
Vol.:(0123456789)

Multimedia Tools and Applications (2024) 83:59861–59886
https://doi.org/10.1007/s11042-023-17858-6

1 3

Research on remote sensing image storage management
and a fast visualization system based on cloud computing
technology

Lichun Yang1,2 · Weibing He3 · Xiaoyong Qiang3 · Jinjun Zheng3 · Fang Huang3

Received: 26 October 2022 / Revised: 24 September 2023 / Accepted: 13 December 2023 /
Published online: 2 January 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
With the continuous development of remote sensing technology, the data volume of remote
sensing images has increased exponentially, resulting in many difficulties in the storage,
management, transmission, calculation, and other processes of remote sensing images. In
order to solve the above problems, this paper studies the use of the Hadoop Distributed
File System (HDFS) and related technologies to design and implement a browser/server
(B/S) architecture for a massive, multisource, remote sensing images distributed storage
management system. The image data are stored in the HDFS, and the image metadata are
stored in a MySQL database. The distributed parallel construction of the image pyramid
is completed based on the Spark computing engine, and the Akka framework is used to
construct WMTS (Web Map Tile Service) to realize the release of remote sensing images.
Finally, the rapid visual display of remote sensing images is carried out using Leaflet. The
system also supports image data management, image target detection, user management,
and other functions. After testing, this system can support the storage and management
of multisource remote sensing image data, and can solve perfectly the problems of insuf-
ficient storage space and insufficient computing power of a single server. It is found that
the upload and download speeds of a large amount of remote sensing images can be close
to the maximum speed of a gigabit local area network (LAN). In the gigabit LAN environ-
ment, the average upload speed of a single remote sensing image is 97.74 MB/s, and the
average download speed is 87.62 MB/s. In terms of image pyramid construction, the speed
of a multi-node parallel construction based on Spark is two times higher than that of a
single-node construction. Additionally, compared to similar systems, this system has better
data transmission and retrieval speed, better data computing ability, and higher concur-
rency processing ability.

Keywords Remote sensing image · Storage management system · Hadoop · Distributed
storage · Distributed computing

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-17858-6&domain=pdf

59862 Multimedia Tools and Applications (2024) 83:59861–59886

1 3

1 Introduction

 Remote sensing images are widely used in resource exploration, environmental assess-
ment, land management, national defense, and military fields because they can obtain a
wide range of ground information in a short time [1]. With the continuous development of
remote sensing technology, the imaging resolution and spectral resolution of remote sens-
ing images are becoming increasingly high, which has made the data volume of remote
sensing images increase exponentially [2], resulting in many difficulties in the storage,
management, transmission, calculation, and other processes of remote sensing images.
How to store uniformly, manage, and share remote sensing image data have always been
the research focus in this field [3]. File system management is the most traditional way to
manage remote sensing images; that is, images are managed by independent files. However,
this method is inefficient and mainly depends on human management. It is prone to data
redundancy, confusion, and loss, and can only be read and written by a single user. It is not
suitable for occasions with high concurrency requirements [4]. In response to the above
problems, some researchers have specially developed image data management systems for
remote sensing images. The design goal is to achieve efficient spatial database management
and access [5]; that is, to facilitate user data sharing and achieve rapid retrieval and access
to remote sensing data resources.

In recent years, with the rapid development of remote sensing technology, remote sens-
ing images obtained through remote sensing satellites, unmanned aerial vehicles (UAVs),
and other channels have the characteristics of more and more bands, higher and higher
imaging resolution, shorter and shorter data acquisition cycles, and the data volume has
increased sharply, which can easily reach the TB or even PB level [6]. Such a huge amount
of data will lead to many restrictions in data storage, data transmission, data processing,
and other aspects of remote sensing images, such as the disk size, memory size, computing
power of the server, network bandwidth restrictions between the server and the client, and
so on. However, the traditional data storage and computing models have drawbacks such
as poor stability, poor sharing ability, poor scalability, high costs, and low computational
efficiency, making them unable to cope with the storage challenges brought about by rapid
data growth [7].

According to our literature review, the main way to solve the above problems is to use
a distributed storage system [3, 8–19], such as HDFS. After analyzing the research on
systems using this type of technology, it was found that: (1) distributed file systems are
mostly used as storage media for remote sensing images, and different indexing methods
are needed to organize data. However, performance degradation may occur when conduct-
ing large-scale data retrieval; (2) such systems are unable to support other types of files
except remote sensing images, and the system’s universality is weak; (3) in building image
pyramids, single node computing schemes are mostly used, without using the advantages
of distributed architecture, resulting in slower computing speeds; and (4) the previous stud-
ies did not provide a good solution for the rapid visualization needs of image pyramids.

To resolve these problems, this research studies a remote sensing image storage and
management system that integrates the functionalities of storage, management, retrieval,
calculation, and fast visualization using the Hadoop distributed framework and related
components. Here, we named this system the Massive Multi-source Remote sensing
Images Distributed Storage and Management System (MRSI-DSMS). In this system’s
design, the HDFS and MySQL are used to realize the storage, management, and retrieval
of remote sensing image entity data and metadata. By utilizing Hilbert spatial indexing,

59863Multimedia Tools and Applications (2024) 83:59861–59886

1 3

data are stored in separate tables, improving the speed of spatial retrieval. The master–slave
replication architecture of the MySQL database allows us to separate the data reading and
writing functions, thus improving the system’s concurrent access capability. Based on a
Spark cluster and the Geotrellis computing framework, an image pyramid is constructed
in parallel. The Web Map Tile Service (WMTS) service using Akka is constructed which
is combined with the Leaflet framework to realizes the rapid visualization of large data
remote sensing images. Compared to previous research, the main contributions of this
study are as follows.

(1) The system can run on a cluster composed of computers with low configuration. By
virtue of the advantages of the Hadoop ecosystem, it can dynamically expand the num-
ber of nodes, and solves problems such as poor scalability of the storage capacity, easy
failure of single nodes, and performance bottlenecks in traditional centralized storage.

(2) By storing remote sensing images and metadata information in HDFS and MySQL,
respectively, the occupation of directory space by small files is reduced and the data
retrieval delay is reduced while the storage efficiency is improved.

(3) The use of Hilbert curves to construct spatial indexes and store data in different data
tables according to spatial positions greatly improves the speed of data retrieval.
MySQL, which uses master–slave replication, is used to achieve data reading/writing
separation and improve the system’s high concurrency processing capability.

(4) The distributed construction of the image pyramid by the Spark cluster greatly improves
the construction speed and makes full use of the computing resources of each node.

(5) The WMTS service built with the Akka framework makes it possible to visualize
remote sensing images on the Web quickly, greatly reducing the network bandwidth
required for image transmission and improving the user experience.

Compared with similar studies, the advantages of this system are: (1) the data types sup-
ported by this system are not limited to remote sensing image data, but also based on cus-
tom metadata files to support drone image data and other third-party types of data, which
can meet the various needs of users as much as possible. Other similar studies only support
remote sensing image data and do not provide support solutions for other types of data.
(2) This system is based on the position information of images and utilizes Hilbert curves
to construct spatial indexes. The data are stored in different data tables according to spa-
tial positions, enabling rapid filtering of nontarget information based on spatial position
information during remote sensing image retrieval, greatly improving the speed of data
retrieval. Although other similar studies have similar designs, they are mostly based on
Hash functions and do not utilize the spatial information of the image itself. (3) This study
establishes a spatial index to store image data in adjacent hard disk spaces in the same area,
ensuring the efficiency of the system’s data reading and improving retrieval speed. (4) In
terms of data processing, because the processing of remote sensing images involves a large
amount of image computation and consumes a large amount of computing resources, most
related research adopted a single machine processing mode, making it difficult for these
systems to meet various requirements. This study utilizes Spark to construct corresponding
computing tasks and allocate them to multiple nodes in the cluster. The reading and writing
of data are completed based on the Hadoop framework, which effectively continues the dis-
tributed design characteristics of this system, ensuring that data reading, writing, and pro-
cessing are distributed, reducing the computational pressure on a single node and improv-
ing computing speed. Finally, (5) regarding the rapid visualization of images, the WMTS

59864 Multimedia Tools and Applications (2024) 83:59861–59886

1 3

service constructed in this study can also perform real-time rendering of image pyramid
data at different levels in Hadoop as needed, and finally transmit it to users through the
network. Compared to the schemes of directly transmitting the entire image used in related
studies, our method greatly reduces the network transmission burden between the client
and server.

The remainder of this paper is organized as follows. Section 2 gives a brief introduction
to related work on how to solve the storage problem of massive remote sensing images
with distributed storage systems. Section 3 introduces some key technologies in the system
design, such as HDFS, MySQL, HBase, Spark, Geotrellis, Leaflet, etc., for our proposed
MRSI-DSMS. Thus, in Sections 4 and 5, we concentrate on the design and realization of
the system. In Section 6, we perform validation experiments and discuss the experimental
results. Finally, Section 7 draws some conclusions and points out future directions.

2 Related work

In order to solve the storage problem of massive remote sensing images, distributed storage
systems have emerged as a powerful solution [8]. A distributed storage system can store
maintenance data on multiple nodes in the network to provide faster data access ability,
and a small number of node failures will not have a negative impact on the stability of
the entire system [9]. This provides us with faster data access speeds, higher fault toler-
ance, and more flexible scalability, providing new ways to address the challenges of stor-
age of massive remote sensing data [10]. Nowadays, popular distributed data storage sys-
tems include Lustre, HDFS, GlusterFS, Ceph, SeaweedFS, etc. [3]. Many researchers have
used the aforementioned systems to store remote sensing image data. For instance, Zheng
et al. [11] used Hadoop for distributed storage of vector spatial data, effectively improving
scalability and avoiding the defect of single node failure. Zhong et al. [12] introduced a
key-value distributed storage model for managing massive image data, which stores small
documents as large data files. Rajak et al. [13] utilized image pyramid technology to store
image data in HBase, improving data management efficiency.

However, although using a distributed file system can solve the storage problem of
massive data, there are still some challenges to overcome, such as the performance issues
encountered in metadata retrieval and spatial location retrieval for massive remote sens-
ing images, effective data access and service provision issues, efficient image computing
issues, and even system fault tolerance and reliability issues.

In response to the problem of low performance in massive remote sensing image
retrieval, Zhu et al. [14] used a PostgreSQL database and an HDFS distributed file sys-
tem as the underlying storage system, and designed the Remote Sensing Image Manage-
ment and Scheduling System (RSIMSS) based on a multi-layer Hilbert spatial index and
an image tile pyramid to organize massive remote sensing image datasets, improving the
retrieval performance of the system. Zhou et al. [15] utilized the Ceph distributed object
storage system and a multi-level Hilbert spatial index to construct three sub-modules:
RSIAPI, RSIMeta, and RSIData, forming the Remote Sensing Image Management System
(RSIMS). They also created a geospatial data abstraction library (GDAL) compatible with
input/output (I/O) interfaces, which provides data retrieval and access services, and solves
the problems of data access and service provision. Regarding image computing issues,
Wang et al. [16] integrated the HDFS, MapReduce, and Orfeo toolkits to complete the
storage and processing of remote sensing images. Kong et al. [17] stored image metadata,

59865Multimedia Tools and Applications (2024) 83:59861–59886

1 3

remote sensing images, and natural resource data in Oracle databases, HDFS, and Mon-
goDB databases, respectively. In addition, the ArcGIS Enterprise platform is also used
to provide a basic environment for data calculation. In order to address the issues of the
fault tolerance and reliability in the system, Wei et al. [18] proposed a strategy for organ-
izing and managing massive remote sensing tile data based on spatial databases. The data
were segmented using Hash functions, and data distribution rules between multiple nodes
were established to achieve multi-source heterogeneous remote sensing data management.
In addition, a spatial data fragmentation method based on Hash algorithm was designed
to improve the system’s fault tolerance and ensure the reliability and security of distrib-
uted systems. Finally, Wang et al. [19] used the NoSQL database for remote sensing image
management, built a distributed cluster structure based on the MongoDB database, and
used the GridFS storage mechanism to store the original data files of the images.

In summary, the abovementioned research on massive remote sensing images manage-
ment system employed distributed file systems, such as HDFS, to solve the storage prob-
lem of massive image data, and used different indexing methods to accelerate the speed of
spatial retrieval. However, these methods cannot provide good solutions to address issues
such as high concurrency access to the system, slow construction speed of image pyramids,
and they are unable to achieve fast visualization of images. In addition, due to the wide
range of remote sensing image sources, remote sensing images from different sources have
metadata files of different file types and formats. Unfortunately, the above research does
not provide a response method for the storage management of multi-source remote sensing
images.

3 Key technologies of MRSI‑DSMS

This research designs a distributed remote sensing image storage and management sys-
tem based on the Hadoop ecosystem. This research scheme can be summarized as follows:
(1) it uses the HDFS distributed file system to store remote sensing image entity data; (2)
MySQL is used to store metadata of remote sensing images to realize image management;
(3) completion of the distributed and parallel construction of the image pyramid is based
on the Spark computing engine; (4) the release of remote sensing images is realized with
the help of the Akka framework; and (5) Leaflet is used for the fast visual display of remote
sensing images.

HDFS, HBase, Spark, and the other components mentioned above belong to the eco-
system of the Hadoop distributed framework. Hadoop is an open source distributed system
framework created by the Apache Software Foundation. It focuses on using multiple com-
puters to form a cluster to solve the storage and computing problems involved with a large
amount of data. The storage and computing capacity of a single computer is limited. Based
on Hadoop, multiple machines in a general configuration form a cluster, which can greatly
improve the storage and computing capacity of the device.

With the increasing amount of remote sensing image data, the storage capacity of a
single server often cannot meet the actual storage needs, resulting in insufficient storage
space, difficult dynamic expansion of the storage space, easy data loss, slow data access,
and other problems. HDFS can perfectly solve the above problems. The biggest feature
of HDFS is distribution; that is, it can combine the storage space of multiple computers
as a unified storage space with a greater capacity. At the same time, each file block in
HDFS has multiple copies and is stored on different nodes, which greatly increases its own

59866 Multimedia Tools and Applications (2024) 83:59861–59886

1 3

fault tolerance [20]. In addition, HDFS can also increase or decrease the number of nodes
according to the actual demand, and dynamically change the storage capacity.

Remote sensing image data usually contain a large amount of metadata information,
which needs to be managed by the database. MySQL is one of the most widely used rela-
tional databases today, with the characteristics of crossing platform, free, and powerful
functionality. It has functions such as master–slave replication, read–write separation, and
database and table partitioning, which can undertake the reading and writing of massive
data. Therefore, this system chooses a MySQL database to store and manage the metadata
of remote sensing images.

The most common operation for processing remote sensing images is to build image
pyramids. The huge amount of data in a single remote sensing image leads to the need for
strong computing power in the complete computing process, where it is often difficult for
single machines to meet the computing requirements [21]. As such, multi-node parallel
computing can be a solution. Spark is a fast, general, and scalable big data parallel comput-
ing and analysis engine based on memory. Spark is good at processing circular and itera-
tive data streams, and it reduces the computing unit to a resilient distributed dataset (RDD)
computing model that is more suitable for parallel computing and reuse [22]. Common
remote sensing image data processing, such as building image pyramids, is a typical cyclic
iterative data flow process, which is very suitable for processing with Spark.

Geotrellis is a Scala language library for processing raster data based on Apache Spark
[23]. It is a distributed high-performance geographic data processing engine. Geotrellis can
be used to build image pyramids for remote sensing image data, and the constructed pyra-
mid data files can be layered and rendered into portable network graphic (PNG) images,
which facilitate the rapid display of large amounts of remote sensing images, and solve the
problem of network bandwidth limitation between the server and client.

HBase is a distributed, scalable, column-oriented NoSQL database that supports mas-
sive data storage. Its column storage feature means it only needs to read relevant columns
when executing query operations, which can significantly reduce the system I/O through-
put and improve the execution speed [24]. By combining Geotrellis with Apache Spark, the
constructed image pyramid data can be stored in the HBase database, improving the data
accessing speed.

If the user needs to display a constructed image pyramid data in a Web page quickly, a
Web map tilt service for the image should be built. Akka is a library written in Scala, which
is used to simplify the writing of fault-tolerant and highly scalable actor model applications
in Java and Scala [25]. The Akka framework has a simplified HTTPS service component,
which can be used to establish a map service for Web access.

Leaflet is a lightweight geographic information system (GIS) front-end visual JavaScript
library with high performance and strong scalability, which can easily display vector data
and grid data in Web pages [26]. Using Leaflet to access the map service released by Akka
can complete the rapid visual display of local remote sensing images.

4 Design scheme of MRSI‑DSMS based on the Hadoop ecosystem

4.1 Overall system design

In this study, the objectives and functions that the system needs to achieve are:

59867Multimedia Tools and Applications (2024) 83:59861–59886

1 3

(1) Remote sensing image storage and management based on the Hadoop distributed stor-
age architecture and a MySQL database, including image storage, query, download,
etc.; the storage capacity for image data needs to have the ability of smooth expansion.

(2) Support multisource image file formats, including typical remote sensing images, vis-
ible light images, infrared images, video images, and other data formats.

(3) Support the parallel construction of image pyramids and implement WMTS services
to obtain the rapid visual display of remote sensing images.

(4) Support the management of user information.
(5) Provide remote sensing image application cases, e.g., UAV remote sensing images

target detection based on deep learning technology.
(6) Furnish a data access interface that can be provided to third-party software.

According to the above requirements, the functional design of this system is shown in
Fig. 1.

By combining the functional modules shown in Fig. 1 with the specific implementa-
tion techniques, the system function can be further divided into sub-modules, and then the
entire framework of the system can be obtained, as shown in Fig. 2.

From Fig. 2, the system is mainly divided into a (1) user management module
(UMM), (2) data management module (DMM), and (3) data processing module (DPM).
The UMM has different functions for ordinary users and administrator users: ordinary
users can only view user information, while administrator users can manage users.
The DMM includes the upload and download functions of remote sensing image and

User Management

Data Management

Data Processing

User login

User information

management

Remote sensing image

upload

Ordinary data/image

upload

Image storage

Image download

Rapid visual display

processing

Demonstration

application case

External data source

interface

Image upload

Image retrieval

Deep-learning- based

UAV image target

detection

Image pyramids

building

Web map tile service

constructing

Fig. 1 System function module design

59868 Multimedia Tools and Applications (2024) 83:59861–59886

1 3

ordinary image data, and supports image queries based on retrieval conditions such as
attribute information, spatial information, and time information. The DPM includes the
parallel construction of the image pyramid, the release of the image pyramid, and the
UAV image target detection case.

By combining Figs. 1 and 2, the operating principles and mutual logic of each mod-
ule in the entire system can be obtained, as shown in Fig. 3.

Massive Multi-source Remote Sensing Image Distributed
Storage and Management System

User Management Data Management

AdministratorOrdinary users

Data viewing
User information

management

User rights

management

Search by name

Search by satellite

Search by sensor

Search by time

Search by

spatial coordinate

Data

upload/download
Image Retrieval

Metadata

upload/download

External data

source interface

Data Processing

Web map tile

services

constructing

Target detection

Image pyramids

building

Entity data

upload/download

Remote Sensing

image

Ordinary image

Support data type

Fig. 2 System framework design

Login

User Management

User information

management

Ordinary users

Administrators

Image Upload

Ordinary image

Remote Sensing

image

Metadata parsing
Building spatial

indexes

Database
Image Search

Based on metadata

Based on spatial location Spatial index

Image

Image pyramid

building
Image pyramid

Web map tile services

constructing

Rapid visualization

of images

Image target

detection

External data

source interface

Fig. 3 System working principle and mutual logic of each module

59869Multimedia Tools and Applications (2024) 83:59861–59886

1 3

From Fig. 3, it can be found that, starting from user login, the user types are first divided
into ordinary users and administrators, where the latter can have the authority to manage
user information. Image uploading can be divided into remote sensing image uploading and
ordinary image uploading. The uploaded images need to go through the steps of metadata
parsing, building spatial indexes, and inputting into the database. Image retrieval is divided
into metadata-based retrieval and spatial-location-based retrieval. The latter requires calcu-
lating the spatial index of the image based on search criteria, and then searching based on
the index. The search results can be provided to third-party software through application
program interfaces (APIs). Image pyramids need to be built first. By establishing WMTS
services, image pyramid data at different levels can be rendered into images of different
resolution sizes, achieving rapid visualization of images. In addition, the system also pro-
vides an image target detection service for UAV remote sensing images as the demo case.

According to the above design of the system framework and functionality working prin-
ciple, the architecture of the whole system has a hierarchical design, as shown in Fig. 4.

From Fig. 4, it can be seen that the whole system is based on a three-tier structure
mode of a browser/server (B/S) architecture, which is divided into a (1) presentation
layer, (2) business logic layer, and (3) data layer. The presentation layer is the user
layer, and the specific presentation form is a Web browser, which mainly realizes the
visual display of the system, the interaction between users and the background, and
other functions. The main function of the business logic layer is to receive the requests
transmitted by users from the presentation layer and complete the corresponding busi-
ness logic. In this system, the business logic layer mainly includes a servlet program,
business logic processing program, Spark program, Geotrellis program, and so on. The
lowest data layer provides support for data source access in the business logic layer,

Fig. 4 System architecture
diagram

Server Server Server Server

HDFS HBase
H
A
D
O
O
P

GeotrellisSpark
Framework

Browser Browser Browser Browser

Building an image

pyramid

AKKA
Framework

Image publish
User

management

Data upload

Data

download

Target

recognition

Presentation

Layer

Business

Logic

Layer

Data

Layer

59870 Multimedia Tools and Applications (2024) 83:59861–59886

1 3

including data reading and writing. In this system, the data layer is HDFS, MySQL and
HBase, and all data reading and writing are completed here. The following sections
will describe the design of the technical points and details of the system in sequence.

4.2 Design of the distributed storage and retrieval of massive remote sensing
image data

For the management of remote sensing images, common processes include warehous-
ing, storage, searching, and downloading. Our system also covers these functions, but
there are additional issues that need to be clarified regarding specific steps when imple-
menting the distributed storage of massive remote sensing images and fast retrieval
using HDFS, as described below.

(1) In order to support multi-source remote sensing images, this system’s design includes
a metadata parser for parsing different types of remote sensing image metadata files. In
order to support as many types of metadata files as possible, this system also provides
a universal model template, allowing users to customize the metadata information of
images, making it convenient for any type of image data type to be stored.

(2) Due to the design intention of this system of being able to cope with massive remote
sensing image data, storing all data in one table will increase the burden on the data-
base and result in unsatisfactory retrieval speed. In response to this issue, this study
uses a Hilbert curve to divide the entire Earth plane into multiple regions, and the
image data in the same region are stored in the same data table.

(3) To enable the system to cope with high concurrency access situations, this study uses
the master–slave replication mode in the MySQL database, deploying the MySQL
database on three nodes, forming a pattern of one master node and two slave nodes. The
writing operation of data is carried out on the master node, while the reading operation
is carried out on the slave node, achieving the separation of reading and writing of data
and reducing the reading and writing burden of the database in the single node database
mode.

Thus, after parsing the metadata information, the system will calculate the sub-
region of the image based on the longitude and latitude coordinates of the four corners,
and store the data in the corresponding data table of the sub-region. Additionally, the
metadata files will be stored in HDFS, and the storage location will also be recorded in
the database. Meanwhile, when conducting a location-based spatial search, the system
will calculate the Hilbert index of the area where the images to be searched belong
based on the search criteria, and then query the data from the corresponding data table
according to the index. The above retrieval methods will filter out a large amount of
useless data, greatly improving the efficiency of retrieval. In addition, after the storage
of image metadata is completed, the system will require users to upload image entity
data to HDFS and record the storage path in the database. When the users need to
download a file, a simply search for the storage path of the file in the database will be
operated and then the file will be downloaded. The specific image distributed storage
and retrieval flowchart is shown in Fig. 5.

59871Multimedia Tools and Applications (2024) 83:59861–59886

1 3

4.3 Parallel construction of the image pyramid and the design of the rapid
visualization display for massive remote sensing image data

Image pyramids are an important technology used for processing and managing multi-
resolution remote sensing image data. An image pyramid is a data structure composed of
multiple resolution levels, each of which contains different resolution versions of the origi-
nal image. Due to the involvement of image operations, the construction process of the
pyramid consumes a lot of computational resources. In order to accelerate the construction
speed of the pyramid, this system uses Geotrellis and Spark for distributed pyramid con-
struction, and stores the established pyramid data in HBase. Finally, the Akka framework is
used to establish a WMTS service to achieve the rapid visualization of images. The parallel
construction and rapid visualization display architecture of the image pyramid are shown
in Fig. 6.

First, the system establishes a request based on the image pyramid and queries the
MySQL database to obtain the storage location of the image in HDFS. Next, it submits
a Spark task and assigns the construction process of the image pyramid to the comput-
ing nodes. Then each node reads image data from HDFS and executes according to the
assigned task. After the final task is completed, the constructed pyramid data will be stored
in HBase.

Regarding visualization, when the system receives an image visualization request, it
will search for the corresponding level of image pyramid data in the HBase database. At
the same time, using the Akka framework, a WMTS service based on the HTTPS pro-
tocol will be constructed to render the image pyramid data into images according to the
request. By specifying the service’s IP address and port number, the visualization effect of
the image can be presented to the user.

Remote sensing

image metadata
File parser

Hilbert curve

Spatial index

Table1

Table2

MySQL

(Master)

MySQL

(Slave)

MySQL

(Slave)

Write

Node1

Remote sensing

search

Save

HDFS

Node2 Node3

Find file

Remote sensing

image data

Save

Download

Hilbert curve Spatial index Table
Find

Read

Fig. 5 Schematic diagram of distributed storage and retrieval for massive remote sensing images

59872 Multimedia Tools and Applications (2024) 83:59861–59886

1 3

4.4 System’s auxiliary functionality design

Regarding the implementation of UAV image target detection based on deep learning tech-
nology, we use the improved and optimized YOLOv4 algorithm, named K-YOLOv4 [27].
We refer the reader to the mentioned research on how to optimize the algorithm and how to
use it for target detection with UAV images.

The process of encapsulating a UAV target detection module into our system is demon-
strated in Fig. 7. Similar to satellite remote sensing images, UAV remote sensing images
are also stored in HDFS, and their metadata information is still managed by MySQL. After
receiving a target detection request, the system first searches for the storage location of
the image to be detected in MySQL, and then transfers it to the graphic processing unit
(GPU) server. The K-YOLOv4 algorithm is deployed on the GPU server, as well as a shell
script program that calls the algorithm for target detection. After the target detection is
completed, the GPU server will upload the detection results to HDFS, and then send the
results back to the user for display.

Additional functional design also includes user management and so on, which are rel-
atively simple. Regarding user login, this system stores user information in the MySQL

Image pyramid

building request
MySQL HDFS

Search

Read

image

Node1

Spark + Geotrellis

Node2 Node3

Copy

HBase
Save data

Image visualization

request

Https service

WMTS

Render
Visualized

image

Read data

Fig. 6 Schematic diagram of parallel construction of image pyramid and rapid visualization for massive
remote sensing images

Image target

detection request
MySQL HDFS

Search

Read

data

GPU server

Copy

Detection

result

Image target

detection response

Shell script

K-YOLOv4

Detect

Fig. 7 Process of encapsulating the UAV target detection module into our system

59873Multimedia Tools and Applications (2024) 83:59861–59886

1 3

database and encrypts information with higher security levels such as passwords using the
MD5 algorithm to ensure data security.

5 System implementation and development

The design of this system focuses on the distributed storage and retrieval of remote sensing
images, the parallel construction of image pyramids, and rapid visual display. Therefore,
the implementation of modules like remote sensing image distributed storage and retrieval,
the parallel construction and fast visual display of the image pyramid are described in
detail, and implementation of the remaining modules is briefly described.

5.1 Remote sensing image distributed storage and retrieval

A remote sensing image is usually divided into physical image data of various bands, meta-
data files, and other files, of which the most important is the metadata file, which records all
the metadata information of the image and is an important basis for image management and
retrieval. All data files of the image are stored in the HDFS according to fixed rules, but stor-
ing metadata information in the form of files will lead to lower reading and writing efficiency.
Therefore, it is necessary to parse each metadata file separately and write the parsed fields
and attribute information into an image table in the HBase database. In addition, the storage
location of image data in HDFS will also be written into the image table as additional meta-
data information. When downloading images, the system only needs to go to HBase to obtain
the download path, which reduces the file-retrieval time. For the system, a class diagram of
the remote sensing image distributed storage and retrieval module is shown in Fig. 8.

In the above class diagram, the BaseDao class and ImageDao class are both database
access interfaces, which define the relevant methods for interacting with the database. The
BaseDao class contains some general database operation methods, while the ImageDao
class focuses on the database operations related to image data. The BaseDaoImpl class is
the implementation of the BaseDao interface, the ImageDaoImpl class is the implementa-
tion of the ImageDao interface, and the ImageDaoImpl class inherits from BaseDaoImpl
class. The ImageMetadata class defines an image object, including attributes such as image
name, ID, type, and the corresponding get() and set() methods. The implementation of the
methods in the ImageDaoImpl class depends on the ImageMetadata class. The ImageAc-
tion class, ImageDownloadAction class, SearchAction class, and ImageUploadAction class
respectively realize the deletion, downloading, retrieval, and uploading of images, and the
above operations are implemented by the ImageDaoImpl class.

The image retrieval interface of the system is shown in Fig. 9. The left half of the interface
lists the retrieval conditions, such as image name, type, satellite name, etc., which the user
can input and check as required. The final retrieval results will be listed below. The right half
of the interface is a Web map, which is used to display the geographical location of the image
in the search results, so as to facilitate the user’s identification and rapid positioning.

The image uploading interface of the system is shown in Fig. 10. First, the user needs to upload
the metadata file of the image and select the satellite category of the image. The system natively
supports Landsat 7, Landsat 8, ZY-3, GF series, and other types of satellite data. If more types
of images need to be uploaded, the system also provides a general metadata file template (see
Fig. 11). Users can download, edit, and upload them by themselves. After the system successfully
parses the metadata file, the user can select one or more image entity data files to upload.

59874 Multimedia Tools and Applications (2024) 83:59861–59886

1 3

<<Interface>>

BaseDao

+insertOneColumnRecord(String tableName,...,String value):boolean

+deleteOneRowRecord(String tableName, String rowkey):boolean

+existByRowkey(String tableName,String rowkey):boolean

+updateOneRowRecord(String tableName,...,Map<String, Object> map):boolean

+queryOneColumnRecord(String tableName,...,String column):String

+queryOneRowRecord(String tableName,...,String value):List<Map<String, Object>>

+queryAll(String tableName):List<Map<String, Object>>

+queryByConditions(String tableName,...):List<Map<String, Object>>

BaseDaoImpl

+insertOneColumnRecord(String tableName,...,String value):boolean

+deleteOneRowRecord(String tableName, String rowkey):boolean

+existByRowkey(String tableName,String rowkey):boolean

+updateOneRowRecord(String tableName,...,Map<String, Object> map):boolean

+queryOneColumnRecord(String tableName,...,String column):String

+queryOneRowRecord(String tableName,...,String value):List<Map<String, Object>>

+queryAll(String tableName):List<Map<String, Object>>

+queryByConditions(String tableName,...):List<Map<String, Object>>

<<Interface>>

ImageDao

+isImageExist(String imageName):boolean

+addImageMetadata(ImageMetadata imageMetadata):boolean

+deleteImagedataById(String id):boolean

+updateImageMetadata(String id,Map<String,Object> map):boolean

+queryOneColumnImageInfo(String rowkey,String column):String

+queryImageById(String id):List<Map<String, Object>>

+queryImageByName(String fileName):List<Map<String, Object>>

+queryAllImage():List<Map<String, Object>>

+queryImageByConditions(FilterList filterList):List<Map<String, Object>>

ImageDaoImpl

+isImageExist(String imageName):boolean

+addImageMetadata(ImageMetadata imageMetadata):boolean

+deleteImagedataById(String id):boolean

+updateImageMetadata(String id,Map<String,Object> map):boolean

+queryOneColumnImageInfo(String rowkey,String column):String

+queryImageById(String id):List<Map<String, Object>>

+queryImageByName(String fileName):List<Map<String, Object>>

+queryAllImage():List<Map<String, Object>>

+queryImageByConditions(FilterList filterList):List<Map<String, Object>>

ImageUploadAction

-image:File[]

+upload(File[] image):String

-imageFileName:String[]

-imageContentType:String[]

-id:String

ImageDownloadAction

-fileName:String

+download(String fileName):String

-dataurl:String

-download:String

+getDataurl():String

+getDownloadurl():String

ImageAction

-imageNames:String[]

+deleteImages(String imageNames):String

ImageMetadata

-id:String

+getId():String

-filename:String

-satellite:String

-sensor:String

-acquiredate:String

-time:String

-uploadtime:String

-path:String

......

-rowl:String

-topleftlatitude:String

-downloadurl:String

+setId(String id):String

......

+setDownloadurl(String downloadurl):String

+getDownloadurl():String

SearchAction

-id:String

-filename:String

-satellite:String

-sensor:String

......

-topleftlatitude:String

-resultList:List

-filterList:FilterList

+search(FilterList filterList):List

Fig. 8 Class diagram of the image distributed storage and retrieval module

Fig. 9 Image retrieval interface

59875Multimedia Tools and Applications (2024) 83:59861–59886

1 3

5.2 Parallel construction and fast visual display of the image pyramid

The parallel construction of the image pyramid is realized by using the Geotrellis grid data
processing library under the Spark parallel computing framework. The code of the image
pyramid parallel builder has been packaged and compiled in advance, and placed on the
main node of the Hadoop cluster, which is called by a shell script. The pseudocode of the
whole parallel construction process is shown in Table 1.

For the image pyramid data built above, it is necessary to publish a map service using
the Akka framework before it can be accessed by the front end for rapid visualization.
The specific publishing process roughly includes building HTTP services, defining image

Fig. 10 Image data upload interface

Fig. 11 General Metadata file template

59876 Multimedia Tools and Applications (2024) 83:59861–59886

1 3

rendering methods, defining HTTP return data types, and rendering images into PNG for-
mat images according to the request range.

A class diagram of the parallel construction of the image pyramid and fast visual dis-
play module is shown in Fig. 12.

In the class diagram in Fig. 12, the Pyramid class defines an image pyramid object,
including attribute information such as the name and ID of the image pyramid. The
pyramid() method and publish() method in the PyramidAndPublish class are used to
perform the image pyramid construction and image publishing functions, respectively,
and implementation of the functions depends on the pyramid class. When building an

Table 1 Image pyramid parallel construction pseudocode

Input: The storage path of the pyramid image to be built in HDFS inputpath, pyramid layer name layer-
name

Output: Image pyramid construction information, result
1. Remote SSH connection to the master node.
2. String command = " ./home/user/pyramid.sh"+” “+inputPath + " " + layerName
 // Define remote execution commands and pass input parameters at the same time.
3. ssh.execCommand(command);
 // Execute the command and remotely execute the pyramid builder on the master node
4. Set spark task parameters and establish SparkContext
5.val inputRdd: RDD[(ProjectedExtent, Tile)] = sc.hadoopGeoTiffRDD(inputPath)
 // Read the medium image data of HDFS and generate the corresponding RDD computing unit
6. Block RDD and re project to web Mercator projection respectively.
7. Build HBase read and write objects; Calculate the number of image pyramid layers.
8. Build image pyramid hierarchically and write data hierarchically into HBase database.
9. Get the result information of building image pyramid.

PyramidAndPublish

-rasterPath:String

+pyramid(String rasterPath, String

layerName):String

-rasterState:String

-layerName:String

+publish(String layerName):String

Pyramid

-id:String

-fileName:String

-isPyramid:boolean

-fatherId:String

IngestImage

-inputPath:String

+run(String inputPath,String layerName):String

Server

-ip:String

-port:String-layerName:String
-satellite:String

-layerName:String

+list():List<Pyramid>

+setId(String id):void

+setIsPyramid(boolean isPyramid):void

......

+getId():String

+getFatherId():String

+setInputPath(String InputPath):void

+setLayerName(String LayerName):void
+service(String ip,...,String layerNmae):String

+setIp(String Ip):void

+setPort(String port):void

+setSatellite(String satellite):void

+setLayerName(String layerName):void

Fig. 12 Class diagram of the parallel construction and fast visual display module of the image pyramid

59877Multimedia Tools and Applications (2024) 83:59861–59886

1 3

image pyramid, the PyramidAndPublish class will pass on the image storage location,
pyramid name, and other parameter information, and call the run() method in the Inges-
tImage class. When publishing images, the PyramidAndPublish class will build a server
object and publish a map service according to parameters such as IP and port.

The image pyramid construction and release interface of the system is shown in
Fig. 13. All remote sensing images in the system and their image pyramid construc-
tion are listed in the table. Users can select images to build pyramids according to their
needs. For images that have been built as pyramids, users can click the “publish” button
to publish the images. The system will build corresponding map services and display
the images on the basemap, as shown in Fig. 14.

5.3 Realization of other functions

The image target detection module supports the detection of vehicles in the remote
sensing images of UAV, and the detection algorithm uses the improved YOLOv4 algo-
rithm [27]. The whole detection algorithm is deployed to the GPU node in the cluster
in advance. The system only needs to call the corresponding shell script and pass on
relevant parameters to complete the target detection by remote connection (as Secure
Shell, i.e., SSH). The pseudo code of this module is shown in the Table 2.

The image target detection interface is shown in Fig. 15. The user can upload local
images for target detection, select images in the system from the list on the right for
direct detection, and select historical detection records for quick display. After detection
is completed, the original image and the detected image will be displayed in the center
of the interface at the same time.

For the final data source interface function, the system will place the data accessed by the
third-party software into the additional startup file server and generate an access URL (Uni-
form Resource Locator).

Fig. 13 Image pyramid construction and release interface

59878 Multimedia Tools and Applications (2024) 83:59861–59886

1 3

6 Experiment and analysis of MRSI‑DSMS

6.1 Experimental software and hardware configuration and data

The whole system was built on an ordinary obsolete PC. The actual cluster configuration of
the system is shown in Table 3. Among them, C5 has a GTX 750Ti GPU, and uses the six
nodes listed in Table 3 to build the Hadoop cluster. The software installation of each node
is shown in Fig. 16. C22 is the master node, and the other nodes are slave nodes. All nodes
are connected through a gigabit LAN.

Fig. 14 Visual display of an image pyramid

Table 2 Pseudo code of image target detection

Input: Storage path of the image to be recognized in HDFS inputpath, to be recognized image, image
category type

Output: Image recognition results, outputImage
1. Judge the image source type
2. If (the image is uploaded by the user)
3. Upload images to HDFS
4. Write image metadata information to HBase
5. Remote SSH connection GPU node
6. Pass the parameter inputpath and execute the identification script remotely
7. Obtain identification results outputImage
8.Else// The image comes from inside the system
9. Remote SSH connection GPU node
10. Pass the parameter inputpath and execute the identification script remotely
11. Obtain identification results outputImage

59879Multimedia Tools and Applications (2024) 83:59861–59886

1 3

In this study, the system was tested in terms of storage capacity, upload and download
speeds, and image pyramid construction speed. In terms of system storage capacity, it can
be seen from Table 3 that the total storage space of the nodes except the master node is
5.5 TB, and HDFS consolidates the storage space of all nodes into one, providing storage
support for this system; therefore, the maximum storage capacity supported by the system
is approximately 5 TB.

In order to test the remote sensing image storage capacity, retrieval speed, multi-
source image support, and image pyramid construction speed of this system, we down-
loaded and obtained remote sensing images from different satellite sources, such as
Landsat 5, Landsat 7, Landsat 8, ZY-3, and GF-2, with a total size of nearly 3000
GB, as the test data for this experiment. At the same time, some UAV remote sens-
ing images, ContextCapture 3D model data, and other non–remote sensing image data
were also used for compatibility testing of third-party data in the system. Detailed
information of the experimental test data is shown in Table 4.

Fig. 15 Image target detection interface

Table 3 Configuration details of the Hadoop cluster constructed by PCs

No. Host Name CPU RAM Disk Peak comput-
ing capability
(GFlops)

OS Network

1 C22 AMD A10-
7800B

16GB DDR3 4 TB 57.6 CentOS 7.9 Gigabit LAN

2 C1 Core i5 3570 4GB DDR3 1 TB 56.0
3 C2 Core i5 3570 4GB DDR3 1 TB 54.4
4 C3 Core i5 3470 4GB DDR3 1 TB 54.4
5 C4 Core i5 3470 4GB DDR3 500GB 51.2
6 C5 Core i7 4790 8GB DDR3 2 TB 51.2+1387.5 (GPU)

59880 Multimedia Tools and Applications (2024) 83:59861–59886

1 3

From Table 4, it can be seen that regarding the compatibility testing of this system
for multi-source remote sensing images, remote sensing images from different sources
were selected for storage in the experiment. In addition to the common Landsat series,
ZY-3, and GF-2 remote sensing image data in various bands, the system also supports
different types of third-party data files such as UAV remote sensing images and Con-
textCapture 3D model data. The warehousing of the third-party data is based on user-
defined metadata files.

6.2 Performance testing of MRSI‑DSMS

In terms of parallel construction of the image pyramid, the pyramid construction speed
under different conditions was tested, and the results are shown in Table 5.

From Table 5, it can be seen that the time spent on building a single node of the image
pyramid is approximately proportional to the size of the image data. The larger the image,

C1

Secondory
Namenode
DataNode

HRegionServer

Worker

NodeManager

QuorumPeer-
Main

C22

NameNode

HRegionServer

HMaster

Master

ResourceManager

QuorumPeerMain

Hadoop (3.1.3)

HBase (2.0.4)

Spark (3.1.2)

MapReduce

Zookeeper (3.5.7)

C2

DataNode

HRegionServer

Worker

NodeManager

QuorumPeer-
Main

C3

DataNode

HRegionServer

Worker

NodeManager

QuorumPeer-
Main

C4

DataNode

HRegionServer

Worker

NodeManager

QuorumPeer-
Main

C5

DataNode

HRegionServer

Worker

NodeManager

QuorumPeer-
Main

Master
Node

Slave Nodes

Fig. 16 Software installation of each node

Table 4 Details of the multi-
source remote sensing datasets

Dataset name Data format Data Size (M)

LandSat5 TIF 53,910
LandSat7 TIF 225,262
LandSat8 TIF 113,783
ZY-3 tiff 1,177,969
GF-2 tiff 2,308,238
UAV jpg 745
3D models 3mx 1,050

59881Multimedia Tools and Applications (2024) 83:59861–59886

1 3

the longer the time spent on building. Using the Spark framework for distributed parallel
processing of pyramid construction tasks can significantly improve the construction speed.
Under the hardware conditions of this experiment, the obtained speedup can reach nearly
2× in the hardware configuration (shown in Table 5).

In terms of image retrieval capabilities, image retrieval can be divided into retrieval
based on the spatial location of the image and retrieval based on image metadata infor-
mation. The retrieval based on the spatial positions of images is to search for the images
contained in the specified spatial range coordinates. In order to simulate the retrieval of
massive images, this experiment used algorithms to simulate the metadata of 20 million
remote sensing images, of which 10 million were stored in a traditional way in a single data
table. The other 10 million pieces were stored in different tables according to the storage
method designed by this system, based on the calculated Hilbert spatial index. Using the
same search conditions, the data were searched under the above two conditions, and the
test results are shown in Table 6.

From Table 6, it can be seen that in the case of a data volume of 10 million images, the
retrieval speed of this system is 94.46%, 94.65%, and 93.92% faster than traditional single
table storage methods for coordinate-based spatial range queries, image-name based attrib-
ute queries, and hybrid queries that combine spatial range and attribute queries, respec-
tively. Regardless of the retrieval method, storing data in tables based on spatial indexing
can filter out data from non-retrieval targets as much as possible, greatly improving the
speed of retrieval.

Regarding the file transfer performance of this system, this experiment selected the
Multi Source Remote Sensing Image Management System (MSRSIMS) studied by Zhu
et al. [28] for comparative testing. The MSRSIMS system uses a single node server, and

Table 5 Performance test of image pyramid construction

Image size (KB) Serial image pyramid
construction (s)

Multi-nodes image pyramid
construction (s)

Performance
improvement rate
(X)

56,352 124.38 67.02 1.86
121,052 172.87 98.63 1.75
225,262 316.49 150.73 2.10
484,019 442.77 255.67 1.73
742,470 605.23 313.51 1.93

Table 6 Details of the massive data retrieval experiment

Data storage method Search conditions Total Number
of search
results

Retrieval time
consumption (s)

Traditional single table storage Spatial range 10 million 340 13.314
Image attribute 1 10.822
Spatial range + Image attribute 54 14.432

Partitioned Table Storage
Based on Spatial Index

Spatial range 10 million 280 0.738
Image attribute 1 0.579
Spatial range + Image attribute 78 0.877

59882 Multimedia Tools and Applications (2024) 83:59861–59886

1 3

was precisely compared to the distributed multi-node server of this system. The testing was
conducted in the same network environment, all within a gigabit local area network. The
experimental data consisted of remote sensing image data from the ZY-3 satellite and UAV
remote sensing images. The remote sensing image data were used to detect the system’s
transmission performance for large files, while the UAV image data were used to detect the
system’s transmission performance for massive amounts of small files. The results of the
experimental test are shown in Table 7.

From Table 7, it can be found that the MRSI-DSMS system is faster than MSRSIMS
in uploading a single large file, but the download speeds of the two are basically the same.
For the download speed of multiple small files, MRSI-DSMS has the advantage over MSR-
SIMS. However, in terms of uploading multiple small files, MRSI-DSMS is slower than
MSRSIMS. This is because distributed file systems perform steps such as file partitioning
and multi-node distribution, which increases the total uploading time.

Regarding testing the number of concurrent users, this experiment simulated random
mixed reading and writing requests from different numbers of users on the database. The
response times were recorded in MySQL single node deployment and master–slave syn-
chronous deployment, respectively. The detailed data are shown in Table 8.

From Table 8, it can be found that the master–slave deployment method exhibits cer-
tain performance advantages compared to the single node deployment method under dif-
ferent concurrent user numbers. Under the same number of concurrent users, the aver-
age response time of the master–slave mode is usually slower than that of the single node
deployment mode. When the number of concurrent users is five, the average response time
of this system is only 2% faster than the single node mode. However, when the number
of concurrent users reaches 200, the average response time of this system is 10.1% faster
than the single node mode. As the number of concurrent users increases, the performance
advantage of master–slave mode becomes more apparent. The above test results indicate
that the MySQL database deployed in master–slave mode achieved the successful separa-
tion of reading and writing requests, and has improved response speed to a certain extent
under high concurrency requests.

6.3 Experiment summary

From the above experiments, it was demonstrated that the designed metadata parser can
successfully support the proposed system for many types of remote sensing image data.

Table 7 Comparative experiment on file transfer performance

System Transmission type Number of Files File size (GB) Time
consuming (s)

Transmission
speed (MB/s)

MSRSIMS Upload 1 3.73 48.562 78.65
Upload 1938 1.45 34.354 42.99
Download 1 3.73 42.453 89.97
Download 1938 1.45 35.359 41.99

MRSI-DSMS Upload 1 3.73 39.048 97.74
Upload 1938 1.45 128.146 11.59
Download 1 3.73 43.593 87.618
Download 1938 1.45 24.963 59.48

59883Multimedia Tools and Applications (2024) 83:59861–59886

1 3

The use of the HDFS distributed file system to store image data solves the distributed stor-
age problem of massive image data and enhances the data transmission ability. Utilizing
the Spark cluster for image pyramid construction allows the system to divide tasks into
multiple nodes, thereby improving construction speed. By utilizing the MySQL database
to store image metadata and employing the Hilbert curve to construct spatial indexes, we
achieved the horizontal table storage of data, quickly filtered out data from non-retrieval
targets, and greatly improved the data retrieval speed. By utilizing MySQL’s master–slave
synchronization mode, the system’s ability to cope with high concurrent user access has
been enhanced.

7 Conclusion and future works

This research mainly studied how to design a distributed remote sensing image storage and
management system for a huge number of images based on the Hadoop distributed system
framework and its related components, as well as the MySQL database. Using the Hadoop
framework can effectively solve the problem of weak storage and computing power of
a single server due to the large amount of remote sensing image data. After testing in a
gigabit LAN environment, the average upload speed of a single remote sensing image was
97.74 MB/s and the average download speed was 87.62 MB/s. Based on the Hilbert curve,
the spatial index is calculated and the data are stored in separate tables, resulting in an
average improvement of 94.34% in data retrieval speed compared to traditional single table
storage methods, solving the problem of slow retrieval when faced with massive data sets.
Deploying MySQL with master–slave replication achieves data reading and writing separa-
tion, reducing the pressure on a single server under high user concurrency. When multiple
users make reading and writing requests simultaneously, the average response time of the
system is up to 10.1% higher than the traditional single node mode. In terms of image
pyramid construction, the speed of the multi-node parallel construction based on Spark
was two times higher than that of the single-node construction. The WMTS services were

Table 8 Experiment on concurrent user access and the response time

MySQL deployment method Number of
concurrent users

Total response
time (s)

Average
response time (s)

Single node 5 1.047 0.210
20 2.725 0.136
50 7.902 0.158
100 19.286 0.193
150 28.484 0.190
200 39.773 0.199

Master–slave synchronization
mode (1 master and 2 slaves)

5 1.023 0.205
20 2.684 0.134
50 7.531 0.151
100 17.342 0.173
150 25.579 0.171
200 35.754 0.179

59884 Multimedia Tools and Applications (2024) 83:59861–59886

1 3

built based on the Akka framework, which achieved the fast rendering and visualization of
image pyramid data at any level according to user needs. It was found that the system could
perfectly meet the functions of image management, uploading and downloading, image
pyramid construction, and fast visualization. It has good data transmission and retrieval
speed, good data computing ability, and higher concurrency processing ability.

However, MRSI-DSMS needs to be further improved and optimized to give better play
to Hadoop’s distributed storage and Spark’s parallel computing capabilities, where some
factors have not been considered, and some tests need to be further conducted. For exam-
ple, (1) due to the relatively backward cluster configuration, the speed of building image
pyramids in parallel can be further improved; (2) due to the limitation of the large physical
memory of the device, the image pyramid only supports images with a maximum size of 1
GB; (3) support for multiband images needs to be improved; and (4) the rendering effect of
some types of remote sensing images also needs to be optimized.

The following issues need to be dealt with in future research: (1) Spark parameters can
be optimized according to the actual configuration of the cluster to maximize the comput-
ing power of the cluster; (2) on the existing basis, the pyramid construction of multiband
images was studied; and (3) a universal rendering scheme of remote sensing image was
given.

Acknowledgements This study was mainly supported by the National Science Foundation of China
(Grant No. 42271390) and the Technological Innovation R&D Project of Chengdu Science and Technol-
ogy Bureau (Grant No. 2022-YF05-00967-SN). This work was partial funded by the Fundamental Research
Funds for the Central Universities (Grant Nos. ZYGX2019J069 and ZYGX2019J072) and Hubei Provincial
Key Laboratory of Intelligent Geo-information Processing (China University of Geosciences; Grant Nos.
KLIGIP-2018A08).

Data availability Due to the nature of this research, the participants of this study do not agree for their data
to be shared publicly. Hence, supporting data are not available.

Declarations

Conflict of interest The authors declare that they have no conflicts of interest.

References

 1. Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote
Sens 65(1):2–16

 2. Deren LI, Liangpei Z, Guisong X (2014) Automatic analysis and mining of remote sensing big data.
Acta Geodaetica Cartogr Sin 43(12):1211

 3. Chi M, Plaza A, Benediktsson JA et al (2016) Big data for remote sensing: challenges and opportuni-
ties. Proc IEEE 104(11):2207–2219

 4. Huang YQ (2019) The concept and development trend of spatial database management system. China
Manage Informationization 22(08):165–166

 5. Lü XF, Cheng C, Gong J et al (2011) Review of data storage and management technologies for mas-
sive remote sensing data. Sci China Technol Sci 54:3220–3232

 6. Yan J, Liu Y, Wang L et al (2021) An efficient organization method for large-scale and long time-series
remote sensing data in a cloud computing environment. IEEE J Sel Top Appl Earth Observ Remote
Sens 14:9350–9363

59885Multimedia Tools and Applications (2024) 83:59861–59886

1 3

 7. Wang L, Ma Y, Yan J et al (2018) PipsCloud: high performance cloud computing for remote sensing
big data management and processing. Futur Gener Comput Syst 78:353–368

 8. Cheng Y, Zhou K, Wang J, Yan J (2020) Big earth observation data integration in remote sensing
based on a distributed spatial framework. Remote Sens 12(6):972. https:// doi. org/ 10. 3390/ rs120 60972

 9. Jing W, Tian D (2018) An improved distributed storage and query for remote sensing data. Procedia
Comput Sci 129:238–247

 10. Li J, Zhang P, Li Y et al (2017) A data-check based distributed storage model for storing hot temporary
data. Futur Gener Comput Syst 73:13–21

 11. Zheng K, Fu Y (2013) Research on vector spatial data storage schema based on Hadoop platform. Int J
Database Theory Appl 6(5):85–94

 12. Zhong Y, Sun S, Liao H, Zhao Y, Fang J (2011) A novel method to manage very large raster data
on distributed key-value storage system. In: 2011 19th International Conference on Geoinformatics.
Shanghai, China, pp 1–6. https:// doi. org/ 10. 1109/ GeoIn forma tics. 2011. 59807 11

 13. Rajak R, Raveendran D, Bh MC, Medasani SS (2015) High resolution satellite image processing using
Hadoop framework. In: 2015 IEEE International Conference on Cloud Computing in Emerging Mar-
kets (CCEM). Bangalore, India, pp 16–21. https:// doi. org/ 10. 1109/ CCEM. 2015. 16

 14. Zhu J, Zhang Z, Zhao F et al (2023) Efficient management and scheduling of massive remote sensing
image datasets. ISPRS Int J Geo-Information 12(5):199

 15. Zhou X, Wang X, Zhou Y et al (2021) Rsims: large-scale heterogeneous remote sensing images man-
agement system[J]. Remote Sens 13(9):1815

 16. Wang C, Hu F, Hu X et al (2015) A Hadoop-based distributed framework for efficient managing and
processing big remote sensing images. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2:63–66

 17. Kong W, Wang T, Liu L et al (2023) A novel design and application of spatial data management plat-
form for natural resources. J Clean Prod 411:137183

 18. Wei H, Yuheng Z (2017) The massive remote sensing data organization and management strategies//
MATEC Web of Conferences. EDP Sciences 128:02011

 19. Wang S, Li G, Yao X et al (2019) A distributed storage and access approach for massive remote sens-
ing data in MongoDB. ISPRS Int J Geo-Information 8(12):533

 20. Rathore MM, Ahmad A, Paul A et al (2016) Urban planning and building smart cities based on the
internet of things using big data analytics. Comput Netw 101:63–80

 21. Shan TJ, Zhong HW et al (2019) Building of remote sensing images tile pyramid based on Spark.
Intell Comput Appl 9(04):226–229

 22. Zaharia M, Xin RS, Wendell P et al (2016) Apache spark a unified engine for big data processing.
Commun ACM 59(11):56–65

 23. Kini A, Emanuele R, Geotrellis (2014) Adding geospatial capabilities to Spark. In: Spark Summit
2014, from https:// docs. huihoo. com/ apache/ spark/ summit/ 2014/ Geotr ellis- Adding- Geosp atial- Capab
iliti es- to- Spark- Ameet- Kini- Rob- Emanu ele. pdf

 24. Chen X, Zhang C, Ge B et al (2016) Efficient historical query in HBase for spatio-temporal decision
support. Int J Comput Commun Control 11(5):613–630

 25. Jonasson M (2014) The Akka-board–performing mobility, disability and innovation. Disabil Soc
29(3):477–490

 26. Farkas G (2017) Applicability of open-source web mapping libraries for building massive web GIS
clients. J Geogr Syst 19(3):273–295

 27. Huang F, Chen S, Wang Q et al (2023) Using deep learning in an embedded system for real-time target
detection based on images from an unmanned aerial vehicle: vehicle detection as a case study[J]. Int J
Digit Earth 16(1):910–936

 28. Zhu Q, Huang F, Lu J et al (2017) Research on the implementation of multi-source remote sens-
ing image management system based on B/S architecture. 2017 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS). IEEE, pp 5233–5236

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.3390/rs12060972
https://doi.org/10.1109/GeoInformatics.2011.5980711
https://doi.org/10.1109/CCEM.2015.16
https://docs.huihoo.com/apache/spark/summit/2014/Geotrellis-Adding-Geospatial-Capabilities-to-Spark-Ameet-Kini-Rob-Emanuele.pdf
https://docs.huihoo.com/apache/spark/summit/2014/Geotrellis-Adding-Geospatial-Capabilities-to-Spark-Ameet-Kini-Rob-Emanuele.pdf

59886 Multimedia Tools and Applications (2024) 83:59861–59886

1 3

Authors and Affiliations

Lichun Yang1,2 · Weibing He3 · Xiaoyong Qiang3 · Jinjun Zheng3 · Fang Huang3

 * Lichun Yang
 yanglc2003@buaa.edu.cn

1 School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
2 Jiangsu Automation Research Institute, Lianyungang, Jiangsu Province 222061, China
3 School of Recourses and Environment, University of Electronic Science and Technology of China

(UESTC), Chengdu, Sichuan Province 611731, China

	Research on remote sensing image storage management and a fast visualization system based on cloud computing technology
	Abstract
	1 Introduction
	2 Related work
	3 Key technologies of MRSI-DSMS
	4 Design scheme of MRSI-DSMS based on the Hadoop ecosystem
	4.1 Overall system design
	4.2 Design of the distributed storage and retrieval of massive remote sensing image data
	4.3 Parallel construction of the image pyramid and the design of the rapid visualization display for massive remote sensing image data
	4.4 System’s auxiliary functionality design

	5 System implementation and development
	5.1 Remote sensing image distributed storage and retrieval
	5.2 Parallel construction and fast visual display of the image pyramid
	5.3 Realization of other functions

	6 Experiment and analysis of MRSI-DSMS
	6.1 Experimental software and hardware configuration and data
	6.2 Performance testing of MRSI-DSMS
	6.3 Experiment summary

	7 Conclusion and future works
	Acknowledgements
	References

