
https://doi.org/10.1007/s11042-023-17814-4

Semantic segmentation of large-scale point clouds
with neighborhood uncertainty

Yong Bao1 · Haibiao Wen2 · Baoqing Zhang1

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Large-scale point cloud segmentation is one of the important research directions in the field of
computer vision, aiming at segmenting 3D point cloud data into parts with semantic meaning,
which is widely used in the fields of robot perception, automated driving, and virtual reality.
In practical applications, intelligences often face various uncertainties such as sensor noise,
missing data, and uncertain model parameter estimation. However, many current research
works do not consider the effects of these uncertainties, which can cause the model to overfit
the noisy data and thus affect the model performance. In this paper, we propose a point cloud
segmentation method with domain uncertainty that can greatly improve the robustness of the
model to noise. Specifically, we first compute the neighborhood uncertainty, which is more
reflective of the semantics of a local region than the prediction of a single point, which will
reduce the impact of noise. Next, we fuse the uncertainty into the objective function, which
allows the model to focus more on relatively deterministic data. Finally, we validate on the
large-scale datasets S3DIS andToronto3D, and the segmentation performance is substantially
improved in both cases.

Keywords Point cloud · Segmentation · Uncertainty

1 Introduction

Point Cloud Segmentation (PCS) is one of the important tasks in the field of computer vision
and machine learning, which aims to divide 3D point cloud data into semantic parts or
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objects, and has been applied in the fields of autonomous driving [1], virtual reality [2, 3].
The important challenge for the point cloud segmentation task is that its raw data is usually
irregular, unstructured and disordered. Althoughmanymethods excel in 2D computer vision,
they are not able to process such data directly.

So there are someworks proposed to deal with point clouds directly, such as the pioneering
work PointNet [4] is a very effective method to deal with 3D point clouds directly. It learns
single point features by sharing MLPs, but they do not consider contextual information.
Subsequently, Pointnet++ [5] was proposed and solved the problem of PointNet. Meanwhile,
more and more methods were proposed, which can be roughly categorized into: point-based
methods [4–9], voxel-based methods [10–12], and Transformer-based methods [13, 14].
Point-based methods usually use the K-nearest-neighbor algorithm or spherical algorithm
to aggregate the point cloud into a region, and then use the convolution operation on this
local region. Voxel-based methods first divide the point cloud into fixed-size voxels, which
are then processed using standard convolutional neural networks. Whereas Transformer-
based methods typically have the best performance, this type of method first converts the
point cloud into a Patch and then processes it using a designed transformer structure. Taken
together, while these three types of methods have achieved increasingly better results, these
methods are susceptible to uncertainties. It is undeniable that there has been a small amount
of work on point cloud uncertainty [15]. But its not straightforward to use uncertainty to
guide segmentation.

Therefore, we incorporate uncertainty factors into the point cloud segmentation process,
which allows for a more comprehensive understanding of the point cloud data and provides
more accurate and robust segmentation results, which is valuable for real-time applications
such as autonomous driving. Therefore, we propose a neighborhood uncertainty point cloud
segmentation method. The proposed method replaces the uncertainty of each point with its
neighborhood uncertainty, and then uses a loss that dynamically adjusts the model according
to the uncertainty of the point, which can make the model more focused on deterministic
data. This can serve to filter noise, smooth anomalies, and improve model stability and model
accuracy. To summarize, our contribution is as follows:

• To attenuate the effect of noise in data, we propose a neighborhood uncertainty method.
The proposed method first aggregates domain knowledge and then uses this aggregated
knowledge to calculate the uncertainty. The uncertainty reflects to some extent how
confident the model is about a certain region;

• To make the model more focused on the deterministic region, we propose an uncertainty
regularization method. By fusing the uncertainty degree into the loss function, the model
can be made to focus more on the deterministic data and attenuate the effect of the
uncertain data.

• To evaluate the effectiveness of the proposed method, we conducted experiments on
the large-scale point cloud datasets S3DIS and Toronto3D are, both of which achieved
leading results.

2 Related work

2.1 2D image segmentation

The research of deep learning on 2D images started earlier, and a large amount of work
has been accumulated, we list a few recent representative works here [16–20]. SG-Net
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[16] is a single-stage spatial granularity network characterized by feature sharing, high
mask quality, high tracking robustness, and efficient inference time. In order to enhance
the instance discrimination ability of query segmenters, [17] designed a new training frame-
work to enhance query-based models through discriminative query embedding learning. It
explores two fundamental properties of the relationship between queries and instances, i.e.,
dataset-level uniqueness and transformation isomorphism. The approach achieves significant
performance improvements. In [18], on the other hand, a coarse-to-fine instance segmenta-
tion method is proposed, which uses optical flow techniques to propagate instance masks
across video frames, conditioning the appearance flow on the input video frames,so that it
takes into account the scene context changes, and the overall model is trained end-to-end to
jointly optimize the loss function on multiple tasks of instance segmentation, optical flow
estimation, and flow consistency. This coarse and fine prediction combined with the con-
ditionalized decomposition of appearance streams makes the video instance segmentation
results more stable and robust, surpassing the performance of previous work on benchmark
datasets. Overall, these methods achieve increasingly better results and give good theoretical
support for 3D point cloud segmentation tasks, but cannot be directly used to handle point
cloud segmentation tasks.

2.2 3D point cloud segmentation

In recent years, with the development of artificial intelligence and the generalization of
hardware acquisition devices, research on 3D point cloud segmentation tasks has begun
to emerge, which can provide better geometric perception for intelligences, which is not
available for 2D images. Current point cloud segmentation methods can be categorized into
point-based methods [4–9, 21–23], voxel-based methods [10–12, 24], and transformer-based
methods [13, 14].

Point-basedmethods perform point cloud segmentation by learning the feature representa-
tion and semantic information of point cloud data. PointNet [4] is one of the first point-based
segmentation methods proposed to directly deal with disordered point cloud data. The main
idea of PointNet is to deal with each point in the point cloud one by one, instead of treating the
whole point cloud as a single entity. This is achieved by extracting features from each point
using a shared multilayer perceptron (MLP) and then performing a maximum pooling oper-
ation to aggregate these features into a global representation of the point cloud. One obvious
drawback of this method is the inability to learn local features. Subsequently, many improved
network structures have been proposed, PointNet++ [5] is an extended and improved version
of PointNet with more expressive power and better performance in dealing with point cloud
data.The core idea of PointNet++ is to extract and aggregate features from point cloud data
through a hierarchical structure. It introduces a module called “PointNet Set Abstraction”,
which is used to extract features from local regions and gradually aggregate global features.
Subsequently, DGCNN (Dynamic Graph CNN) [7] was proposed as a deep learning model
for point cloud analysis, which is based on the idea of Graph Convolutional Neural Networks
(GCNs) and Dynamic Graph Construction, and is able to effectively learn and analyze fea-
tures from point cloud data. Unlike traditional grid-based convolution, DGCNN is able to
handle irregular and inhomogeneous point cloud data for objects of various shapes and sizes.
Then KPConv [9] (Kernel Point Convolution) was proposed as a deep learning model for
point cloud analysis, which is based on the idea of Convolutional Neural Networks (CNNs)
and introduces adaptive convolutional kernel points to process the point cloud data. The
core idea of KPConv is to represent the point cloud data as a set of reference points called
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“Kernel Points”, which are used to define the point cloud data. The core idea of KPConv is
to represent the point cloud data as a set of reference points called “Kernel Points”, which
are used to define the shape and weight of the convolution kernel. Each Kernel Point has an
adaptive convolutional kernel that automatically adjusts to the position and characteristics of
the points around it. Cui et al. [21] proposed a point cloud analysis method based on dynamic
graph convolutional network, called GAG-CNN. it uses dynamic graph to represent the point
cloud, and constructs a changing graph representation based on the input point cloud, which
is more consistent with the point cloud structure. It applies the geometric attention mecha-
nism to learn the importance of different parts of the point cloud, and uses graph convolution
operation to capture the local features and global structure information of the point cloud,
and builds a dynamic lexicon to encode the semantic information of the point cloud, which
can be trained end-to-end and used for the tasks of point cloud classification and segmenta-
tion. Experimental results show that this method achieves high accuracy on ShapeNet and
S3DIS datasets. In order to differentiate between different points, [22] proposed an efficient
point cloud semantic segmentation method using spatially adaptive convolution. The method
learns how to aggregate information from neighbors based on the location of the points,
and employs different sensory fields for different points. It achieves adaptive convolution by
encoding spatial coordinates into features and designing a location-aware weight generation
module, which can better capture local geometric structures and is more efficient than ordi-
nary convolution.Cloud-RAIN [23], on the other hand, solves the problem that the existing
point cloud networks do not take into account the reflective symmetry of the 3D shapes,
which makes it difficult to summarize the 3D shapes well, and has a poor generalization
ability. They realize the isovariance of features to reflections by symmetrization and achieve
good segmentation performance.

Voxel-based methods are PointNetVLAD [24], which is a combination of PointNet and
VLAD (Vector of Locally Aggregated Descriptors). It converts the point cloud data into a
voxel grid and locally aggregates the features within each voxel. The overall point cloud
representation is then obtained by encoding the features of each voxel using VLAD coding.
By clustering or classifying the encoded features, segmentation of the point cloud can be
performed.

Transformer-based methods have been developing very rapidly in recent years, broadly
speaking, Pointformer [13], Pointformer++ [14], and so on. First of all, we look at Point-
former, which is a Transformer-based point cloud segmentation method, which represents
the point cloud data as a series of point feature vectors, and aggregates and updates the point
features through the self-attention mechanism and the multilayer perceptron, and utilizes
Transformer’s parallel computing capability and global attention mechanism to achieve effi-
cient and accurate point cloud segmentation. To address the shortcomings of Pointformer,
Pointformer++ introduces a multi-layer hybrid attention mechanism to effectively fuse local
and global information. It also introduces contextual relationship modeling of point cloud
data and feature compression techniques to improve the accuracy and efficiency of point
cloud segmentation. These methods have achieved better and better results, but they are sus-
ceptible to noise, which greatly affects model performance and is not suitable for scenarios
with high security requirements.

2.3 Local knowledge aggregation and uncertainty

In computer vision, the merit of the local features of the network and the robustness of the
model are crucial for the vision task. Therefore, there are some excellent works [15, 25–

123

60952 Multimedia Tools and Applications (2024) 83:60949–60964



27] have been proposed. In [25], a fully convolutional feature aggregation network structure,
DenserNet, is proposed. Thismethod extractsmulti-scale features from low to high resolution
through multiple parallel branches and the feature outputs from each branch are fused by
convolution to finally produce a dense feature map. In [26], the global attention module
is used to fuse the features from different regions to extract the key region features, and
the local attention module is used to further decompose the features in the key region at
a finer granularity, which achieves a very good performance. Although the above works
have achieved good results, these works are susceptible to human-designed noise and have
poor security and robustness. For example, [27] proposed a new unimodal adversarial attack
method, where only a single unimodal input needs to be fine-tuned to influence the model’s
multimodal fusion decision. Therefore, it is crucial to improve the model robustness and
attenuate the effect of noise on the model. The first uncertainty-based LiDAR panorama
segmentation method was proposed in [15]. It can simultaneously predict the categories and
instances of all scanned objects,and give the uncertainty measure of each prediction, which
can effectively improve the robustness and interpretability of LiDARpanorama segmentation.
This work is relative to ours in that they do not directly utilize the uncertainty to guide the
segmentation, which may be less effective.

3 Method

3.1 Problem definition

Suppose we have a point cloud scene, denoted asP ∈ RN×D , where N denotes the number
of points and D denotes the dimension of each point. The goal of point cloud segmentation
is to learn a classifier F that predicts the category Y of each point, i.e., Y = F(P), given a
training set. The total number of categories is denoted by C .

3.2 General overview

There is no doubt that there are unavoidable noise and unpredictable regions in point cloud
data, but most current point cloud segmentation methods do not consider these issues. There-
fore theirmethods tend to be overconfident about the prediction results,which is not feasible in
practical applications. Therefore, we propose a point cloud segmentation method for domain
uncertainty, which enables the model to focus on more certain regions while weakening the
effect of uncertain data. As shown in Fig. 1, the proposed method consists of input, network
structure, uncertainty estimation, and output. For the input data, more to improve the model
generalization ability and robustness, we use the data enhancement operation. As for the net-
work structure, we use Backbonewith two shared parameters, which can improve themodel’s
ability to learn knowledge. Finally, to further enhance the robustness of the model, we use
an uncertainty estimation method by which the uncertainty of each point can be obtained.
Finally, by fusing the uncertainty to the cross-entropy loss, the final output can be obtained.

3.3 Network architecture

We use RandLA-Net as Backbone because it has fast processing speed for large-scale
point clouds and achieves very good segmentation results. RandLa-Net includes Local
Feature Aggregation (LFA), Random Downsampling (RS), Upsampling (US) and MLP
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Fig. 1 Our method. First, the original and augmented data are entered into Backbone to get the predictive
distribution. Then, the neighborhood predictive distribution is obtained based on this predictive distribution,
and then the uncertainty is obtained. Finally, we can obtain the final prediction based on the uncertainty and
cross-entropy loss. w denotes the uncertainty.Lseg is the loss function

operations. Specifically, when given a point cloud P with N input points, RandLa-Net
performs feature extraction hierarchically, producing feature representations with different
dimensions.RandLa-Net focuses on extracting high-level semantic features, capturing the
global structure, semantic information, and contextual relationships in the point cloud. How-
ever, we found that it is not very robust to noise in the dataset. Therefore, we propose an
improved method in this paper based on RandLA-Net. We improve the data input level of
RandLA-Net in the first place by using 3 in data enhancement. Then for the model structure,
we use the RandLA-Net structure with shared parameters, and finally for the model output
and loss function, we use the uncertainty to further improve this RandLA-Net.

3.4 Data enhancement

For the input, more to improve the generalization ability and robustness of the model, we use
three kinds of data augmentation, which are scene-level transformation, point perturbation,
and random flip. For a point cloud P, we can split it into coordinates P ∈ RN×3 and others
(e.g., color, normal vector). Our scene-level transformations and random flips are both oper-
ations on point cloud coordinates. For scene-level transformation, we first define a random
selection matrix T r ∈ R3×3, and then multiply P with T r to obtain the transformed point
cloud Pr , i.e., Pr = P • T r , where

T r =
⎡
⎣
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤
⎦ (1)

and the transformation angle θ obeys the uniform distribution U ∈ (2, 2π), and “•” denotes
matrix multiplication. For the flip, we only use the flip centered on the Y-axis, denoted as
Pm = P • Tm , where Tm = diag(1,−1, 1). For the point perturbation operation, we
define a perturbation matrix T j ∈ RN×3, which is a Gaussian noise distributed between
[−0.05, 0.05], then the perturbed point cloud P j = P + T j . We randomly select one of the
enhancements from Pr , Pm, P j at training time and send it to the network training along
with the original point cloud P . We believe that by doing this, we can serve to expand the
data, improve the model learning ability, and have to take advantage of the final uncertainty
modeling.
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3.5 Neighborhood uncertainty estimation

In order to further improve the robustness of the boosting model, so that the model focuses
more on deterministic regions and less on regions of relative uncertainty,we propose amethod
for domain uncertainty estimation. The basic idea of our approach is that similar samplesmay
have the same labels, and we believe that features from semantically similar points should
lie in the same feature space. Thus, the uncertainty of a point is accomplished by aggregating
the knowledge from its nearest neighboring samples. Then the uncertainty estimation of a
single point is achieved by aggregating features from similar samples, and depending on the
size of the uncertainty, we can then make the model focus on the certainty region with high
confidence data, which will serve to filter noise and smooth out anomalous data. The method
used to aggregate neighbor knowledge and generate uncertainty is shown in Fig. 2.

Suppose there is a current point, such as the red point labeled “?” in Fig. 2. The domain
point and domain prediction result of this point can be obtained by KNN firstly, and then
the domain knowledge can be aggregated by average weighting operation as shown in the
following equation.

I (p) = K NN (p) (2)

p̂(c)
t = 1

K

∑
i∈I

p(c)
i (3)

The prediction of a localized region consisting of a set of points is more plausible than the
likelihood estimation of a single point, therefore, we use the domain knowledge aggregation
above. Next, we calculate the entropy value after this aggregation, as shown in the following
equation. If the entropy value is larger, it means that the uncertainty of the corresponding
region is larger. Then, by the same token, if the entropy value is smaller, it means that the
corresponding region has less uncertainty and the model is more confident, and it also means
that the region has less noise.

H( p̂t ) = E[I ( p̂)] = −
C∑
c=1

p̂t log2 p̂t (4)

Neighbours

?

Point Cloud Distribution

Sum&MeanUncertainty

Fig. 2 Uncertainty estimation. “?” indicates that the neighborhood uncertainty is to be calculated for the red
point.w denotes uncertainty
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Next, we normalized this entropy value and applied the negative exponential function, andwe
got the final uncertainty. Here, we used the negative exponential function for the following
reason, i.e., the function allows the model to put more weight on the low entropy data and
relatively less weight on the high entropy data.

Ĥ( p̂t ) = H( p̂t )

log2 C
(5)

w = exp(−Ĥ( p̂t )) (6)

3.6 Total loss

In order for the model to put more weight into the deterministic region, we characteristically
blend the uncertainty into the traditional cross-entropy loss, i.e., as shown in the following
equation:

Lseg = − 1

CL

L∑
i=1

wi

C∑
c=1

ylic log
exp(ŷlic)∑C
c=1 exp(ŷ

l
ic)

(7)

With the fusion described above, the model can then target learning based on the size of
uncertainty. Specifically, if some data has less uncertainty, the model puts more weight on it.
If the uncertainty of some data is large, the model will pay less attention to this part of the
data.

4 Experiments

In order to verify the validity of the proposedmethod, we conduct quantitative and qualitative
analysis experiments in this section. We begin this section by describing the dataset used in
the experiments, the specific experimental details, followed by the quantitative analysis,
qualitative analysis, and finally the ablation experiments.

4.1 Dataset

The S3DIS [28] dataset is a comprehensive indoor scene dataset that includes six large-scale
indoor scenes. Each scene contains 271 roomswith approximately 106 points and 13 semantic
categories in each room.We use six attributes as inputs, including XYZ coordinates and RGB
colors.

The Toronto3D [29] dataset is a point cloud of urban roads acquired using a vehicle-
mounted laser system with 78.3 million points and 13 semantic categories.

4.2 Implementation details

In our experiments, we use RandLa-Net as the backbone network. The initial learning rate
is set to 0.01 and decreases by 5% after each epoch. We use a neighborhood size of 15. The
number of points input to the network is 40,960 for S3DIS and Toronto3D. We trained our
method on an Nvidia 2080Ti GPU for 100 epochs. However, during the re-implementation
of the comparison method, we had to reduce the batch size due to GPU limitations, which
may lead to slightly different results compared to the original paper.
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For S3DIS, we chose a batch size of 2 for the training set and 6 for the validation set.
Regarding Toronto, we used a batch size of 1 for the training set and 4 for the validation set.
We included position and color information in the model. We used the mean intersection on
the concurrent set (mIoU,%) as an evaluation metric to assess the performance of the model.

4.3 Quantitative analysis

4.3.1 Results on Area-5 of S3DIS

In Table 1, we compare the results of the proposed method with several current popular
methods on Area-5 of S3DIS. PointNet, as an early segmentation network, achieves 41.1%
mIoU and relatively low results on each category. Subsequent methods PointCNN, SPGraph,
SPH3D, and PointWeb achieved increasingly better results, reaching 57.3%, 58.0%, 59.5%,
and 60.3%mIoU, respectively. The most recent method, RandLa-Net, achieved 62.5%mIoU
on Area-5, greatly surpassing the above methods by, respectively 21.1%, 5.2%, 4.5%, 3%,
and 2.2% of mIoU. our proposed method is exactly based on the work done by RandLa-
Net because of its fast processing speed and segmentation performance for large-scale point
clouds, but we found that it is susceptible to noise and has relatively poor robustness. There-
fore, we do the improvement based on RandLa-Net to propose the method in this paper,
and the results are shown in the last row of Table 1, and it can be seen that our method
achieves 65.1% mIoU.Specifically, the proposed method in ‘Wall’, ‘Col’, and ‘Door’ cate-
gories achieve the best results.

4.3.2 Results on Toronto3D

In Table 2, we compare the results of our proposed method with several current classical
point cloud semantic segmentation networks on Toronto3D. Our method achieves an accu-
racy of 97.83, all outperforming PointNet++, PointNet++(MSG), DGCNN, KPFCNN, and
RandLA-Net networks by 12.95%, 5.27%, 3.59%, 2.44%, and 0.39%, respectively. And
for the metric of average intersection, our method achieves 78.87% mIoU, which is 37.06%,

Fig. 3 Qualitative results of differentmethods on the S3DIS. The black box region demonstrates the superiority
of the proposed method
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Fig. 4 Qualitative results of different methods on the Toronto3D. The black box region demonstrates the
superiority of the proposed method

19.4%, 17.08%, 9.76%, and 3.76%mIoU better than the abovemethods, respectively. Specif-
ically, the proposed method is in ‘Road’, ‘Road marking’, ‘Building’, ‘Car’, ‘Fence’ achieve
excellent results of 97.47%, 70.04%, 93.10%, 92.42%, and 31.41%mIoU, respectively,which
are better than the compared methods, proving the effectiveness of the proposed method.

4.4 Qualitative analysis

The role and significance of qualitative analysis in computer vision is to provide an in-
depth understanding of visual features, patterns and semantic information by observing,
understanding and interpreting image data. It plays a vital role in feature extraction and
selection, information understanding and interpretation, data preprocessing and cleaning,
result interpretation and evaluation, human-computer interaction and user experience. It pro-
vides support and guidance for the research and application of computer vision. Therefore,
in order to prove the effectiveness of the proposed method more intuitively, we conducted
qualitative analysis experiments. As shown in Figs. 3 and 4, we list the visualization results of
the original point cloud data, RandLA-Net, Ground Truth, and the proposed method, respec-
tively. It can be seen that the proposed method has more accurate segmentation results and
is closer to Ground Truth, while the classical RandLA-Net has slightly worse segmentation
results. Our analysis suggests that this is due to the fact that the classical RandLA-Net is not
robust enough to noise and the model is slightly less generalized.

4.5 Abalation study

This section focuses on proving the effectiveness of the various components of the proposed
method, as shown in Table 3. First, (#1) if only the base network is used, i.e., trained only with
the officially provided RandLA-Net, a mIoU of 62.53% is achieved on Area-5 of S3DIS.(#2)
When we incorporate data augmentation into the network, a mIoU of 64.16% is achieved,
which is a relative improvement of 1.63% of themIoU.(#3) Andwhenwe add the incorporate
the proposed domain uncertainty, a final mIoU of 65.1% is achieved on Area-5, (#3) which is
a 2.57% improvement in mIoU relative to the classical RandLa-Net (#1), and (#3) which is
a 0.94% improvement in mIoU relative to #2. These results demonstrate the effectiveness of

Table 3 Ablations of different
components on Area-5 of S3DIS

Data augmentation Uncertainty mIoU(%)

#1 62.53

#2 � 64.16

#3 � � 65.10
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Table 4 Generalizability analysis of uncertainty on different backbone

Original Uncertainty PointNet++ [5] KPCONV [9] PCT [13]

#1 � 52.8 63.8 69.5

#2 � � 54.1 65.6 70.9

the proposed data augmentation and the domain uncertainty. We analyze that the significant
improvement in the segmentation results is due to the fact that the proposed method can
increase the amount of data and attenuate the effect of noise to a certain extent, which in turn
can lead to a more robust knowledge of model learning.

4.6 Further analysis

4.6.1 Generalizability analysis of uncertainty on different backbone

In order to demonstrate the generalizability of the proposed uncertainty point cloud segmen-
tation network on different Backbone, we conducted this set of experiments, we chose three
excellent networks in the field of point cloud segmentation, Pointnet++ [5], KPCONV [9],
and PointTransformer [13] as Backbone for the experiments respectively. Table 4 shows that
the proposed method is significantly improved on different backbone networks, proving its
effectiveness.

4.6.2 Experiments onmore datasets

In order to demonstrate the generalizability of the proposed method on the dataset, we con-
ducted the set of experiments. We performed experiments on Semantic3D [34], Scannet-v2
[35] in addition to the above experiments on S3DIS [28] and Toronto3D [29]. Table 5 shows
that the proposed method significantly improved over Backbone (Randla-Net) on Seman-
tic3D and Scannet-v2, proving the proposed method’s good generalization.

4.6.3 Analysis of different neighborhood points

Intuitively, the larger the domain value, the richer the local information that can be learned,
but also the more complex it is, the more difficult it is to learn, and the more computation is
required. In order to further explore the relationship between the number of domain points and
uncertainty, we conducted this set of experiments. The results in the Fig. 5 show that 1) when
we increase the domain points from 4 to 15, the segmentation performance, improves from
62.3% to 65.1%. This indicates that a small domain value brings a smaller feeling field and
does not have the generalization of the domain; 2)whilewhen the domain points are increased

Table 5 Experiments on Semantic3D and Scannet-v2

Original Uncertainty Semantic3D [34] Scannet-v2 [35]

#1 � 69.7 58.9

#2 � � 73.6 62.3

123

60961Multimedia Tools and Applications (2024) 83:60949–60964



Fig. 5 The mIoU scores of our method for different choices of K in KNN

from 15 to 30, the segmentation performance instead decreases from 65.1% to 63.8%, which
indicates that a larger domain value brings a more complex geometric information, and then
by calculating the uncertainty the unique information of each point may be lost.

5 Conclusion

In this paper, a domain uncertainty point cloud segmentation method is proposed. First, local
knowledge is aggregated through the domain, and then, the point-by-point uncertainty is
generated and fused to the objective function based on the domain knowledge, which can
act as a different degree of penalty and regularization for different points. Finally, we have
experimented the proposed method on the large indoor dataset S3DIS give you large outdoor
dataset Toronto3D to demonstrate the effectiveness of the proposed method. For future work,
we will explore more efficient uncertainty methods.
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