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Abstract
The study addresses the challenging task of estimating toxic concentration in soils, focus-
ing on Tirupur District, Tamilnadu, India, utilizing Landsat 8 imagery. Acknowledging the 
potential environmental repercussions, the research emphasizes the increase in pollution—
air, water, and soil—due to toxic concentrations, particularly heavy metals resulting from 
industrial activities. Soil pollution, a consequence of rapid industrial development near 
water sources, is a key concern, exacerbated by improper waste disposal. Utilizing Land-
sat 8 OLI images and relevant soil standards, the study employs Kriging and regression 
analysis for mapping heavy metal concentrations in the soil, both through remote sensing 
and field data. The correlation between remote sensing and in-situ data enhances result 
reliability. The findings categorize soil samples from 17 locations in Tirupur District based 
on pollution levels, distinguishing regions as highly polluted, not polluted, or moderately 
polluted. This research contributes valuable insights into the spatial distribution of heavy 
metal pollution, offering a foundation for targeted environmental management strategies in 
the identified regions.
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1 Introduction

The increasing concern over environmental pollution, specifically toxic concentrations in 
soil, necessitates precise estimation methods. This study delves into the challenging task 
of evaluating toxic concentration, focusing on Tirupur District, Tamilnadu, India. Leverag-
ing Landsat 8 imagery, we explore the repercussions of heightened pollution in soil. Of 
particular interest is the impact of heavy metal concentrations, often associated with indus-
trial activities. Soil pollution, exacerbated by the rapid growth of industries near water 
sources, poses a significant threat. Accumulation of heavy metals in agricultural soils poses 
a threat to crop growth and poses potential risks to human health [1–3]. This phenomenon 
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is primarily attributed to industrial waste, discharge from dyeing outlets, and the presence 
of sewage sludge [4–6]. Kachenko and Singh (2006) [4] employed field sampling in urban 
and metal smelter-contaminated sites in Australia. Vegetable samples were collected and 
analyzed for heavy metal concentrations, possibly using methods like atomic absorption 
spectroscopy. The study concluded with insights into heavy metal contamination levels in 
vegetables, providing valuable information on potential risks to human health in urban and 
metal smelter-contaminated areas in Australia. Atafar et al. (2010) [5] implemented a field 
study to investigate the impact of fertilizer application on soil heavy metal concentrations. 
The methodology could involve soil sampling pre and post-fertilizer application. Analyti-
cal techniques, such as atomic absorption spectroscopy, may have been utilized to assess 
changes in heavy metal concentrations. The study concluded with findings detailing the 
effects of fertilizer application on soil heavy metal concentrations, contributing insights 
into agricultural practices and environmental implications.

Copper and zinc, though present in soil at trace levels, significantly impact human 
metabolism [7, 8]. Lamsayah et  al. (2016) [7] employed liquid–liquid extraction to 
investigate the selectivity of Fe(II) and Pb(II) using long-chain acid pyrazole- and tri-
azole-based ligands. The study might have involved experimental extraction processes 
to assess the efficiency and selectivity of the ligands. Theoretical calculations with 
TD-DFT (Time-Dependent Density Functional Theory) may have complemented the 
experimental work. The study concluded with insights into the liquid–liquid extrac-
tion selectivity of Fe(II) and Pb(II) and supported by theoretical calculations, offering 
valuable information for metal separation processes. Even trace concentrations of other 
heavy metals such as Cd, Hg, and Pb in soil can be toxic to humans. Numerous stud-
ies have explored heavy metal concentrations in urban waste [9, 10], shedding light on 
the environmental implications of such pollutants. Umsan et al. (2006) [9] conducted 
a study on remediating heavy metal-contaminated soil using immobilizing compounds. 
The methodology have involved applying these compounds to the soil and assessing 
their effectiveness in reducing heavy metal mobility. Techniques such as soil sampling 
and analysis, possibly using methods like atomic absorption spectroscopy, may have 
been employed. It was concluded with insights into the efficacy of immobilizing com-
pounds for remediating heavy metal-contaminated soil.

Additionally, there is a body of research focused on detecting heavy metals in sedi-
ment samples [11, 12]. These investigations collectively contribute to our understanding 
of the widespread impact of heavy metal accumulation in various environmental matri-
ces, emphasizing the need for effective management strategies to mitigate potential haz-
ards to both agricultural productivity and human well-being. Ulrich (2004) [11] adopted 
an interdisciplinary approach to study sediment dynamics and pollutant mobility in rivers. 
The methodology probably involved field measurements, sediment sampling, and possibly 
laboratory analyses. Techniques like sediment coring and analytical methods such as spec-
trophotometry may have been utilized. It was concluded with interdisciplinary insights into 
sediment dynamics and pollutant mobility in rivers, contributing valuable information for 
environmental management and aquatic ecosystem health. Guo et al. (2013) [13] conducted 
field sampling in the industrial district, collecting soil and agricultural product samples. 
Laboratory analyses, possibly using techniques like atomic absorption spectroscopy, were 
employed to determine heavy metal concentrations. This comprehensive approach aimed 
to assess the impact of industrial activities on both soil and crops. They concluded that it 
would have highlighted the spatial distribution of heavy metals, potential bioaccumulation, 
and implications for environmental and food safety in the vicinity of the industrial district.
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Fernandez, Seoane, and Merino (1999) [14] employed field sampling in agricultural 
serpentine soils, assessing plant heavy metal concentrations and soil biological properties. 
Analytical methods, such as atomic absorption spectroscopy, may have been used. Soil 
biological properties may have been evaluated through measures like microbial biomass 
or enzyme activities. It was concluded with insights into the relationships between plant 
heavy metal concentrations and soil biological properties in serpentine soils, providing val-
uable information for understanding ecological dynamics. It was observed that there was a 
decrease in heavy metal concentration in plants and also higher soil microbial activity will 
lower metal availability in the soil. Tumuklu et al. (2007) [15] employed field assessments 
to detect heavy metal concentrations in soil impacted by the Nigde City Garbage Dump. 
Soil samples have been collected and analyzed using techniques such as atomic absorption 
spectroscopy. It was concluded with findings on the levels of heavy metal contamination in 
the soil near the Nigde City Garbage Dump, contributing insights into the environmental 
impact of waste disposal practices. They reported that a modern, organized storage system 
must be used instead of wild storage system in storing the urban wastes, and recyclable 
products. Yan et al. (2012) [16] conducted field studies in roadside farmland in Nepal, col-
lecting soil and grass samples. Analytical methods, such as atomic absorption spectros-
copy, may have been used to determine heavy metal concentrations. This study concluded 
with insights into the relationship between heavy metal concentrations in soils and grasses 
in roadside farmland in Nepal, providing valuable information on potential environmental 
and health implications.

Yan et al. (2013) [17] conducted field observations in the Qinghai-Tibet Plateau, China, 
collecting topsoil samples at varying distances from road edges. The regression results 
revealed that there is a decrease of heavy metals’ concentrations with an increase of road-
side distance, and the R square values for most of the exponential regression models were 
larger than 0.9, except for Cr and Co. Analytical methods, potentially including techniques 
like atomic absorption spectroscopy, were likely employed to determine heavy metal con-
centrations. The study concluded with insights into the relationships between heavy metal 
concentrations in roadside topsoil and distance to road edges in the Qinghai-Tibet Plateau, 
contributing to understanding environmental impacts. Gabarrón et  al. (2017) [18] con-
ducted field studies assessing heavy metal concentrations in topsoil and road dust influ-
enced by various industrial activities. Soil and dust samples were probably collected and 
analysed using techniques like atomic absorption spectroscopy. It was shown that the phys-
icochemical properties of soil and road dust and the bioavailability of all metals had been 
influenced by the industrial activity. Due to industrial activity, Pb, Zn, Cu and Cr distri-
bution in the different solid phases were affected while Co and Ni distribution were not 
affected. The study concluded with insights into the impact of diverse industrial activities 
on heavy metal concentrations and chemical distribution in topsoil and road dust, contribut-
ing to understanding environmental implications associated with these industrial processes.

Oluyemi et al. (2008) [19] conducted a study on a Nigerian landfill, analyzing seasonal 
variations in heavy metal concentrations in soil and selected crops. They examined soil 
from landfill during the wet and dry seasons and observed that values for Cd, Cu, Fe, Ni, 
Cr, Zn, Co and Pb were higher than normal levels of a typical agricultural soil and also 
noted that As (3.20 and 4.13 mg/kg) values were found to be within the acceptable range. 
Mn values of 597.00—828.37  mgkg−1 were somewhat above the usual background levels. 
The study concluded with findings on the seasonal dynamics of heavy metal concentrations 
in soil and crops at the landfill, providing insights into the environmental impact of waste 
disposal practices.
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Jung (2008) [20] conducted a study near a Korean Cu-W mine, investigating heavy 
metal concentrations in soils and factors influencing metal uptake by plants stated that the 
ingredient of plants mainly depends on the total metal concentrations in soils. Soil pH was 
also considered as an important factor. To identify the metal uptake by the plants, linear 
multiple regression analysis was executed. The study likely concluded with insights into 
heavy metal concentrations in soils and the factors influencing metal uptake by plants in 
the proximity of a Korean Cu-W mine, contributing to understanding the environmental 
impact of mining activities.

Jung (2008) [20] conducted a study near a Korean Cu-W mine, investigating heavy 
metal concentrations in soils and factors influencing metal uptake by plants. To identify 
the metal uptake by the plants, linear multiple regression analysis was executed. The study 
concluded with insights into heavy metal concentrations in soils and the factors influencing 
metal uptake by plants in the proximity of a Korean Cu-W mine, contributing to under-
standing the environmental impact of mining activities. Song et al. (2016) [21] conducted 
spatio-temporal assessments of heavy metal concentrations in a soil-rice system. This 
study implies a variation of 43.3% in metal concentrations in soil. This study demonstrated 
heavy metal concentrations in a soil-rice system due to human intervention in Wenling 
County. The research concluded with insights into the spatio-temporal variability of heavy 
metals in the soil-rice system, incorporating socio-environmental analyses for a compre-
hensive understanding of the dynamics. Song et al. (2016) [21] conducted spatio-tempo-
ral assessments of heavy metal concentrations in a soil-rice system. The study probably 
involved field sampling over time, with soil and rice samples analyzed using techniques 
such as atomic absorption spectroscopy. This implies a variation of 43.3% in metal concen-
trations in soil. This study demonstrated heavy metal concentrations in a soil-rice system 
due to human intervention in Wenling County. The research concluded with insights into 
the spatio-temporal variability of heavy metals in the soil-rice system, incorporating socio-
environmental analyses for a comprehensive understanding of the dynamics.

El Behairy et al. (2022) [22] combined GIS and multivariate analysis to assess soil heavy 
metal contamination in arid zones. The methodology includes spatial data analysis, field 
sampling, and the application of statistical methods for multivariate analysis. This study 
concluded with insights into soil heavy metal contamination in arid zones, utilizing a com-
bination of GIS and multivariate analysis. The research contributed to a comprehensive 
understanding of the spatial distribution and factors influencing heavy metal contamina-
tion in these regions. Wang et al. (2022) [23] conducted environmental risk assessments on 
municipal solid waste landfills, analyzing factors influencing heavy metal concentrations in 
the soil. The methodology may involve field sampling, laboratory analyses using techniques 
like atomic absorption spectroscopy, and a comprehensive assessment of environmental 
risk factors.The study concluded with insights into the environmental risk associated with 
heavy metal concentrations in landfill soil, contributing to waste management strategies and 
understanding factors influencing soil contamination. Jiji G. Wiselin [24] conducted a study 
on heavy metal concentration analysis in Tirupur, India, using a spectral mixture modelling 
approach and regression. The research employed these techniques to assess the distribution 
of heavy metals. The combined use of spectral mixture modelling and regression provides 
a robust methodology for understanding and mapping heavy metal pollution in the region. 
In the study, Fan et  al. (2021) [25] developed a hybrid approach for short-term electric-
ity load forecasting. They employed a combination of Support Vector Regression (SVR) 
with grey catastrophe modeling and Random Forest. The SVR captures non-linear patterns, 
while grey catastrophe modeling accounts for uncertain factors. Random Forest enhances 
predictive accuracy. The hybrid model showcases improved performance, demonstrating its 
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potential for enhancing short-term electricity load forecasting in utility contexts. The study 
by Akkem et al. [26] explores smart farming’s integration with artificial intelligence (AI). 
Their methodology involves a comprehensive review of existing literature on AI applica-
tions in agriculture. They analyze key findings to draw conclusions about the current state 
of smart farming, emphasizing its potential benefits. This article contributes insights that 
can inform the ongoing development of AI technologies in agriculture, fostering sustain-
able and efficient practices. Akkem et  al. presented [27] a study on smart farming moni-
toring employing Machine Learning (ML) and MLOps. Their methodology involves the 
application of ML algorithms for data analysis in agricultural settings. They highlight the 
integration of MLOps for efficient model deployment and management. The conclusions 
underscore the effectiveness of ML and MLOps in enhancing smart farming practices, 
emphasizing the potential for improved monitoring and decision-making in agriculture.

Urbanization poses a significant threat to the delicate balance between human activities 
and land in Tirupur district, Tamilnadu. Agricultural lands along rivers have become highly 
contaminated with heavy metals, necessitating urgent and precise estimation. Employing 
Remote Sensing Data for heavy metal concentration estimation proves time and cost-effec-
tive compared to traditional laboratory analyses. However, previous attempts using remote 
sensing data for heavy metal inversion have fallen short of expectations. In this study, we 
utilize the kriging and regression analysis methods to enhance the accuracy of estimating 
and classifying various heavy metal concentrations in soil. Notably, improvements in accu-
racy are evident, particularly in cultivated areas, offering a promising step toward effective 
environmental monitoring.

The current level of GIS-based classification methods for heavy metal pollution reflects 
a sophisticated integration of spatial analysis, statistical techniques, and remote sens-
ing technologies. Advanced GIS tools and modeling approaches contribute to the ongo-
ing refinement of these methods, allowing for more accurate and detailed assessments of 
heavy metal pollution across different spatial scales. The application of machine learning 
algorithms within GIS is also emerging as a promising direction for future research in this 
field. The objective of this study is to assess and estimate the concentration of toxic ele-
ments, particularly heavy metals, in the soil of Tirupur District, Tamilnadu, India, using 
Landsat 8 imagery. The study aims to investigate soil pollution, particularly in areas with 
rapid industrial development near water sources, exacerbated by improper waste disposal 
practices. By utilizing Landsat 8 OLI images and relevant soil standards, the research 
employs Kriging and regression analysis for mapping heavy metal concentrations, both 
through remote sensing and field data. The goal is to enhance the accuracy of estima-
tion and provide valuable insights into the spatial distribution of heavy metal pollution in 
order to inform targeted environmental management strategies in the identified regions.

Section 2 details the Methodology, outlining the approaches and procedures used in the 
study. Section  3 encompasses the Results and Discussion, presenting empirical findings 
and engaging in analytical discourse. Finally, Section 4 encapsulates the Conclusion, sum-
marizing key insights drawn from the research.

2  Methodology

In this research, aimed to categorize the concentration of heavy metal pollut-
ants as high, medium, and normal. To achieve this goal, gathered in-situ data 
and obtained Landsat 8 OLI satellite images from the study area. These datasets 
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are then compiled and subjected to analysis through both statistical methods and 
machine learning approaches. The structural design of the proposed work is illus-
trated in Fig. 1.

Soil pollution Estimation using Field Data Soil Pollution Estimation using Remote 

Sensing Data

Input Soil Test

data 

Lab Metal 

concentration

Values

Classification

Input Image

Assessing metal 

concentration

Not Polluted Highly Polluted Moderately 

polluted 

Fig. 1  Block diagram of the methodology

Fig. 2  Study area map showing Pan image acquired on 20.thAugust, 2016
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2.1  Study area

The study area selected for investigation is Tirupur District in Tamilnadu, India, as 
illustrated in Fig.  2. A total of 17 soil samples were collected from various locations 
within this district. The notable presence of dyeing industries situated near the river is 
identified as a significant contributor to pollution, manifesting in the observed soil pol-
lution in the study area.

2.1.1  Input images and data

A total of 17 soil samples were gathered from various locations in Tirupur, and cor-
responding remote sensing satellite images (Cartosat 2—panchromatic image) for 
the same region were obtained through the assistance of the National Remote Sens-
ing Centre (NRSC) in Hyderabad. Additionally, standard international values for 
heavy metals were collected for reference. To determine the heavy metal concentra-
tion in the samples, ICP OES tests were conducted at IIT Madras. In our study, the 
kriging technique is employed for extracting feature descriptors to categorize the 
region (Table 1).

Estimation (Kriging) Geostatistical methods play a crucial role in evaluating and map-
ping the characteristics of objects in areas where direct sampling may not be available. One 
such prominent geostatistical technique is Kriging, a statistical interpolation method widely 
employed in spatial analysis [14, 15]. Kriging aims to provide optimal estimations by lever-
aging the structural information derived from the reflectance of sampled data and the spa-
tial relationships between sample points. The implementation of Kriging involves assessing 

Table 1  List of 17 soil samples collected locations and their latitude and longitude positions

S.NO Locations Latitude Longitude

S1 Gsnapathipalayam, Palladam- Dharapuram Road, TirupurDist 10˚ 51ʹ 52.34ʺ N 77˚ 24ʹ 58.10ʺ E
S2 Meddukatai, Palladam- Dharapuram Road, TirupurDist 10˚ 52ʹ 38.32ʺ N 77˚ 23ʹ 7.82ʺ E
S3 Kallakinar, Palladam- Dharapuram Road, TirupurDist 10˚ 57ʹ 11.26ʺ N 77˚ 19ʹ 14.63ʺ E
S4 Panapalayam, Palladam, TirupurDist 10˚ 59ʹ 13.77ʺ N 77˚ 17ʹ 51.73ʺ E
S5 Mullai Nagar, Palladam, TirupurDist 10˚ 59ʹ 28.80ʺ N 77˚ 17ʹ 0.56ʺ E
S6 Karanampettai, Tiruchi Road NH67, TirupurDist 11˚ 0ʹ 51.57ʺ N 77˚ 11ʹ 16.31ʺ E
S7 Sulur, TirupurDist 11˚ 2ʹ 7.43ʺ N 77˚ 8ʹ 31.51ʺ E
S8 Sulur, TirupurDist 11˚ 2ʹ 3.65ʺ N 77˚ 8ʹ 31.37ʺ E
S9 Samalapuram, TirupurDist 11˚ 4ʹ 33.57ʺ N 77˚ 11ʹ 52.75ʺ E
S10 Pallapalayam, TirupurDist 11˚ 5ʹ 2.32ʺ N 77˚ 12ʹ 52.48ʺ E
S11 Noyyal River, Sammandampalayampudur, TirupurDist 11˚ 6ʹ 23.27ʺ N 77˚ 14ʹ 49.28ʺ E
S12 Sammandampalayampudur, TirupurDist 11˚ 6ʹ 21.72ʺ N 77˚ 13ʹ 59.08ʺ E
S13 Kousika, TirupurDist 11˚ 6ʹ 43.83ʺ N 77˚ 15ʹ 46.45ʺ E
S14 Kulathupudur, Tirupur 11˚ 6ʹ 12.09ʺ N 77˚ 17ʹ 53.99ʺ E
S15 ChinnandipalayamKulam, Tirupur 11˚ 6ʹ 13.06ʺ N 77˚ 17ʹ 50.05ʺ E
S16 ChinnandipalayamKulam, SulthanPeetai, Tirupur 11˚ 6ʹ 31.86ʺ N 77˚ 17ʹ 16.64ʺ E
S17 Murugampalayam, Tirupur 11˚ 4ʹ 23.40ʺ N 77˚ 19ʹ 11.51ʺ E
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the spatial variability of the phenomenon of interest based on the sampled data points. The 
method considers not only the values at the sampled locations but also the correlations and 
variations in these values across space. This information is then used to generate predictions 
for unsampled areas, resulting in a spatially continuous estimation surface. Kriging is used 
for classifying heavy metal pollution lies in its ability to account for spatial correlation, quan-
tify uncertainty, incorporate variability, adapt to non-linear patterns, and provide optimal esti-
mates. Kriging’s unique strengths in handling spatial relationships and uncertainty make it a 
robust choice for accurately classifying the degree of heavy metal pollution in a given area.

In this specific study, linear Kriging methods, including Ordinary Kriging (OK), Co-Krig-
ing (CK), and Radial Basis Function Kriging (RK), have been employed to estimate soil heavy 
metal concentrations. These techniques take into account the spatial dependence and covariance 
structures observed in the sampled data, allowing for a more accurate and detailed prediction 
of heavy metal concentrations across the entire study area. By utilizing Kriging, this research 
enhances the precision of estimations and provides a spatially explicit representation of soil pol-
lution, contributing valuable insights for environmental management strategies.

Ordinary Kriging (OK) OK is the technique which is calculated based on the assumption 
that the mean is not known. We calculated the unsampled value z(v) by considering the 
linear combination of the neighboring observations:

where v is a vector of spatial coordinates, n(v) is the number of neighboring sampled val-
ues and z(v�) is the observed value at v� . Ensuring the estimated value to be unbiased and 
to minimize the estimated variance, �� that is the weight of the neighboring sampled val-
ues, which is obtained by the below equations:

where μ(v) is the Lagrange parameter and γ is the semi-variogram and γ is calculated by:

where N(h) is the number of data pairs for a given distance h. The estimate variance �2

OK
(v) 

is given by:

Cokriging (CK) CK, derived from ordinary kriging, gives an additional correlated informa-
tion in the subsidiary variables. The CK estimator of z(v) with a single auxiliary variable 
(y) is expressed as:

where �� and �� are the weights of the primary and auxiliary variables, and n(v) and n(y) 
are the numbers of neighboring y samples of the primary and auxiliary variables.The cross 
variograms are calculated as:
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where N(h) is the number of pairs of z(v) and y(v) at a separate distance h.

Regression Kriging (RK) RK, is useful for varying local means that combines regression 
results of the dependent variable with kriging results of the regression residuals. It uses 
regression on auxiliary information along with simple kriging with known mean (0) to inter-
polate the residuals from the regression model. The RK estimation can be described as:

where m∗
RK
(v) is theregressionresult; ��(v) is theweight of the primary variable, and R

(

v�
)

 
is the residual of regression. m∗

RK
(v) is usually modeled by linear regression of the auxiliary 

variable.

2.1.2  Pollution classification

Pollution classification step is mainly useful for grouping land cover soil area based on 
features. In this study, to classify the soil pollution level unsupervised classification is used.

In the unsupervised classification, each feature value is grouped based on the reflectance 
properties of the soil samples. In this study, we considered the soil pollution into three groups: 
highly polluted, moderately polluted and not polluted: C1-Heavily polluted, C2-Moderately pol-
luted and C3-Not polluted and mapped using Fuzzy-logic. We have considered the concentra-
tion of heavy metals [16] in soil as feature vector. The formula used to group into Three classes 
C1-Heavily polluted, C2- moderately polluted and C3-Not polluted are given in Eqs. 8–11.

where f1, f2, f3, f4 and f5 are the five features of the soil based on the concentration of 
heavy metals(Arsenic, Mercury, Zinc, Lead and chromium) and C1,C2, and C3 are classi-
fied classes. Figure 3 indicates the three classes of pollution level.

3  Results and discussions

The implementation was done using the programming tool MATLAB in HP z600 work-
station. In this work, we have focused five metal concentration: Arsenic, Mercury, Zinc, 
Lead and Chromium in 17 locations. Table 2 implies the metal concentrations assessed by 
ICP-OES. Moreover, the extracted concentration using remote sensing images are given in 
Table 3. The standard measures of minerals are shown in Table 4.
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(9)C1 = (∀f1, f2, f3, f4, f5 ∈ I)f1 ∩ f2 ∩ f3 ∩ f4 ∩ f5
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(11)C2 = I − {C1 ∪ C3},C1,C2,C3 ∈ I
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The relationship between in-situ samples and remote sensing samples for elements such 
as arsenic, cadmium, mercury, lead, and zinc is illustrated in Fig. 4(a)-(e). The standard 
limits for heavy metal concentrations in soil samples for various elements are as follows: 
Cd (-0.005 to 0.010 mg/lit), Pb (0.068 to 0.453 mg/lit), Hg (-2.054 to -16.66 mg/lit), Cr 

Fig. 3  Soil pollution level clas-
sification

Table 2  Mineral extraction results for the surface soil regions in Tirupur District using ICP-OES analysis 
result (Unit: mg/l, BDL- Bellow Detection Level)

Sample ID As(mg/lit) Cd(mg/lit) Hg(mg/lit) Zn(mg/lit) Pb(mg/lit) Cr(mg/lit)

S1 -0.171 0.002 -2.054 3.997 0.068 0
S2 -0.232 0.000 -2.903 4.849 0.374 0
S3 -0.184 0.001 -2.833 3.281 0.263 0
S4 -0.227 0.004 -6.689 4.281 0.453 0
S5 -0.191 -0.005 -5.332 4.183 0.202 0
S6 -0.150 0.001 -16.66 29.38 0 2.157
S7 -0.071 0.002 -8.391 38.72 0 1.258
S8 -0.023 -0.001(BDL) -6.362 0.174 0 1.008
S9 -0.063 0.010 -6.583 0.402 0 0.703
S10 -0.131 -0.002(BDL) -7.188 33.67 0 0.988
S11 (BDL) (BDL) (BDL) 1.482 0.113 0
S12 (BDL) 0.008 (BDL) 4.770 0.169 0
S13 (BDL) 0.057 (BDL) 0.841 0.358 0
S14 (BDL) 0.066 (BDL) 1.198 0.505 0
S15 (BDL) 0.029 (BDL) 0.602 0.642 0
S16 (BDL) 0.008 (BDL) 0.402 0.198 0
S17 (BDL) (BDL) (BDL) 1.262 0.220 0
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(0.703 to 2.157 mg/lit), As (-0.023 to -0.232 mg/lit) [18], and Zn (0.174 to 38.72 mg/lit). 
A comparison with recent work [16] is presented in Table 5 and Fig. 5. The results indicate 
that the proposed method exhibits a significant ability to extract mineral concentrations 
compared to earlier work.

Table 6 offers a detailed overview of soil sample locations classified according to vary-
ing pollution levels across distinct regions. The accompanying classification map visually 
illustrates the pollution levels across the 17 selected locations in our study area. Highly 
polluted regions are highlighted in red, areas exhibiting no pollution are depicted in green, 
and moderately polluted regions are represented in yellow. This visual representation sig-
nificantly enhances our comprehension of the distribution of pollution within the examined 
locations.

This study extensively examined the relationship between in-situ and remote sens-
ing samples for key elements, including arsenic, cadmium, mercury, lead, and zinc. 

Table 3  Mineral extraction results for the surface soil regions in Tirupur District using mineral extraction 
using reflectance from remote sensing image (Unit: mg/l)

Sample number As(188.979) Cd(228.802) Hg(253.652) Pb(220.353) Zn(206.200)

S1 -0.1711 0.0030 -2.0541 0.0690 3.9980
S2 -0.2321 0.0003 -2.9031 0.3750 4.8491
S3 -0.1842 0.0013 -2.8332 0.2640 3.2811
S4 -0.2280 0.0042 -6.6891 0.4531 4.2811
S5 -0.1920 -0.0060 -5.3330 0.2021 4.1840
S6 -0.1510 0.0110 -16.6601 0.0000 29.3810
S7 -0.0711 0.0030 -8.3911 0.0000 38.7210
S8 -0.0232 -0.0010 -6.372 0.0000 0.1750
S9 -0.0632 0.0101 -6.5840 0.0000 0.4030
S10 -0.1313 -0.0120 -7.189 0.0000 33.6710
S11 0.0010 0.0010 0.0000 0.1131 1.4830
S12 0.0001 0.0081 0.0001 0.1691 4.7710
S13 0.0001 0.0572 0.0001 0.3582 0.8420
S14 0.0001 0.0661 0.0001 0.5051 1.1990
S15 0.0001 0.0291 0.0001 0.6421 0.6030
S16 0.0001 0.0180 0.0001 0.1981 0.4021
S17 0.0100 0.0000 0.0100 0.2210 1.2621

Table 4  National standard for 
heavy metal

Heavy Metals Concentration in mg/kg

Arsenic 4.5
Cadmium 0.76
Mercury 1.9
Lead 55
Zinc 16
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Figure  4(a)-(e) visually represents this relationship. The heavy metal concentrations 
in soil samples adhered to standard limits: Cd (-0.005 to 0.010 mg/lit), Pb (0.068 to 
0.453 mg/lit), Hg (-2.054 to -16.66 mg/lit), Cr (0.703 to 2.157 mg/lit), As (-0.023 to 
-0.232 mg/lit) [18], and Zn (0.174 to 38.72 mg/lit).

Fig. 4  a Results of correlation of lab value with mixture analysis for Arsenic (As). b Results of correlation 
of lab value with mixture analysis for Cadmium (Cd). c Results of correlation of lab value with mixture 
analysis for Mercury (Hg). d Results of correlation of lab value with mixture analysis for Lead (Pb). e 
Results of correlation of lab value with mixture analysis for Zinc (Zn)
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Comparing our proposed methodology with a recent study [16], as shown in Table 5 
and Fig.  5, reveals the significant capability of our approach in accurately extracting 
mineral concentrations. These findings underscore the efficacy of our method in provid-
ing reliable estimates of heavy metal concentrations in soil, showcasing its advancement 
compared to previous work. This research contributes valuable insights into environ-
mental monitoring and management, offering a robust foundation for future studies in 
this field.

4  Conclusion

This paper presents an analysis of pollution concentrations in the selected area of Tirupur 
district. The study utilizes field samples and remote sensing data, employing statistical data 
analysis. The proposed Kriging technique demonstrated excellence in accurately analyz-
ing pollution in various selected soil regions. The study establishes a robust model for soil 
pollution, revealing high-pollution areas near water pollutant regions. Notably, the heavy 

Table 5  Correlation coefficient 
for the elements using spectral 
mixture analysis

Elements Correlation coef-
ficient
(Proposed work)

Correlation coef-
ficient
(work [24])

Correlation 
coefficient
(work [16])

Arsenic 0.59 0.6 0.42
Cadmium 0.99 1.0 0.97
Mercury 0.98 1.0 0.86
Lead 0.99 1.0 0.92
Zinc 0.8 0.8 0.75

0

0.2

0.4

0.6

0.8

1

1.2

Arsenic Cadmium Mercury Lead Zinc

Chart Title

Correla�on Coefficient (Proposed work) Correla�on Coefficient (work [24] )

Correla�on Coefficient (work [16] )

Fig. 5  Analysis for spectral mixture analysis and earlier works
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Table 6  Output results

Latitude 
Longitude 

Soil & Water Samples 
Result

Descriptions

(11°06’20.38”

N, 

77°17’46.97”E

)-

(11°06’04.81”

N, 

77°17’52.82”E

)

S17, Kulathupudur, Tirupur This 

green color dot indicates this 

location is not polluted.

(11°06’19.91”

N,77°17’27.29

”E)-

(11°06’10.14”

N,77°17’32.49

”E)

S8, Chinnandi palayamKulam, 

Tirupur. This red color dot 

indicates this location is highly 

polluted.

(11°06’25.58”

N,77°14’49.09

”E)-

(11°06’21.24”

N,77°`14’54.8

9”E)

S4, Noyyal River, 

Semmandampalayampudur, 

TirupurDist .This red color dot 

indicates this location is highly 

polluted.

(11°06’27.88”

N,77°16’01.27

”E)-

(11°06’20.86”

N,77°16’18.73

”E)

S10, Noyyal River, Palladam-

Avinasi Rd, Tirupur. This yellow 

color dot indicates this location 

is moderately polluted.

(11°06’00.92”

N,77°18’44.76

”E)-

(11°05’54.26”

N,77°18’49.75

”E)

S16, Kozhipannai, Tirupur. This 

green color dot indicates that this 

location is not polluted.

(11°06’48.83”

N,77°15’39.03

”E)-

(11°06’39.34”

N,77°15’50.67

”E)

S7, Kousika, Tiruppur Dist. This 

yellow color dot indicates that 

this location is moderately 

polluted.

(10°59’39.21”

N, 

77°16’56.94”E

)-

(10°59’28.69” 

N, 

77°17’15.02”E

)

S3, THIS LOCATION Mullai 

Nagar, Palladam, Tirupur Dist. 

This  the green color dot 

indicates that this location is not 

polluted.

(10°59’54.44”

N, 

77°17’12.87”E

)-

(10°59’41.42”

N, 77°17’ 

29.29”E)

S2, Palladam, TirupurDist

This yellow color dot indicates 

that this location is moderately 

polluted.
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metal Mg emerged as a key toxicity element, indicating heightened pollution in all water 
bodies and subsequently influencing soil pollution. The future directions, the research can 
contribute to a more comprehensive and holistic understanding of soil pollution dynamics, 
aiding in the development of effective environmental management strategies.
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