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Abstract
In recent years, significant progress has beenmade in the field of face forgery and face forgery
detection. However, the performance of the detection methods in the unknown environment
is far beyond satisfactory due to the feature distribution deviation of different fake face gen-
erators. In this paper, we adopt the domain generalization theory to improve the generality
of fake face detection. The utilized method augments the original image samples by intro-
ducing gradient noise yielded during back-propagation, simulating the forgery features in
unknown domains. In the construction of the detection network, we propose a multi-scale
synthetic artifact trace tracker (MSATT) to enhance the manipulation traces through multi-
scale content suppression. Meanwhile, we observed that the synthesized images present a
noticeable color abnormality after going through the proposed MSATT module. Therefore,
we designed a color difference perception network (CDPNet) to capture this unique fea-
ture. Experimental results demonstrate that both the domain augmentation and the proposed
CDPNet can effectively improve the performance of the detection network. The proposed
method is competitive with the state-of-the-art face forgery detection methods on both intra-
and inter-dataset evaluations.

Keywords Face forgery detection · Domain generalization · Multi-scale synthetic artifact ·
Color-difference feature

1 Introduction

The highly realistic fake human faces in digital images or videos synthesized by machine-
learning systems (deepfakes) have caused broad concerns. Abuse of these generated faces
poses considerable threats to social security, such as fake news and video scams. Therefore,
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it is urgent to develop effective detection techniques to ensure the credibility of multimedia
information.

Significant achievements have been made in the field of face forgery detection in recent
years. Some of these methods [1–5] were designed based on Convolution Neural Networks
(CNN). Afchar et al. [1] used CNN to extract mesoscopic features for face forgery detection.
Masi et al. [2] proposed a two-branch network structure. One branch propagates the original
information, while the other branch suppresses the face content yet amplifies multi-band
frequencies using a Laplacian of Gaussian (LoG) as a bottleneck layer. Nguyen et al.[3]
adopted a novel capsule network for detecting forged images and videos. Liu et al. [4]
combined spatial image and phase spectrum to capture the up-sampling artifacts of face
forgery to improve the transferability for face forgery detection. Zhou et al. [6] proposed
a two-stream network structure. One stream to detect tampering artifacts for classification.
The other stream trains a patch-based triplet network to leverage features capturing local
noise residuals and camera characteristics as a second stream. Zhao et al. [6] defined face
forgery detection as a fine-grained classification task for the first time and proposed a multi-
attentional deepfake detection network. Guo et al. [7] suppressed the content features tomake
the model pay more attention to the artifact regions. Kohli et al. [8] proposed a light weight
3DCNN for face forgery detection to increase efficiency. What’s more, Kohli et al. [9] is
used for facial forgery detection by searching for operational traces in the frequency. These
methods can reach high accuracy on hold-out test sets, but their performance usually drops
significantly on unseen domains.

A pressing need for deepfake forensics is improving the detectors’ generality. In this
paper, we incorporate the domain generalization theory to address this issue. To the best of
our knowledge, the application of domain generalization theory in face forgery detection has
yet to be fully discussed. Few works use domain generalization theory in deepfake detection.
For example, the authors of [10] enrich the diversity of fake samples by giving a pool of
the forgery configuration. In contrast, our method improves the generality of the detection
model by introducing adaptive gradient noise to the training data. The additional gradient
noise is generated during backpropagation, which effectively uses the information learned
by the network itself. It is worth noting that the training phase only uses forged samples
from a single domain (single domain refers to the feature space of samples generated using
a single forgery method) and training in a single domain is challenging. Since the enhanced
domain is generated under the premise that the worst-case scenario is satisfied, it will be
constrained by semantic consistency [11], resulting in poor domain transmission, we adopt
semantic constraints relaxing module used to relax semantics constraints during domain
augmentation.

The statistically based deepfake artifacts usually exist in the form of subtle traces, which
maybeobscuredby themedia content.Accordingly,wedesign anMSATTmodule to suppress
content features and enhance subtlemanipulation traces in amulti-scale fashion. Furthermore,
we observed that there exists color difference in images before and after the MSATT pre-
processing, and the color difference is significantly more evident in the synthesized samples
than in the real samples. In light of this phenomenon, we propose a CDPNet to capture this
color-based feature to enhance the discriminability of the detection method.

The key contributions of this paper are threefold as below:

1. We introduce the domain augmentation theory into fake face detections. A domain
augmentation module automatically simulates the unknown feature domains through
perturbations on the source domain, therefore enhancing the generality of the detection
model.
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2. We design anMSATTmodule to extract robust face forgery traces. Thismodule enhances
the subtle forgery traces by employingmulti-scale feature fusion aswell as content feature
suppression.

3. We propose a novel color-difference feature for fake face detection. We observe that the
MSATT also reveals a distinct color-behavior difference between the original and the
synthesized images. We construct a CDPNet to capture this unique feature.

2 Proposedmethod

In this section, we introduce the proposed method in detail. We first give the overall of
the proposed method in Section 2.1. Section 2.2 introduce the task module, which includes
the MSATT and the CDPNet. Then, the domain augmentation strategy will be discussed in
Section 2.3.

2.1 Overview

The overall architecture of the proposed method is shown in Fig. 1.
The framework mainly includes a task module and a domain augmentation module. In the

task module, the RGB images to be tested are sent to the MSATT to capture the enhanced
forgery traces. In addition, the high-frequency images are extracted from the RGB sequence
using the SRM filter [12] to explore the noise information. We proposed a CDPNet to deal
with theMSATT exposed color abnormality feature. Following are the backbone layers and a
binary classifier. The domain augmentation module (DA) uses the method in [13] to enhance
the source domain by simulating the distributions in the unknown environment under the
worst-case constraint [11]:

min
θ

sup
T :D(S,T )≤δ

E[Ltask(θ; T )] (1)

Where D is the similarity measurement between the original domain and the generalized
target domain, and δ represents the largest domain boundary between Source Domain(S) and
Target Domain(T ). θ is a parameter optimized according to the objective function L of a
specific task. In addition, we maximize domain transmission capacity with training with the
assistance of the SCR module. The SCR module is a Wasserstein Auto-Encoders (WAEs)
[14], which is used to relax the semantics constraints to generate more challenging samples.
It is worth noting that the input images of the task module come from S and S+. S+ means
the enhanced domain generated by the domain augmentation module.

2.2 Taskmodule

The task module extracts discriminative forgery features as well as trains a classifier. In
each iteration, the samples from the original and enhancement domains are fed into the
SRM filter and the MSATT module. The following backbone layers and the CDPNet extract
discriminative features to train a classifier.

The pre-processing stage The task module starts with a two-branched pre-processing. The
first branch adopts the SRMfilter to extract the noise features. The other branch is theMSATT.
In this paper, we mainly utilize the low-level statistical-based deepfake features to expose
fake face forgery. According to [7], CNNs aremore inclined to extract content representations
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due to their relatively fixed structures. Moreover, the statistically based deepfake traces are
often fragile and could be easily diminished. Therefore, we propose the MSATT to enhance
the delicate forgery traces while suppressing the content features.

TheMSATT is divided into three stages. In the first stage, a convolution operationConv(*)
is used to calculate a feature map F1:

F1 = Conv(θ1, x) (2)

Where θ1 denotes the parameters of the convolution layers in the first stage. x ∈ R
W×H×C

denotes the input tensor. W denotes the height, H denotes the width, and C denotes the
number of tensor channels.

The manipulation traces extracted using only one layer are fragile and could easily dis-
appear in subsequent convolutions. Therefore in the second stage, a multi-scale convolution
module is used to calculate multi-level feature maps F2 from different perception fields.

F2 = Conv<1×1>(θ2, F1) + Conv<3×3>(θ2, F1) + Conv<5×5>(θ2, F1) (3)

Where θ2 denotes the parameters ofmulti-scale convolution layers in the second stage.< ∗ >

indicates the different size of the convolution layer’ filter.
In the third stage of the MSATT module, we subtract the input tensor x from F1 and F2,

respectively, to suppress the content representations while exposing the subtle manipulation
traces. For further exposing as many discriminative cues for face forgery detection, we use
a convolution layer in the third stage to perform convolution on the output F2 of the second
stage to fully utilize the remaining information. Meanwhile, we add the output of the high-
frequency branch Q to get the final output tensor x’ of the pre-processing stage:

x ′ = (F1 − x) + (F2 − x) + Q + Conv(θ3, F2) (4)

where θ3 denotes the convolutional parameters of the third stage that preserves the additional
discriminative information.

Then we use the backbone layers to obtain discriminative features and train a classifier.
We use the cross-entropy loss function for the classification task:

Lcls(y, ŷ) = 1

N

∑

i

−[yi · log(ŷi ) + (1 − yi ) · log(1 − ŷi )] (5)

where ŷi is the softmax output of the task model, y denotes the label, and N is the number
of inputs.

Colordifferenceperceptionnetwork (CDPNet)After extensive observations,we found that
the output image of MSATT often has an overall hue difference compared to the input image.
Thehuedifference ismore significant and stable in synthesized images than in pristine images.
We speculate that this phenomenon stems from the inherent color distribution abnormalities
present in deepfake images and videos. However, these abnormalities are often subtle and
imperceptible to the human eye. After the MSATT module, the deepfake anomalies are
amplified, making such hue differences apparent. We illustrate this phenomenon in Fig. 2.

Motivated by this observation, we designed a CDPNet to capture the color-based feature.
We first use (6) to measure the color difference in the image before and after the MSATT
pre-processing.

Di f f(1,2) =
√

(I1,R − I2,R)2 + (I1,G − I2,G)2 + (I1,B − I2,B)2 (6)
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Table 1 The description of the
convolution layers in the CDPNet

Layers Layer Description Output Size

layer1 Conv(3, 64, 7, 2) 128 × 128 × 64

layer2 Max Pool2d(64, 64, 3, 2) 64 × 64 × 64

layer3 Conv(64, 64, 1, 1) 64 × 64 × 64

layer4 Conv(64, 64, 3, 1) 64 × 64 × 64

layer5 Conv(64, 128, 1, 1) 64 × 64 × 128

layer6 Conv(128, 128, 3, 2) 32 × 32 × 128

layer7 Max Pool2d(128, 128, 3, 2) 16 × 16 × 128

layer8 Conv(128, 128, 1, 1) 16 × 16 × 128

layer9 Conv(128, 128, 3, 1) 16 × 16 × 128

layer10 Conv(128, 256, 1, 1) 16 × 16 × 256

layer11 Conv(256, 256, 3, 1) 16 × 16 × 256

layer12 Max Pool2d(256, 256, 3, 2) 8 × 8 × 256

layer13 Conv(256, 2048, 1, 1) 8 × 8 × 2048

where I1 and I2 represent the pixel valuematrix of the input and output images of theMSATT
module, respectively. R, G and B represent three color channels. After obtaining the color-
difference measurement Di f f , we fed it into the self-designed CDPNet. We only designed a
few layers of convolutional structure and combined it with the short connections of ResNet
to obtain more robust features. The structure of the CDPNet is listed in Table 1.

2.3 Domain augmentation

The purpose of domain augmentation is to make the detection model learn features from
unknown distributions. The concept is shown in Fig. 3.

The domain augmentation simulates cross-domain distributions by adding gradient noise
to the source domain. Due to the unpredictable nature of the noise signal, the augmentation
expands in near-randomdirections based on the source domain.According to our observations
and understanding of Deepfake datasets, we have found that the feature spaces of different

real

fake

Source 

Domain

Target 

Domain

Maximum Boundary

R1

R2

F1

F2

Augmented Domain

(a) (b)

Fig. 3 The output images of MSATT. The first and third rows are the input pristine images and the forgery
images respectively. The second and fourth rows are the images that expose the artifact trace after MSATT
pre-processing
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Deepfake datasets tend to cluster together. Therefore, despite the randomnature of the domain
augmentation, it still has the ability to extend to adjacent unknown domains.

We hope that the distribution of the enhancement domain should deviate from the source
domain as much as possible to simulate a broader distribution of the unknown environment.
This paper implements domain augmentation by satisfying the worst-case scenario under
the constraint of ensuring semantic consistency, but the constraint of semantic consistency
will limit the transmission capacity (the expansion capability from the source domain to the
target domain), shown in Fig. 3(b), red spots generated from blue spots will be limited to a
certain range. So we alleviate the constraints of semantic consistency while keeping it across
the line between real and fake.

To achieve this goal, we exploit a specific domain augmentation strategy that simulates
the unknown domain by introducing gradient noise into the source domain. The samples that
need to be enhanced are considered as part of the trainable parameters of the task model
and then use objective function Ltotal to calculate the gradients of the input layer to update
the input samples, similar to the network’s backpropagation process. Ltotal is the total loss
required for the sample enhancement stage, as shown in (7).

Ltotal = Lcls(θ; x) − αLconst (θ; z) + βLrelax (ϕ; x) (7)

Ltotal consists of three losses: Lcls , Lconst , and Lrelax . α and β are hyperparameters to
balance Lconst and Lrelax . We will detail these losses in the following.

Lcls is the classification loss defined in (5), it is the optimization function in the worst-case
scenario.

Lconst is used tomaximize the difference between the source domain and the target domain
while satisfying semantic consistency. Ensure that high-level semantic features are related to
class labels. The definition is as follows:

Lconst = 1

N

∑

i

∥∥zi − z+i
∥∥2
2 + ∞ · 1{y �= y+} (8)

where z+ represents the discriminative features extracted from enhanced samples. 1• indicate
0-1indicator function and it will be ∞ if the class label of x+ is different from x. Lconst can

Table 2 The description of encoder and decoder

Layers Layer Description Output Size

Encoder

layer1 Conv(3, 32, 3, 2) 128 × 128 × 32

layer2 2 × Conv(32, 64, 3, 2) 32 × 32 × 64

layer3 2 × Conv(64, 128, 3, 2) 8 × 8 × 128

layer4 2 × Conv(128, 256, 3, 2) 4 × 4 × 256

layer5 Conv(256, 512, 3, 2) 2 × 2 × 512

Decoder

layer1 2 × ConvTranspose(512, 256, 3, 2) 8 × 8 × 256

layer2 2 × ConvTranspose(256, 128, 3, 2) 32 × 32 × 128

layer3 2 × ConvTranspose(128, 64, 3, 2) 128 × 128 × 64

layer4 ConvTranspose(64, 32, 3, 2) 256 × 256 × 32

layer5 ConvTranspose(32, 3, 3, 1) 256 × 256 × 3
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achieve a certain degree of out-of-domain generalization in the embedded space, but its
out-of-domain transmission ability is limited due to semantic consistency constraints. In
order to enhance the transmission capability outside the domain and increase the diversity
of samples, we adopted Lrelax to alleviate the constraint of semantic consistency which is
defined as follows.

Lrelax is for mitigating constraints on semantic consistency by limiting the encoding
capabilities of WAEs which are defined in (9).

Lrelax = 1

N

∑

i

∥∥X+
i − D(E(X+

i ))
∥∥2
2 (9)

Where E and D represent the Encoder and Decoder, respectively. In this paper, we use
WAEs [14] to implement Lrelax . By limiting the encoding ability ofWAE, the reconstruction
error increases, and more disturbances are generated to enhance the domain transmission
capability. The structure of the encoder and decoder is described in Table 2. The encoder
and decoder need to be trained in advance to better capture the distribution of the source
domain. Then limit the encoding ability of WAEs to maximize the difference between the
enhancement domain and the source domain.

Algorithm 1 The proposed method for training strategy.
Require: source domain S , pretrainedWAEs V on S; the number of iterations; the number of training batches

N; the number of evaluate batches M; the conditional of domain augmentation T
Ensure: task module parameter θ

1: for t = 1 → i terations do
2: if t mod T == 0 then
3: generate S+

t from St−1 using (10)
4: retrain V with S+

t
5: for i = 1 → N do
6: training task module with St = S+

t ∪ St−1
7: update task module parameter θ

8: end for
9: for i = 1 → M do
10: evaluate task module with St
11: end for
12: else
13: for i = 1 → N do
14: training task module with St−1
15: update task module parameter θ

16: end for
17: for i = 1 → M do
18: evaluate task module with St−1
19: end for
20: end if
21: end for

After obtaining the objective function Ltotal that needs to be optimized, we can use the
iterative method to perturb the original sample along the direction of gradient change to
generate more samples x+:

x+
t+1 ← x+

t + ζ∇x+
t
Ltotal(θ, ϕ; x+

t , z+t ) (10)

123

63983



Multimedia Tools and Applications (2024) 83:63975–63992

where ζ represents the scale factor. θ and ϕ represent the convolutional layers’ parameters
of the task module and SCR module respectively. Our main idea is to add disturbance to
the sample to obtain new ones. The feature vector z is obtained from the samples in the
source domain through the task model. In order to make the difference between z and the
feature vector z+ of the samples corresponding to the augment domain larger, we augment
the samples along the gradient change direction in the back propagation process through
adaptive learning. In simple terms, we update the input samples in a way similar to the
network parameter update. It is also worth noting that during the non-data augmentation
training phase, we only use Lcls for optimization of the parameters θ of the task module:

θ̂ ← θ − η∇θ Lcls(θ; S ∪ S+) (11)

Where η is the learning rate. Training task module on the original and enhanced domains to
achieve better generalization performance.

Our workmainly includes the following two points. First, in order to better capture manip-
ulation traces, MSATT is used to suppress content features to expose manipulation traces.
Second, simulate the distribution outside the domain through the domain enhancement strat-
egy. Using Lconst and Lrelax to maximize the expansion outside the domain by relaxing the
constraints of semantic consistency. Our method implementation is summarized in Algo-
rithm 1.

3 Experiment

In this section, we conduct several experiments to verify the effectiveness of the proposed
method. Section 3.1 provides the details of the experimental setup. Section 3.2 reports the
ablation experiment. Section 3.3 provides visualization of the generalization of our method.
Section 3.4 reports the experimental results with recent works. Section 3.5 verifies the model
generalization performance.

3.1 Experimental setup

DatasetsWe performed experiments on several of the most popular deepfake datasets: Face-
Forensics++ (FF++) [15],Celeb-DF [16],DeepfakeDetectionChallenge (DFDC) [17] and
FaceShifter [18]. The FF++ contains four forgery patterns:DeepFake (DF) [19],Face2Face
(F2F) [20], FaceSwap (FS) [21], and NeuralTexture (NT) [22]. A total of 4,000 forged
videos were generated based on 1,000 pristine videos. In addition, according to different
compression rates, FF++ also provides three different levels of compressed video: pristine
quality (raw), high quality (HQ), and low quality (LQ). In this paper, We regard DeepFake,
Face2Face, FaceSwap, and NeuralTexture as four datasets. Note that we divide the dataset
according to the official ratio of 720:140:140. Celeb-DF [16] is another widely used deep
forged dataset. It improves the visual quality of the video samples and is more challenging
for face forgery detection tasks. DeepFake Detection Challenge (DFDC) [17] is another
more challenging dataset which contains 1,000 pristine videos and over 4,000 fake videos
manipulated by multiple DeepFake, GAN-based and non-learned methods. FaceShifter [18]
is a more challenging face forgery detection that is not only considerably more perceptually
appealing, but also better identity preserving in comparison.
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Metrics The metrics in our experiments are Accuracy (ACC) and Aera under the curve
(AUC), which are most commonly used for evaluating face forgery detection methods.

Implementation details The backbone of the proposed architecture is the Xception [23]
which is pre-trained on imagenet. We use MTCNN [24] to exact the face areas, and align
and resize them to 256×256 pixels. The hyper-parameter used in (7) are α = 0.0001 and
β = 1e9. We set the batch size to 32, and use the Adam optimizer. The learning rate of the
task module and WAE is set to 0.00002 and 0.0005, respectively. Our experiments run on an
NVIDIA GTX GeForce 1080Ti GPU.

3.2 Ablation study

In this section, we carry out several ablation experiments to verify the effectiveness of the
proposedMSATT, CDPNet, and Data Augmentation (DA) strategy. All ablation experiments
were trained onDF and tested on each of the four sub-datasets in FF++. The results are shown
in Table 3. The results show that the main modules we propose can improve the detection
performance on both intra- and inter-datasets. The first row is the detection results of the
backbone. In the second row,we tested the efficacy of theMSATT.Compared to the backbone,
the performance slightly drops on the same domain but improves on the cross-domain.

In the third row, we evaluated the CDPNet. Since there is a dependency between the
CDPNet and the MSATT, we tested the two modules jointly. Compared to the backbone, it
has increased by 0.23%, 1.14%, 1.40%, and 0.57% on DF, F2F, FS, and NT, respectively.
We analyzed the DA strategy in the fourth row. The results on cross-domain datasets have
significantly improved in comparison to the baseline, which is evident that the DA enhances
the generality of the detection algorithm. In the last row, we evaluated the performance
after integrating all proposed modules. It demonstrates the optimal results both within and
across datasets. Compared to the backbone, it has increased by 0.59%, 3.25%, 2.13%, and
1.11% on DF, F2F, FS and NT, respectively. We can see that the improvement in the intra-
domain performance is not substantial, whereas there are notable improvements in cross-
domain performances. The reason is that the baseline performance of the intra-domain (tested
on DF) has already reached 99.14%, leaving little room for significant improvement. In
contrast, there is ample room for improvement in cross-domain performances compared to the
baseline. Moreover, the significant improvement in cross-dataset performance demonstrates
the effectiveness of domain generalization.

Table 3 Ablation study on
proposed modules(AUC(%))
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3.3 Visualization of improved generalization

The purpose of the proposed method is to improve the cross-domain generalization of the
face forgery detection model.

We perturb the original samples to let the model learn more diverse representations under
unknown distributions. Figure 4 demonstrates the visualization results of the feature domain
augmentation. It realizes dimension reduction by using t-sne [25]. By comparing Fig.4(a) and
(b), we find that the feature distributions deviate further from the centroid after adding the
DA. It means that our method does expand both the real and fake data domains. By observing
(c) and (d), we find that after domain generalization, the model is better able to distinguish
the real and fake data in the cross-dataset evaluation, which proves the DA can expand the
feature domains along the correct directions to a certain extent.

3.4 In-Domain evaluation

In this section, we evaluate the in-domain performance of the proposed method. We compare
ourmethodwith five SOTAdeepfake forensicmethods. All themethods are trained and tested

Fig. 4 The t-sne feature space visualization. Results of the first row demonstrate the feature distributions when
the model is trained on F2F and tested on F2F. In the second row, the model is trained on F2F and tested on
FF++. In the first and second columns, the detection model is trained without and with domain augmentation,
respectively
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Table 4 Comparative analysis of detection performance with other methods in seen domain

methods DeepFake Face2Face FaceSwap NeuralTexture Average
ACC AUC ACC AUC ACC AUC ACC AUC AUC

Afchar [1] 87.27 91.03 86.32 90.76 82.43 88.62 79.96 83.86 88.57

Chollet [23] 95.13 98.85 87.34 93.62 92.42 97.08 77.54 84.51 93.12

Qian [26] - 98.62 - 98.51 - 98.34 - 93.22 97.17

Liu [4] 93.48 98.50 86.02 94.62 92.42 98.10 76.78 80.49 92.93

Yang [27] - 98.96 - 98.90 - 97. 37 - 95.65 97.72

Ours 96.43 99.68 97.60 99.79 97.65 99.74 90.31 99.64 99.71

on each of the four sub-datasets in FF++. Table 4 shows the detection results. We can see
that the proposed method achieves competitive performances within the same domain. Our
method’s AUC metric is 0.72% higher than that of Yang et al. [27] in the DeepFake subset.
Our method’s AUC metric is 0.89% higher than that of Yang et al. [27] in the Face2Face.
Testing on FaceSwap, our method’s AUC is 1.40% higher than that of Qian et al. [26].
Similarly, Testing on NeuralTexture, our method’s AUC is 3.99% higher than that of Yang
et al. [27].

We show the comprehensive performance of all methods by averaging the AUC on four
sub-datasets. We can see that our method is superior to other methods. Meanwhile, Fig. 5
visualize the ROC curve to show it more intuitively.

Fig. 5 (a) indicate training onDeepFake. (b) indicate training on Face2Face. (c) indicate training on FaceSwap.
(d) indicate training on NeuralTexture
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3.5 Out-of-domain evaluation

Cross-Manipulation Evaluation In this part, we evaluate the generalization of the proposed
method to unseen manipulations. The datasets and results are shown in Table 5. For a fair
comparison, the methods compared were all re-implemented so that the training sets could be
kept the same.We can see that our method shows overall superior performance in comparison
to the rest. Especially, on the training set F2F, our method is superior to all other methods on
all the test sets. However, the proposed method does not perform adequately on the training
set NT. Our analysis suggests that our method has a relatively ideal effect on the expression
transfer method based on computer graphics, while the effect on deep learning expression
transfer is not very satisfactory. We calculated the average AUC in the last column. Our
results are respectively 1.74%, 3.53%, 4.36%, and 0.96% higher than the second-highest.
We also provide histograms to intuitively demonstrate the generalization of the proposed
method against the comparison methods, as in Fig. 6.

Table 5 Cross-Manipulation Evaluation(AUC(%)) of face forgery detection

train dataset methods test dataset
DF F2F FS NT Average

DF Chollet [23] 99.14 63.22 58.32 67.61 72.07

Tan [28] 99.57 66.32 46.32 69.35 70.37

Afchar [1] 96.51 55.68 39.25 65.14 64.14

Nguyen[3] 98.37 68.34 54.83 63.34 71.22

Yu [29] 97.36 59.71 51.23 59.88 66.99

ours 99.73 66.47 60.45 68.72 73.84

F2F Chollet [23] 68.38 99.62 59.82 64.54 73.09

Tan [28] 82.44 98.72 58.14 63.71 75.75

Afchar [1] 65.07 92.64 60.33 64.24 70.57

Nguyen[3] 76.58 99.31 71.34 64.96 78.04

Yu [29] 71.66 96.47 61.35 60.83 72.57

ours 82.74 99.79 75.64 68.12 81.57

FS Chollet [23] 49.51 61.67 98.92 61.96 68.02

Tan [28] 58.69 67.32 99.12 48.61 68.43

Afchar [1] 61.12 62.23 93.41 62.21 69.74

Nguyen[3] 47.36 63.87 99.21 64.38 68.70

Yu [29] 56.37 65.21 98.36 52.12 68.01

ours 63.34 76.68 99.74 56.67 74.10

NT Chollet [23] 83.71 67.06 54.87 99.13 76.19

Tan [28] 49.45 66.59 66.72 94.82 74.39

Afchar [1] 67.47 61.49 54.55 82.37 66.46

Nguyen[3] 76.31 66.12 51.26 97.34 72.76

Yu [29] 59.32 59.68 51.79 92.17 75.74

ours 87.06 62.82 59.09 99.64 77.15

The best and second-best results are marked in bold and red respectively
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Cross-dataset evaluation In this part, we assess the cross-dataset generalization of the
proposed method. The test datasets are Celeb-DF, DFDC, and FaceShifter. We train each
model on DF, F2F, FS, and NT, respectively. We compared several SOTA deep face detection
methods with good generalization performance. Li et al. [30] identify authenticity by detect-
ing mixed boundaries. Qian. et al. [26] obtained identification clues through the frequency
domain. The comparison results are shown in Table 6. Analyzing the experiment data can
clearly find that our method can achieve the best or second-best results. Especially the results
of training on DeepFake(DF), our method achieves the best test results on Celeb-DF, DFDC,
and FaceShifter. This indicates that our method performs well in terms of generalization for
forgery types of DeepFake. The training results on F2F and NT show that our method has
satisfactory generalization performance on Celeb-DF and FaceShifter, and can also achieve
the second best performance on DFDC. The effectiveness of our method on FS is not very
satisfactory, possibly due to insufficient learning of this type of forgery in our method. In
addition, we also calculated the average AUC of the four different manipulation test datasets.
It can be intuitively seen that our method can achieve the best result on F2F, it is 2.71%

Table 6 Cross-Dataset Evaluation(AUC(%)) of face forgery detection

train dataset methods test dataset
Celeb-DF DFDC FaceShifter Average

DF Chollet [23] 63.48 61.72 58.96 63.54

Afchar [1] 61.01 58.63 58.53 59.39

Yu [29] 54.86 60.11 61.28 58.75

Li [30] 55.41 66.80 60.91 61.04

Qian [26] 66.40 65.80 68.21 66.81

ours 68.72 69.89 69.48 69.36

F2F Chollet [23] 65.14 74.51 70.81 70.15

Afchar [1] 50.37 69.43 58.69 59.49

Yu [29] 56.42 71.28 61.02 62.91

Li [30] 68.41 79.60 63.31 70.44

Qian [26] 65.40 76.10 67.91 69.81

ours 69.74 77.65 73.88 73.75

FS Chollet [23] 63.71 60.51 70.81 65.01

Afchar [1] 60.93 55.89 64.84 60.55

Yu [29] 61.38 59.31 66.38 62.35

Li [30] 69.71 79.23 64.61 71.18

Qian [26] 63.61 65.10 67.91 65.54

ours 68.95 66.52 71.68 69.05

NT Chollet [23] 64.92 83.81 64.61 71.11

Afchar [1] 39.86 68.27 56.47 54.86

Yu [29] 51.62 70.15 61.75 61.17

Li [30] 70.03 85.92 61.31 72.42

Qian [26] 68.90 93.21 67.21 76.44

ours 72.81 87.12 68.25 76.06

The best and second-best results are marked in bold and red respectively
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higher than that of the second-best result method. The other three results can achieve the
second-best effect.

4 Conclusion

In this paper, we provide a new feasible method for improving the generality of face forgery
detection. We adopt the domain generalization theory to simulate the real and fake face fea-
ture distributions in the unknown environment. The employed technique introduces gradient
disturbances to the source domain in an automatic fashion. We demonstrate the improved
generalization through visualizations and quantitative results. Since the domain extension
is uncontrollable in direction, it is actually generalizing in a nearly-random manner. In the
future, we will investigate methods that can control domain augmentation under meaningful
ranges.

We find that when trying to enhance the subtle manipulation traces through specifically
designed CNN structures, the outputs reveal chromatic anomalies, such as hue-shifts after
the proposed MSATT module. This result supports that the colors of deepfake images are
actually unnatural, which will become evident with magnification. In future research, we will
continue to study these hidden features, such as color features of other attributions.
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