale and Sarode 

(13)Positive Predictive Value (PPV) or Precision =
TP

TP + FP

Table 5   Confusion matrix for 
TILDA dataset

Main Class Representative 
Subgroups

Number of Error 
Class Images

Confusion 
Matrix for 400 
images

c1 r1 e0 = 50
e1-e7 = 350

[
333 1

17 49

]

r3 e0 = 50
e1-e7 = 350

[
343 12

7 38

]

c2 r2 e0 = 50
e1-e7 = 350

[
344 10

6 40

]

r3 e0 = 50
e1-e7 = 350

[
342 7

8 43

]

c3 r1 e0 = 50
e1-e7 = 350

[
349 8

1 42

]

r3 e0 = 50
e1-e7 = 350

[
344 9

6 41

]

c4 r1 e0 = 50
e1-e7 = 350

[
342 2

8 48

]

r3 e0 = 50
e1-e7 = 350

[
345 3

5 47

]
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(2019) from previous studies are used traditional feature extraction such as (GLCM, LBP, 
etc.) and classifier (SVM, Neural Network, etc.) methods for detection of texture defect. 
The highest accuracy among these studies is achieved at 97.6% by Zhang et al. On the other 
hand, Jeyaraj and Nadar (2019), Jeyaraj and Nadar (2020), and Jing et al. (2019) are used 
pre-trained deep models such as AlexNet, ResNet512, and AlexNet, respectively. The highest 
accuracy among these studies is achieved at 98.5% by Jeyaraj and Nadar (2020)). Accord-
ing to all these results, it has been determined that TDD algorithm are more successful than 
conventional methods, considering the number of classes and images. In each of these other 
studies that used the TILDA dataset, a certain number of classes and images are used rather 
than opting to use all classes and texture images. However, the proposed model, which is 
tested using all classes and images from the TILDA dataset, and achieved a superior level of 
success when compared to the existing studies based on fewer classes and images.

Fig. 5   Validation results of class c1 with subgroup r1

Fig. 6   Validation results of class c3 with subgroup r1
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Table 6   Performance parameters 
for TDD algorithm

Main 
Class

Representative
Subgroups

SE SP DA FAR DR PPV

c1 r1 0.87 0.74 0.9550 0.2576 0.13 0.95
r3 0.90 0.84 0.9525 0.1556 0.10 0.98

c2 r2 0.90 0.87 0.9600 0.1304 0.10 0.98
r3 0.89 0.84 0.9625 0.1569 0.11 0.98

c3 r1 0.89 0.98 0.9775 0.0233 0.11 1.00
r3 0.89 0.87 0.9625 0.1277 0.11 0.98

c4 r1 0.88 0.86 0.9750 0.1429 0.12 0.98
r3 0.88 0.90 0.9800 0.0962 0.12 0.99

Average Value 0.89 0.86 0.9656 0.1363 0.11 0.98

Fig. 7   Defect detected image with the source image of Class c1 and c2 (a) the source image c1r1e4n11.tif 
from Class c1 (b) the defect detected c1r1e4n11.tif image with the defect marked in red line (c) the source 
image c2r2e1n18.tif from Class c2 and (d) the defect detected c2r2e1n18.tif image with the defect marked 
in red



65767Multimedia Tools and Applications (2024) 83:65753–65772	

1 3

Ta
bl

e 
7  

C
om

pa
ris

on
 o

f t
he

 re
su

lts
 o

f p
ro

po
se

d 
m

od
el

w
ith

 th
e 

pr
ev

io
us

 m
od

el
s

Re
fe

re
nc

es
M

et
ho

ds
D

at
a 

Se
t

N
um

be
r o

f e
rr

or
 c

la
ss

 a
nd

 Im
ag

es
A

cc
ur

ac
y 

Sc
or

e

Jin
g 

et
 a

l.,
 2

01
9 

[1
8]

Fi
ne

-tu
ne

d 
A

le
xN

et
C

1-
R

1
6 

er
ro

r c
la

ss
 a

nd
 Im

ag
es

97
.2

%
Zh

an
g 

et
 a

l.,
 2

01
5 

[1
9]

LB
P,

 G
LC

M
 a

nd
 N

eu
ra

l N
et

w
or

k
C

1-
R

1 
an

d 
C

1-
R

2
6 

er
ro

r c
la

ss
 a

nd
 6

00
 Im

ag
es

97
.6

%
Sa

le
m

 &
 N

as
ri,

 2
00

9 
[2

0]
LB

P,
 G

LC
M

 a
nd

 S
V

M
-

7 
er

ro
r c

la
ss

 a
nd

 4
80

 Im
ag

es
86

.7
%

Sa
le

m
 &

 A
bd

el
kr

im
, 2

02
0 

[2
1]

G
LC

M
, L

B
P,

 L
PQ

, a
nd

 S
V

M
-

5 
er

ro
r c

la
ss

 a
nd

 4
80

 Im
ag

es
97

.2
5%

Je
ya

ra
j &

 N
ad

ar
, 2

02
0 

[2
2]

Re
sN

et
51

2 
ba

se
d 

C
N

N
 fe

at
ur

es
, K

ul
lb

ac
k 

Le
ib

le
r 

D
iv

er
ge

nc
e 

(K
LD

) a
nd

 M
ar

ko
v 

R
an

do
m

 F
ie

ld
 

(M
R

F)

C
1-

R
2,

 C
2-

R
2

6 
er

ro
r c

la
ss

98
.5

%
 a

nd
 9

6.
5%

Je
ya

ra
j &

 N
ad

ar
, 2

01
9 

[2
3]

A
le

xN
et

 b
as

ed
 M

ul
ti-

sc
al

in
g 

de
ep

 C
N

N
-

6 
er

ro
r c

la
ss

 a
nd

 1
85

0 
im

ag
es

96
.5

5%
D

eo
ta

le
 &

 S
ar

od
e,

 2
01

9 
[2

4]
G

LC
M

, G
ab

or
 W

av
el

et
, a

nd
 R

an
do

m
 D

ec
is

io
n 

Fo
re

st
-

6 
er

ro
r c

la
ss

84
.5

%
Pr

op
os

ed
 M

od
el

TD
D

 A
lg

or
ith

m
C

1 
(R

1,
 R

3)
, C

2 
(R

2,
 R

3)
 

C
3 

(R
1,

 R
3)

, a
nd

 C
4 

(R
1,

 
R

3)

8 
er

ro
r c

la
ss

 a
nd

 3
20

0 
im

ag
e

96
.5

6%



65768	 Multimedia Tools and Applications (2024) 83:65753–65772

1 3

4.2 � Results of experimental setup

The validated TDD algorithm with TILDA dataset is applied to the real experiment and 
the performance is reported. The working model of the fabric defect detection with the 
industrial setup and the controller assembly is shown in Fig. 8.

Totally, 40 error free textile images and 60 error images are tested in real time and 
confusion matrix is plotted and shown in Table  8. The average accuracy of 97% is 
achieved using the proposed TDD algorithm.

A sample defect identified image is shown in Fig. 9. The inspection interface of the 
LabVIEW environment contains three main areas: Results panel,Inspection Statistics 
panel andDisplay window.

The shade variation value and the maximum defect detection area are 69 & 1.6 mm^2 
respectively. Results panel list the steps in the inspection by name. For each step in the 
inspection, it displays the step type and results (PASS or FAIL). Likewise, the status 
of PASS in shade variation should have the histogram value of 99 to 100. The status of 
PASS in the maximum defect detection area should have the value of 0.0  mm^2. For 
Fig. 9(a) it is PASS and for Figs. 9(b) & 9(c) it is FAIL. The display window displays 
the image under inspection and the status of the defect. For Figs. 9 a,b and c the defected 
fabric images with defect indicated in red outline are displayed. The shade variation 
value and the maximum defect detection area values are also displayed. Inspection sta-
tistics panel contains the processing time of the inspection. From Figs. 9 (a, b and c), 
it is 0.24 ms, 0.23 ms, and 0.23 ms respectively. So, the average time of inspection is 
0.23 ms for detecting the defect. Thus, the TDD algorithm with LabVIEW environment 
efficiently detects the defects in the fabric.

Fig. 8   Working model for fabric 
defect detection with industrial 
setup (a) Industrial Controller 
3173—1P20 (b) acA4600-7gc 
Basler camera and (c) Fabric 
Conveyor

a b 

C 
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1. PASS status indicates that there is no shade variation in the fabric (Histogram = 99)  
2. PASS status indicates that there is no defect in the fabric(Max. Defective area =0.0 mm^2) 
3. PASS status for the fabric image with no defect 

(a) 

 
1. FAIL status indicates the shade variation in the fabric (Histogram = 70)  
2. FAIL status indicates the defect in the fabric (Max. Defective area = 5.6 mm^2 ) 
3. FAIL status for the fabric image with defect 

(b) 

3

1 2

3

1 2

1. FAIL status indicates the shade variation in the fabric (Histogram = 69)  
2. FAIL status indicates the defect in the fabric (Max. Defective area = 1.6 mm^2 ) 
3. FAIL status for the fabric image with defect 

 (c) 

3

1 2
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5 � Conclusion and future work

In this paper, a SVM classifier based on TDD algorithm with LabVIEW environment is 
proposed to characterize visual fabric defect detection. The TDD algorithm converts 
the defect image into gray scale image, and then the image is segmented using wavelet 
decomposition method. Haralick features are extracted using GLCM method. The perfor-
mance is calculated using the SVM classifier. To validate the TDD algorithm, the multi-
class TILDA dataset is employed. Comprehensive validation results are 95.50%, 96.25%, 
97.75% and 98% for c1, c2, c3, and c4 class respectively. Furthermore, the TDD algorithm 
has the mean overall precision score of 96.56% for all the four classes.This proposed work 
is limited to the running fabrics with or without print on the entire fabric with four main 
classes of fabric defects. Future work may be extended for all types of defects and all types 
of fabrics including T-shirt printing.

Data availability  All the details about data availability are mentioned within this manuscript.
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