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Abstract
The commonly used automatic segmentation algorithms often have over-segmentation and 
error-segmentation problems when segmenting conglutinated bone fragments in computed 
tomography (CT) images. And the end face details of the fragments are lost in this process. At 
present, bone fragments are often manually segmented by doctors. This increases the workload 
of doctors and takes low efficiency and poor accuracy in bone segmentation. We propose an 
automatic bone fragment segmentation algorithm based on morphology to segment the con-
glutinated and separated bone fragments and reconstruct them in 2D and 3D spaces. The pixel 
classification and clustering method based on morphology are proposed in in the algorithm 
to identify the pixels in the fracture images. And a concave points detection method is pro-
posed to segment the conglutination area of the fractured bone. This algorithm and two other 
commonly used algorithms are used in the experiment to segment the three typical fracture 
images. The segmentation results are quantitatively analyzed to demonstrate the advantages of 
the morphology algorithm. The morphology algorithm performs well in the metrics of Accu-
racy (.93 ± .07), Sensitivity (.92 ± .08), Dice coefficient (.92 ± .08) and Mean intersection over 
union (MIoU) (.92 ± .07). The segmentation results of this algorithm are closest to the manual 
segmentation results of doctors compared to the other two algorithms. We have demonstrated 
that the algorithm proposed in this paper has good segmentation accuracy for separated and 
conglutinated bone fragments. This algorithm significantly improves the segmentation accu-
racy and efficiency of bone fragments under complex fracture conditions.

Keywords  Computer tomography · Medical image processing · Bone fragments 
segmentation · Morphology segmentation algorithm · 3D model reconstruction

1  Introduction

Recently, our team is developing a robot surgery system for the reduction of lower limb 
fractures. The fracture CT images segmentation and reconstruction are the foundation 
for preoperative planning in robotic surgery systems [1–3]. At present, bone fragment 
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segmentation in CT images is usually segmented manually by doctors. This increases the 
workload of doctors and results in low efficiency of segmentation and reconstruction. The 
segmentation accuracy is also affected by subjective factors of doctors [4, 5]. Therefore, 
incorporating bone fragments segmentation and reconstruction algorithms into the surgi-
cal system to guide surgeons in selecting the optimal parameters to automatically complete 
image processing tasks is an effective method to solve these problems.

Using computer algorithms to segment bones has always been a research hotspot in the 
medical image processing field. Most of the fracture image segmentation algorithms cur-
rently studied focus on complete bone segmentation [6–8]. However, the position and pos-
ture of bone fragments demonstrate specificity and randomness under the muscle traction 
after fracture [9]. If the bone fragments are separated from each other, we could segment 
the bone fragments using these algorithms [10, 11]. If the bone fragments are staggered 
and conglutinated with each other, because the density of bone fragments is almost the 
same, these bone fragments in the CT images are mostly integrated, as shown in Fig. 1. 
Which poses a significant challenge to the segmentation algorithms.

At present, there are few studies on the segmentation of conglutinated bone fragments. 
For example, Liu et al. [12] introduced a system for assessing the degree of injury in tibia 
comminuted fractures. The system can segment the conglutinated bone fragments at the 
tibia joints and calculate the surface area of the bone fragments to determine the degree of 
fracture. Zhang et al. [13] proposed a bone fragments segmentation algorithm. The algo-
rithm divides the bone fragments from the conglutination region based on erosion and 
expansion operations and improves computing efficiency through GPU acceleration tech-
nology. Shadid and Willis [14, 15] proposed an improved watershed algorithm. The algo-
rithm segments cortical bone and cancellous bone from surrounding tissues by setting the 
prior pixel value threshold. The remaining bone pixels are classified into corresponding 
fragments according to the probability function. This algorithm can separate conglutinated 
bone fragments from most fracture images. However, for some special fracture states, such 
as the case where cortical bones of bone fragments conglutinate together, the segmentation 
results may be incorrect.

Fig. 1   Perspective view of fracture area. The figure shows the crisscross and fit situation of the bone frag-
ments in 3D and 2D spaces after fracture
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Through communication with orthopedic experts and literature review, we can find that 
orthopedic doctors often combine clinical experience with the shape of bone fragments in 
fracture images to determine different areas of bone fragment [16, 17]. This is similar to 
the target segmentation process of image recognition technology in the engineering field 
[18]. In this process, the pixels are labeled to segment targets in images by morphological 
methods: pixel classification and clustering [19, 20]. In addition, concave point detection 
is often used to segment conglutinated targets in many fields, such as biological field [21], 
mining field [22], and industrial manufacturing field [23]. In the medical field, this method 
is used to segment cells and organs [24, 25]. Therefore, pixels classification and clustering 
method as well as concave point detection method are the feasible approach to segment 
conglutinated bone fragments in fracture images.

Based on the study above, this paper proposes an automatic segmentation algo-
rithm for bone fragments segmentation in lower limb fracture cases. In order to 
facilitate the system operation of fracture image processing by doctors, the algorithm 
guides users to obtain the optimal image processing parameters through several sim-
ple steps, thereby achieving automatic segmentation and reconstruction of preoper-
ative images of patients. Therefore, this algorithm enables clinical doctors without 
image processing technology and computer programming foundation to complete 
complex image processing tasks.

2 � Methods

The morphological segmentation algorithm proposed in this paper achieves the extraction 
of bone fragment targets by filtering and classifying pixel points in CT images. This over-
comes the drawback of traditional segmentation algorithms relying solely on pixel values 
for object recognition. To achieve this goal, the algorithm processes the pixels in the image 
in four steps.

In the first step, the pixels in original images are classified into different point 
sets based on their pixel values and positions. In the second step, the bone frag-
ments boundary is formed by detecting and connecting concave points in the bone 
fragments conglutination area. In the third step, the pixels within the boundary are 
divided into proximal bone fragment pixels and distal bone fragment pixels through 
the region filling. In the fourth step, the pixel points on the boundary are collected 
into the proximal and distal bone fragments through pixel clustering, and the bone 
fragments segmentation task is completed. The implementation process of this algo-
rithm is shown in Fig. 2.

Several user-defined parameters are required in the four steps: (1) Bone pixel prior 
threshold Tbone, (2) Secondary boundary point classification threshold TS-boundary, (3) 
Concave point detection radius Rconcave, (4) Concave point detection threshold Tconcave, 
(5) Concave point filtering radius RS-concave.

2.1 � Pixels classification

In this step, the pixels in the original CT image are classified into boundary point set 
(B), background point set (BG), secondary boundary point set (S) and interior point set 
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(I) by the algorithm based on threshold Tbone and TS-boundary. This step includes three 
stages. Firstly, the bone pixels in the original CT image are filtered out based on the 
threshold Tbone. Then, the filtered bone pixels are classified into different pixels based 
on their pixel value and position. Finally, secondary boundary points are filtered out 
based on the threshold TS-boundary.

In the first stage, the value of Tbone is estimated by the prior distribution of bone pixel 
value. The prior distribution of human bone and non-bone tissue as shown in Fig.  3. 
Bone pixels have higher pixel values than non-bone tissue in CT images. Thus, bone 
pixels can be filtered out from non-bone tissue by setting an appropriate threshold value. 
If the value of the pixel is greater than Tbone, it is classified as a bone pixel. If the value 
of the pixel is less than Tbone, it is classified as a background pixel and the value of the 
pixel is set to 0.

In the second stage, the 8-neighborhood connection value is calculated to determine 
the position of the bone pixel as shown in Eq. (1). And classify the pixel into the follow-
ing categories based on its connection value.

where N(8)
c
(x) is the 8-neighborhood connection value of the x-position pixel, k is the num-

ber of pixels around the x-position pixel in 8-neighborhood, M = [0, 2, 4, 6], I(x) = 1 − I(x)

.when k + 2 = 8, x8 = x0.

(1) Isolated point: If the connection value of a pixel N(8)
c
(x) = 0 and pixels’ value in 

8-neighborhood are all 0, the pixel should be called isolated point. Its pixel value is 
set to 0.

(1)N(8)
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Fig. 2   The processing flow of the morphological segmentation algorithm. The algorithm completes the 
bone fragment segmentation task through four steps: pixel classification in the original CT image, concave 
points detection and connection, filling the bone fragments area and pixel clustering
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(2) Interior point (I): If the connection value of a pixel N(8)
c
(x) = 0 and pixels’ value 

in 8-neighborhood are all 1, the pixel is classified as the interior point.
(3) Boundary point (B): If the connection value of a pixel 1 ≤ N(8)

c
(x) ≤ 4 , the pixel is 

classified as the boundary point.

In the third stage, secondary boundary points are filtered out from the point 
set I according to TS-boundary. The number of interior points in 8-neighborhood 
around the pixel is used to determine whether the pixel is a second boundary 
point. If the number of boundary points in the 8-neighborhood is greater than or 
equal to TS-boundary the point should be called second boundary point and classi-
fied into the point set S.

After this step, non-bone tissue pixels in the original CT image are removed, and 
bone pixels are classified into boundary points, secondary boundary points, and interior 
points. And the boundary lines formed by the boundary point set and the secondary 
boundary point set can segment bone fragments that are separated or slightly conglu-
tinated (The width of the conglutination area is only four pixels) to each other. But for 
bone fragments with severe conglutination, the next steps of concave point detection 
and connection are required.

2.2 � Concave point detection and connection

For CT images with severe bone fragment conglutination, only identifying the boundary 
points and secondary boundary points of the bone fragment is not sufficient to form the 
bone fragment boundary. Moreover, repeated boundary detection is not conducive to the 
recognition and segmentation of slender and small bone fragments. Through communica-
tion with orthopedic doctors, they judge the boundary of bone fragments through expe-
rience, and the boundary of bone fragments is often on the connecting line of concave 
points. Therefore, this algorithm is used to search for concave points on bone boundaries 
through concave point detection. And the concave point connection is used to connect two 
concave points to form the bone fragment boundary. This step includes three stages. Firstly, 

Fig. 3   Fracture CT image segmentation and pixel value histogram. Figure (a) is the image segmentation 
result. Figure (b) is the pixel value histogram of the fracture CT image. When the blue line in Figure (a) 
passes through the bone fragment twice, two peaks are clearly visible in Figure (b)
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the concave points on the bone boundary (point set S) are detected according to the search 
radius Rconcave and threshold Tconcave. Then, correct concave points are filtered out based on 
the search radius RS-concave. Finally, the correct concave points are connected to form bone 
fragment boundaries.

Compared with the other points in the point set S, the number of background pixels in 
the area centered on the concave point is much smaller than that of other points, as shown 
in Fig. 4. Therefore, in the first stage, the number of background points is counted in the 
area with a radius of Rconcave and centered on the point in the point set S. If the number of 
background points is less than Tconcave, the pixel will be classified into the concave point 
set (C). On account of the broken edge of the bone fragments, there are much interference 
concave points are detected, as shown in Fig. 5. These interference points will hinder the 
correct concave points connection. Thus, these points should be filtered out.

In the second stage, any other concave points are detected in the area with radius 
RS-concave to determine whether the center point is a correct concave point. If there is, the 
point is correct concave point and retained in the point set C; If there is not, the point is 
classified to the point set S. Due to the different fracture situations of different patients, the 
value of RS-concave needs to be adjusted according to the specific circumstances.

In the third stage, the 4-path connecting the concave points are searched in the point 
set I by the 4-neighborhood search method, the pathfinding method as shown in Fig. 6. 
This method includes 8 search directions. Due to the long program, the figure only 
shows the starting point located at the bottom left of the target point as an example. The 
pixels on the path are classified into point set S.

After this step, boundaries have been formed between the conglutinated bone areas in 
the original CT image. But currently, the bone areas in the image are all interior points. 
These interior points need to be classified into proximal bone fragment and distal bone 
fragment.

Fig. 4   The principle of concave 
point detection. The number of 
interior points in the area cen-
tered around the concave point is 
much higher than that in the area 
centered around the boundary 
point



67007Multimedia Tools and Applications (2024) 83:67001–67022	

1 3

Fig. 5   The fracture image after 
concave point detection. The 
white points are concave points, 
the concave points marked by 
black circles are correct concave 
points, and the rest are interfer-
ence concave points. Due to the 
unsmooth boundary of the bone 
fragment, some of the detected 
concave points are not on the 
boundary of the bone fragment 
conglutination area

Fig. 6   The 4-path pathfinding method and algorithm. Figure (a) shows the pathfinding program diagram. 
Due to the long program, one of the cases is used as an example. Figure (b) shows the schematic diagram of 
path finding, the red arrow indicating the calculated 4-path
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2.3 � Closed area filling

Through the above two steps, the bone area in the CT image can be divided into two 
enclosed areas. This step uses flood filling method to classify the pixels in the two 
enclosed areas into proximal fragment point set (P) and distal fragment point set (D) 
based on the proximal and distal bone fragment seed points.

This step starts from the seed point and searches for interior points in the 6-neighbor-
hood around the pixel, as shown in Fig. 7, and classifies the searched interior points into 
point set P or point set D. Then use these points as the starting points to continue the 
search operation, until all the interior points in the images are classified into point set P 
or point set D.

After this step, the bone area in the original CT image has been preliminarily divided 
into proximal and distal bone fragments. Only the pixels in the boundary point set and 
secondary boundary point set in the image have not been classified.

2.4 � Boundary points and secondary boundary points clustering

After the above three steps, the pixels in the image are classified into boundary point 
set, secondary boundary point set, proximal bone fragment point set and distal bone 
fragment point set. This step classifies the points in the boundary point set and second-
ary boundary point set into the proximal bone fragment point set and the distal bone 
fragment point set by calculating the distance between the points in the proximal and 
distal bone fragments separately.

In this step, the pixels in the point set B and point set S are classified according to 
the minimum Euclidean distance between the pixels and the bone fragment areas, as 
shown in Fig.  8. The calculation rule is shown in Eq.  (2). If the minimum Euclidean 

Fig. 7   The 6-neighborhood layout, the red point is seed point, the black points are adjacent points of the 
seed point. When calculating, start with the red point and search for interior points within the surrounding 
6 black points
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distance between the pixel and the proximal bone fragment area is less than that of the 
distal bone fragment area, the pixel is classified into point set P. Conversely, the pixel is 
classified into point set D. After this step, the bone pixels in the original CT image are 
divided into proximal and distal bone fragments.

where L (x, P) is the minimum Euclidean distance between the pixel x and the proximal 
bone fragment area, L (x, D) is the minimum Euclidean distance between the pixel x and 
the distal bone fragment area. The calculation of the two is shown in Eqs. (3) and (4).

where xpj and ypj are the coordinate of pixel in the point set P, xdj and ydj are the coordinate 
of pixel in the point set D.

(2)
{
Ximage|x ∈ B ∪ S

}
=

{
x ∈ P L(x, P) ≤ L(x, D)

x ∈ T L(x, P) > L(x, D)

(3)L
(
xi,Pj

)
=

min

∀xi ∈ B ∪ S

∀pj ∈ P

{√(
xi − xpj

)2
+
(
yi − ypj

)2
}

(4)L
(
xi,Dj

)
=

min

∀xi ∈ B ∪ S

∀dj ∈ P

{√(
xi − xdj

)2
+
(
yi − ydj

)2
}

Fig. 8   An example of how to classify the pixels in point set B and S. Calculate the distance between the 
point and all pixels in the area, and take the minimum value to represent the minimum distance between the 
point and the area. Determine the classification of the point by comparing its minimum distance from two 
areas
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3 � Results

The clinical datasets used in the experiment are provided by the Department of Traumatol-
ogy and Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese 
Medicine. CT data was obtained using a GE Revolution CT scanner. Each volume data-
set consisted of 657–809 axial slices, with a thickness of 0.5–0.625mm and a scanning 
interval of 0.625mm. Each case image included images of fractured and unfractured limbs. 
The dataset used in the experiment included three sets of fracture cases, which were from 
a 33-year-old male with tibial fractures, a 33-year-old male with fibular fractures, and a 
66-year-old female with femoral fractures. These fracture cases are quite representative. 
In dataset 1, the fractured ends of adult male fibula fractures are relatively fragmented, 
and the small cross-sectional area of the fibula poses a great challenge for segmentation 
of fractured bone targets. In dataset 2, the tibia of adult males is relatively thick, and after 
a fracture, there is a different degree of conglutination between the two ends of the frac-
tured bone, which can represent a typical adult male long bone fracture. In dataset 3, adult 
female femur fractures occurred near the trochanter. Due to the thin bone mass at the tro-
chanter and the patient’s age, the fractured bone image at the fracture site is very slender, 
with only two pixels at the thinnest area, which is very challenging for segmentation of 
fractured bone targets.

C +  + program is designed for segmentation algorithm implementation and model visu-
alization based on the Insight Segmentation and Registration Toolkit (ITK) and the Visu-
alization Toolkit (VTK). The ‘ground truth’ data set is set to compare and evaluate the 
accuracy of segmentation results generated by segmentation algorithm and this dataset is 
segmented manually by orthopedic experts. As two commonly used segmentation algo-
rithms, Otsu threshold segmentation algorithm and watershed segmentation algorithm are 
used as a comparison of morphology segmentation algorithms in experiments [26, 27]. 
The segmentation parameters of different segmentation algorithms for three datasets are 
shown in Table 1. The prior bone threshold Tbone is set to segment the bone areas according 
to the study reported by Inacio and Kranioti et al. [28, 29].

The segmentation results generated by different algorithms are shown in Figs. 9, 10 and 
11. It is shown in these figures that the segmentation results generated by morphological 
algorithm are most similar to ‘ground truth’. In the segmentation results generated by the 
watershed algorithm, over-segmentation appears at the edge of the bone fragments. And in 
the segmentation result of the fibula image, error-segmentation appears at the distal bone 
fragment. In the segmentation results generated by the Otsu threshold algorithm, serious 
over-segmentation appears at the bone fragments. And in the segmentation result of the 
fibula image, error-segmentation appears at the proximal bone fragment.

Several evaluation metrics are used to evaluate the segmentation effect of different algo-
rithms. The metrics include the Hausdorff Distance (HD) [30], Region Rank metric (RR) 
[15], and four evaluation metrics based on the error matrix: Accuracy, Sensitivity (Recall) 
Dice coefficient (F1 coefficient), MIoU and Precision [31]. The values of these evaluation 
metrics for different algorithms are shown in Tables 2, 3 and 4. By comparing the evalua-
tion metric scores, the same conclusion can be drawn as above. The segmentation results 
generated by the morphological algorithm are closest to ‘ground truth’.

Figure 12 shows the relative error distribution of three CT image segmentation results 
using different segmentation algorithms. When segmenting the conglutination area and 
the two ends area of the fractured bone, the Otsu threshold algorithm and the watershed 
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algorithm obviously have higher segmentation error. However, the morphological algo-
rithm has less error in these two segmentation cases.

Figure 13 shows the reconstruction models of the segmentation results of three frac-
ture image datasets by different segmentation algorithms. Through the 3D models, the 
advantages of morphological algorithm in bone segmentation can be further demon-
strated compared with the other two algorithms. The models segmented by morphologi-
cal algorithm have smooth surface and no bone pixels loss. However, the models seg-
mented by the watershed algorithm have many surface defects and serious bone pixels 
loss in the joint head areas. And the models segmented by the threshold algorithm have 
serious bone pixels loss. This causes the bone fragment models to become transparent 
and even the joint head areas are lost.

In addition, the morphological algorithm segmentation results and ‘ground truth’ are 
reconstructed in 3D space to compare the segmentation results of the algorithm com-
prehensively. Figures  14, 15 and 16 show the reconstruction model of the algorithm 

Table 1   The segmentation parameters of different segmentation algssorithms for three datasets

Method Threshold Watershed Morphology

Parameter Tbone Tbone Level Threshold Tbone TS-boundary Rconcave Tconcave RS-concave

Data set 1 1085HU 226HU 0 0.205 226HU 3 3 4 2
Data set 2 463HU 186 HU 0 0.185 186HU 3 3 3 2
Data set 3 877HU 226 HU 0.001 0.185 226HU 3 3 1 2

Fig. 9   The segmentation results of fibula fracture dataset using different algorithms. Taking the 426th, 
442nd and 455th slice as examples. The segmentation results of morphological algorithms are closest to 
ground truth. The segmentation results of other two algorithms have corrosion and incorrect segmentation 
problems
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segmentation results and ‘ground truth’ in different directions. The bone fragments 
models generated based on the morphological algorithm segmentation results are 
displayed on top of the corresponding bone fragments in ‘ground truth’, respectively 
shown in Figure c and Figure d. And the RR metric values and HD metric values of the 

Fig. 10   The segmentation results of tibia fracture dataset using different algorithms. Taking the 247th, 
256nd and 266th slice as examples. The segmentation results of morphological algorithms are closest to 
ground truth. The segmentation results of watershed algorithm have incorrect segmentation problem, and 
the segmentation results of threshold algorithm have severe corrosion problems in the cancellous bone area

Fig. 11   The segmentation results of femur fracture dataset using different algorithms. Taking the 304th, 
319nd and 354th slice as examples. The segmentation results of morphological algorithms are closest to 
ground truth. The segmentation results of watershed algorithm have incorrect segmentation and corrosion 
problems. The segmentation results of threshold algorithm have more serious corrosion problems, even 
resulting in bone area loss
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morphological algorithm segmentation are shown in Table 5. Comparing the values of 
HD metric, it can be found that the algorithm has the highest segmentation accuracy for 
tibia fracture images, followed by fibula, and femur is the worst. The same conclusion 
can be drawn by comparing the models of three fracture datasets. The segmentation 
result of the tibia fracture dataset is almost the same as ‘ground truth’. In the fibula 
fracture dataset, a little over-segmentation appears at the edge of the distal bone frag-
ment. In the femur fracture dataset, some over-segmentation appears at the end of the 
proximal bone fragment. These problems will be discussed in detail in the next section.

4 � Discussion

The segmentation experimental results demonstrate that the morphological algorithm pro-
posed in this paper has higher accuracy in segmenting fracture datasets compared to two 
traditional algorithms. The Otsu threshold segmentation algorithm has the lowest accu-
racy among the three automatic segmentation algorithms. This is because the gray value 
of the bone conglutination area is close to the gray value of the bone fragments. In order to 

Table 2   The value of metric scores based on the error matrix

Data set Method Accuracy (%) Sensitivity (%) Dice (%) MIoU (%) Precision (%)

Data set 1 Threshold 75.75 ± 0.31 47.27 ± 5.10 57.57 ± 4.26 47.22 ± 5.15 97.53 ± 2.28
Watershed 99.98 ± 0.05 72.81 ± 0.77 82.73 ± 0.41 71.60 ± 1.87 98.93 ± 0.99
Morphology 95.55 ± 1.48 92.92 ± 2.00 94.11 ± 1.81 91.93 ± 2.93 99.61 ± 0.38
Threshold 87.54 ± 0.87 68.08 ± 5.29 75.40 ± 3.72 68.08 ± 5.29 99.70 ± 0.30

Data set 2 Watershed 91.84 ± 1.82 75.20 ± 5.16 83.22 ± 5.68 74.96 ± 5.39 99.94 ± 0.06
Morphology 99.98 ± 0.05 99.95 ± 0.05 99.96 ± .005 99.88 ± 0.06 99.98 ± 0.01
Threshold 75.94 ± 3.18 49.84 ± 9.74 58.71 ± 7.39 49.84 ± 9.73 94.81 ± 5.19

Data set 3 Watershed 99.94 ± 0.04 62.73 ± 16.39 74.42 ± 13.49 60.14 ± 13.80 97.88 ± 1.91
Morphology 90.93 ± 5.88 88.15 ± 3.44 88.91 ± 4.49 87.23 ± 2.70 99.94 ± 0.06

Table 3   The value of the RR 
metric (%) of three segmentation 
algorithms

Method Data set 1 Data set 2 Data set 3

Threshold 71.23 ± 2.43 83.18 ± 2.52 72.38 ± 4.99
Watershed 87.44 ± 0.89 87.49 ± 3.06 82.00 ± 6.42
Morphology 95.51 ± 1.59 99.95 ± 0.02 92.10 ± 2.36

Table 4   The value of HD 
metric (mm) of three automatic 
segmentation algorithms. The 
smaller the metric value, the 
more similar the segmentation 
result is to ‘ground truth’

Method Data set 1 Data set 2 Data set 3

Threshold 7.84 ± 0.78 4.10 ± 0.53 8.02 ± 3.17
Watershed 5.57 ± 0.08 3.51 ± 0.94 11.46 ± 3.46
Morphology 0.23 ± 0.13 1.92 ± 0.45 4.41 ± 0.85
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Fig. 12   The relative error distribution of segmentation results for three CT datasets using different segmen-
tation algorithms. Where (a) is data set 1, (b) is data set 2, (c) is data set 3. The accuracy of the three seg-
mentation algorithms for images with fractured bone sections has decreased when segmenting bone frag-
ments in the fracture area, especially in the bone fragments conglutination area. The difference between the 
segmentation results of morphological algorithms and ground truth is minimal, especially at the ends of 
bone fragment, the segmentation results of the other two algorithms show significant deviations

Fig. 13   3D reconstruction models of segmentation results of three CT datasets using different segmentation 
algorithms. Where (a) is the tibia data set, (b) is the fibula data set, (c) is the femur data set. The model seg-
mented by morphological algorithms is smooth and complete. The watershed algorithm model shows par-
tial bone pixels loss at the joint head and shaft. The threshold algorithm model has severe bone pixels loss



67015Multimedia Tools and Applications (2024) 83:67001–67022	

1 3

Fig. 14   3D reconstruction models based on the segmentation result of fibula dataset. Each model is 
observed from the sagittal, coronal and cross-sectional directions. (a) displays the morphological segmenta-
tion algorithm result. (b) displays the ‘ground truth’. (c) displays the proximal bone fragment. (d) displays 
the distal bone fragment

Fig. 15   3D reconstruction models based on the segmentation result of tibia. Each model is observed from 
the sagittal, coronal and cross-sectional directions. (a) displays the morphological segmentation algorithm 
result. (b) displays the ‘ground truth’. (c) displays the proximal bone fragment. (d) displays the distal bone 
fragment. The segmentation results of the morphological algorithm are almost consistent with the ground 
truth
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segment the bone fragments from the conglutination area, the threshold must be increased 
to filter out the area.This causes areas with low trabecular bone displacement density such 
as cancellous bone and joint head to be filtered out. As a result, the segmentation result has 
a serious over-segmentation problem. Therefore, the threshold algorithm has better seg-
mentation accuracy for fracture images with completely separated bone fragments. How-
ever, for the case images of bone congratulation or osteoporosis, the segmentation accu-
racy will be greatly reduced.

The watershed algorithm also segments bone fragment areas based on the gray value of 
pixels. The algorithm is prone to segmentation errors when segmenting targets with small 
difference in pixel values. In the experiment of this paper, the watershed algorithm has 
a wrong segmentation of the conglutination area when the conglutinated bone fragments 
are segmented. In order to segment the conglutinated bone fragments, it is necessary to 
increase the filtering threshold of the algorithm. Similar to the threshold algorithm, this 
results in areas with lower bone density being filtered out. Therefore, this algorithm has 

Fig. 16   3D reconstruction models based on the segmentation result of femur fracture images. Each model is 
observed from the sagittal, coronal and cross-sectional directions. (a) displays the morphological segmenta-
tion algorithm result. (b) displays the ‘ground truth’. (c) displays the proximal bone fragment. (d) displays 
the distal bone fragment. The segmentation results of morphological algorithms are mostly consistent with 
ground truth. But there are slight corrosion problems at the end of the bone fragments

Table 5   The value of RR and 
HD metric score of three datasets 
segmented by morphological 
segmentation algorithm

Proximal Fragment Distal Fragment

Data set RR(%) HD(mm) RR(%) HD(mm)

Data set 1 93.92 2.37 97.09 1.47
Data set 2 99.93 0.36 99.98 0.10
Data set 3 94.46 3.56 89.73 5.26
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high segmentation accuracy for targets with significant differences in pixel values between 
the target boundary pixels and interior pixels. However, this algorithm is prone to error-
segmentation and over-segmentation problems when segmenting fracture images with con-
glutinated bone fragments.

However, in the morphological algorithm, the identity of the pixel is only related to its 
own location and its relative position with the surrounding pixels. All bone pixels in the 
dataset, regardless of their gray values, can be classified and clustered. In addition, the 
concave point detection method is used to segment the conglutination areas between bone 
fragments. Avoiding error-segmentation problems caused by the same gray value of the 
bone fragments conglutination area as the bone area, as shown in Fig. 17. Therefore, this 
algorithm will not encounter the problems of error-segmentation and over-segmentation 
like threshold algorithms and watershed algorithms.

By comparing the 3D models, it can also be found that the morphological algorithm 
has high segmentation accuracy. The segmentation result of the algorithm for tibia fracture 
images is almost consistent with ‘ground truth’. However, some over-segmentation appears 
in the segmentation results of fibula fracture images and femur fracture images.

This is because that the cross section of fibula is small. In the fibula fracture case, the 
end face of bone fragments is broken after fracture. There are several small bone frag-
ment areas in the slice image. These areas only have boundary points and second boundary 
points after pixel classification step and cannot be filling into proximal and distal bone 
fragments in the closed area filling step. Therefore, there are little over-segmentation prob-
lems in the segmentation results. In the femur fracture case, the fracture is located at the 
distal part of the femur near the ankle. The bone in this part is thinner than that in the shaft. 
In addition, bone loss in elderly patient makes the bone fragments in this part thinner than 
the general bone. The bone area presents a slender shape in the slice image. Some bound-
ary points and second boundary points are clustered into the wrong bone fragment in the 
pixel clustering step. Therefore, there are some over-segmentation and error-segmentation 
problems in the segmentation results.

Through analyzing the problems mentioned above, it can be found that the morpho-
logical algorithm is prone to problems when segmenting small fragments and slender 
fragments. But these problems can be solved by optimizing algorithm parameters. For 
example, for the over-segmentation problem when segmenting small bone fragments, this 
problem can be solved by optimizing the parameters in the concave point detection stage to 

Fig. 17   Segmentation results calculated using and not using the concave point detection method. (a) is the 
278th slice of the original tibia fracture CT image. (b) is segmentation result without concave points detec-
tion. (c) is segmentation result with concave points detection. (d) and (e) are the corresponding 3D models. 
The use of concave point detection method can accurately generate the boundaries of conglutinated bone 
fragments, which ensures the accuracy of 3D reconstruction
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avoid mistakenly segmenting the bone fragment area into many small closed areas. For the 
error-segmentation problem when segmenting slender bone fragments, this problem can be 
solved by adding seed points in areas where segmentation problems appeared.

Therefore, for the complex fracture images segmentation, the values of the parameters 
in the morphological algorithm should be optimized and adjusted according to the segmen-
tation result. And the segmentation accuracy of the algorithm can be improved by optimiz-
ing parameters. Take the femur fracture images used in the segmentation experiment as 
an example. In the segmentation results before optimizing the algorithm parameters, some 
over-segmentation and error-segmentation problems appear at the end of the proximal bone 
fragment, as shown in Fig. 18 (a). After optimizing the parameters by adding seed points in 
areas where segmentation problems appeared, the over-segmentation and error-segmenta-
tion problems in the segmentation results are well resolved, as shown in Fig. 18 (b).

From this perspective, there is uncertainty in the algorithm when segmenting small 
and slender bone fragments. The main problem is that the algorithm needs to classify the 
boundary points and secondary boundary points of the bone fragments in bone fragment 
segmentation to form the boundary of the proximal and distal bone fragments. But for 
small and slender bone fragments, the area of their ends in the image is very small, and 
after calculation, there are no interior points in this area. Therefore, during the third step of 
calculation, these areas were not filled. As a result, when calculating the distance between 

Fig. 18   Comparison of segmentation results of proximal fibular bone fragment before and after optimiza-
tion of algorithm parameters. (a) displays the segmentation result before optimizing parameters, where the 
green area is the ‘ground truth’ mask. (b) displays the segmentation result after optimizing the parameters. 
By optimizing algorithm parameters and adding seed points, the corrosion problem of the algorithm can be 
effectively solved
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pixels and two bone fragments in the fourth step, the pixels that should belong to the proxi-
mal bone fragment are more distant from the proximal bone fragment than from the distal 
bone fragment. The same problem also occurs on the pixels of the distal fractured bone 
fragment. This resulted in incorrect classification of pixels in the boundary point set and 
secondary boundary point set. Thus, when segmenting small and slender bone fragments, 
seed points are added to the end image slices of the bone fragments. This can increase the 
number of interior points in the area where segmentation errors occur during the third step 
of the algorithm. At the same time, considering canceling the algorithm’s secondary point 
boundary point detection step when processing similar images can also increase the num-
ber of interior points at the ends of small and slender bone fragments. This can avoid errors 
when calculating the distance in the fourth step and reduce segmentation errors.

5 � Conclusion

A novel automatic bone fragment segmentation algorithm based on morphology is pro-
posed in this paper to segment the lower limb fracture CT images. In this algorithm, pixels 
classification and clustering methods are designed to segment the bone fragments that are 
separated from each other and slightly conglutinated to each other. In addition, the concave 
point detection method is designed to segment the bone fragments with the conglutina-
tion area. These methods improved the adaptability of the algorithm for segmenting com-
plex fracture images. This method determines the boundaries of different bone fragments 
through their morphology, improving the traditional object segmentation algorithm’s 
approach of simply segmenting objects based on their pixel values. This avoids the short-
comings of traditional segmentation algorithms in fracture image segmentation and pro-
vides new ideas and research directions for clinical image target segmentation. Through 
the description in this paper, the parameters in the algorithm are easy to understand and 
control in the process of image segmentation, which makes the algorithm can be intuitively 
applied to orthopedic clinical images segmentation.

In the segmentation experiment, the three segmentation algorithms are used to segment 
the typical fracture CT datasets. The segmentation results are presented and quantitatively 
evaluated in 2D and 3D spaces. Through comparative analysis of segmentation experiment 
results, it is demonstrated that the segmentation algorithm proposed in this paper has more 
advantages than commonly used segmentation algorithms. The experimental results show 
that the algorithm can not only correctly segment the bone fragments but also have good 
segmentation accuracy in conglutinated bone fragments segmentation.

However, the algorithm also exposes some problems in the segmentation experiment. 
In the future, we will optimize the algorithm to improve the segmentation accuracy of 
the algorithm for small and slender targets. Through communication with clinicians, we 
learned that orthopedic surgeons often judge the boundary of bone fragments through 
context and clinical experience. The machine learning method is also based on the exist-
ing segmented datasets to accumulate experience, and then complete the segmentation 
task. And machine learning algorithms have been widely used in target segmentation 
of medical images. [32–34] Therefore, we will study machine learning fracture image 
segmentation algorithms and use doctors’ manual segmentation of images as training 
samples to improve the segmentation accuracy of the algorithm.
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