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Abstract
To explore the cross-modal semantic relevance, image-text retrieval has attractedmuch atten-
tion from the research community. Themost of prominentmodels have shown that introducing
structured graph information is capable of improving the cross-modal retrieval performance.
However, the existing models either only focus on exploiting the structured information
within individual modality, or learn specific cross-modal graph-level metric functions which
fail to construct a shared semantic subspace for efficient retrieval. In this paper, we pro-
pose a graph attention network to transform general structured visual and textual graphs into
the shared semantic subspace. Specially, a structured semantic enhancement module is pro-
posed to learn the graph-level relevance information between images and sentences, which
is further utilized to promote the cross-modal semantic alignment. And the enhancement
module only depends on the structured input information at retrieval stage, which endows
our model with the flexibility that processing fragment-level data no matter whether the
structured information lacks. Besides, a graph-based pooling network is proposed to trans-
form the fragment-level features to the common cross-modal representations for efficient
retrieval. When compared with several state-of-the-art baselines, the experiments show that
our model achieves competitive performance on two publicly available datasets Flickr30k
and MS-COCO.
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1 Introduction

As the amount of available multi-modality data drastically increases, the demand for various
intelligent multi-modality applications is imperative, e.g., indoor navigation [1, 2], video
captioning [3], web information extraction [4–6] and so on. As a common task, image-text
retrieval has attracted considerable attention from research community. In recent years, the
most of representative methods tend to evaluate semantic relevance by exploring the similar-
ity at the level of regions andwords, which is termed as fragment-level matching in this paper.
Some early works [7, 8] attempt to evaluate the similarity of image-sentence pairs by multi-
step aggregation, in which the models selectively focus on different informative region-word
pairs at each time step. The most of recent works [9–15] have focused on directly evaluating
the image-sentence relevance given two sets of fragment-level features by introducing a vari-
ety of attentionmechanisms. Lee et al. propose a basic cross-attentionmechanism to compute
the similarity between two feature sets of images and sentences [9]. Except for the similar
attention mechanism, much effort has been made to further improve retrieval performance by
introducing auxiliary topic constraint [10], negative-aware constraint [11] or global context
reference [13]. Besides, the other works also attempt to integrate fragment-level seman-
tic relevance with information flow controlling [16], action-aware memory retrieving [17]
and multi-level feature fusion strategy [18, 19]. The aforementioned models have made great
effort to promote cross-modal retrieval performance by exploring fine-grained fragment-level
relevance. However, as reported in recent works [20], both attention and fusion mechanism
require cross-modal operation over image and text representations, which make it infeasible
to explicitly construct a shared cross-modal semantic subspace for efficient retrieval.

Instead of only exploiting fragment-level semantic features, some works [21–25] have
attempted to introduce structured information to further promote the cross-modal semantic
alignment. Because the visual and textual graph are common structured information in these
works, we divide these graph-based methods into the category named graph-level match-
ing in this paper. Li et al. propose to construct the visual graphs of images with structured
information learned from region-based features [21], in which the visual graph is fully con-
nected and undirected on account of little prior knowledge. The other works [22–25] not
only incorporate specific auxiliary prior constraints to construct more reasonable and infor-
mative structured graphs, but also convert all sentences to textual semantic graphs. Then some
multi-level feature fusion and attention-based strategies are utilized to perform graph-level
image-sentence matching. The graph-based models have shown that structured semantic
information is beneficial to the cross-modal retrieval. However, the most of graph-based
models also fail to provide the common cross-modal representations, i.e., the feature vectors
in a shared semantic subspace, and only exploit the structural information within individual
modality.

In conclusion, both fragment-based and graph-based models have achieved considerable
cross-modal retrieval performance. However they still face two-fold challenges which hin-
der the development of image-sentence retrieval. The one is that the most of them fail to
construct a shared semantic subspace where images and sentences are represented as points
and retrieval is equivalent to the vector-based ranking problem. The other one is that the
most of graph-based models generally exploit the structural information to only refine intra-
modal semantic features. To mitigate these problems, we propose a flexible graph attention
network to perform graph-level cross-modal retrieval in this paper. To make full use of the
structured information, a structured semantic enhancement module is proposed to learn the
shared structural features for improving fragment-level representations and promoting cross-
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modal semantic alignment. And the enhancement module only take as input the structured
information, which endows our model with the capability of processing fragment-level data
no matter whether the structured information lacks. To explicitly construct the shared seman-
tic subspace, we propose a graph-based pooling module to project a set of fragment-level
features to a feature vector in the common semantic subspace. The following experiments
show that the proposed model can achieve competitive retrieval performance on two publicly
available datasets when compared with several existing state-of-the-art models.

2 Related work

2.1 Fragment-level matching

To infer more accurate cross-modal semantic relevance, many existing methods attempt
to explore the similarity at the level of regions and words, which is termed as fragment-
level matching. Huang et al. propose to selectively focus on different informative region-
word pairs given global context reference at multiple time steps and utilize LSTM [26] to
aggregate all similarity vectors at various time steps [7]. Similarly, Nam et al. propose the
dual attention network to compute fragment-level similarity scores at multiple time steps
and retrieve database items with respect to the sum of all scores [8]. Lee et al. propose
the stacked cross-modal attention network to aggregate fragment-level semantic relevance
[9]. They first apply the attention mechanism to determine importance distribution over all
fragments, and then compute the importance-based weighted sum of all fragments as the final
feature vectors which is used to calculate similarity between holistic images and sentences.
Follow the similar framework, some other methods [12, 27–30] attempt to improve the
cross-modal attention-based retrieval by introducing either global context reference or prior
knowledge-based constraints.

Except for focusingon inter-modal alignment,Wei et al. first enhance intra-modal semantic
information with the self-attention mechanism and then refine inter-modal relevance with the
cross-modal attentionmechanism [15]. Yu et al. first enhance the fragment-level features with
a multi-layer cross-modal attention module and then compute the similarity scores between
pairwise enhanced features with a heterogeneous attention module [14]. Zhang et al. design
a context-aware attention network to selectively focus on both intra-modal and inter-modal
informative fragments given the global context [13]. Zhang et al. propose the negative-
aware attention mechanism to take both matched and mismatched region-word pairs into
consideration, and design a dynamic updating strategy to select positive and negative sample
sets [11]. Wu et al. [10] propose the region reinforcement attention network to differentially
attend to various region-word pairs while calculating semantic similarity. And they design a
topic-based constraintmodule to promote the cross-modal semantic alignment.Qu et al. apply
routingmechanism to dynamically control cross-modal information interaction to selectively
aggregate fragment-level featureswith respect to the input samples [16]. Li et al. introduce the
action-aware information to improve the common cross-modal representations [17], in which
an action predictor is utilized to determine the action tags and the response representations in
an action memory bank [17]. Lan et al. [19] propose a multi-level fusion matching strategy
to integrate local and global features, in which the fusion representation is transformed to the
similarity score with the multi-head attention mechanism and fully connected network [19].

The aforementionedmethods havemade great effort to explore and aggregate fine-grained
semantic relevance, but fail to project both images and sentences into a shared feature sub-
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space where the retrieval can be efficiently completed by distance-based ranking. Specially,
there are also some fragment-based methods which are capable of providing common repre-
sentations. Qu et al. propose the context-aware summarization network to match sentences
with multi-view fused image representations [18], however, in which the max pooling oper-
ation used to compute similarity scores still brings significant computation burden when
dealing with a huge amount of samples. Wu et al. propose to learn fragment-level embedding
with multi-head self-attention mechanism [31] and apply the average pooling operation to
generate the cross-modal representations of images and sentences [32]. Instead of average
pooling operation, we propose a graph-based pooling module to embed structured informa-
tion into the process of aggregating multiple fragment-level feature vectors.

2.2 Graph-level matching

The recent works attempt to introduce structural semantic information (e.g., connectivity
between fragments) to construct multi-modal structured graphs for retrieval. Li et al. propose
to construct fully connected visual graphs with respect to all salient region-based features
[21], and then utilize the GCN [33] to further refine visual graphs. Finally, the enhanced
visual graphs are transformed to the common cross-modal representations with a reasoning
GRU [34]. Liu et al. propose a graph structured matching network to explore graph-level
semantic correspondence between images and sentences [22], in which both node-level and
structure-level similarity are taken into consideration. Except for learning the structured
semantic information from scratch, some other works tend to construct more reasonable and
informative graphs by incorporating auxiliary prior knowledge-based constraints and supe-
rior graph generators, e.g., visual scene graph generators [35, 36] trained on the datasets
[37–39]. Wang et al. attempt to convert both images and sentences to semantic graphs and
integrate the object-level and relationship-level similarity as the semantic relevance between
holistic images and sentences [24]. Similarly, Zhong et al. construct the bi-level visual and
textual graphs and compute both node-level and structure-level semantic similarity [23]. Lu
et al. attempt to generate the hash code for complete or incomplete multimedia items with
the multi-modal fusion graph. And a semantic GCN module is applied to supervise the hash
learning of a hash GCN [40]. Ge et al. propose a structured multi-modal embedding network
to learn robust cross-modal representations by aggregating instance-level [41], context-aware
structured and consensus-aware concept [42] semantic features. Long et al. attempt to lever-
age cross-modal semantic cues to promote the construction of two uni-modal scene graphs
[25]. In detail, the visual position information is introduced to generate the vision-integrated
text embedding for each sentence. And the prior semantic knowledge is introduced to gen-
erate the context-integrated visual embedding for each image. A dual graph-based matching
strategy is proposed to perform image and sentence retrieval independently. Besides, atten-
tion mechanism has also been widely applied in a variety of graph-based tasks. Yan et al.
designed a hierarchical attention fusion mechanism for geo-location [43]. Cui et al. applied
the attention-based blender module to combine the temporal relation and neighboring fea-
ture in video objection detection [44]. Liu et al. proposed a multi-scale feature aggregation
strategy to selectively focus on key points in visual localization task [45]. Cui et al. proposed
a geometric attentional edge convolution module to learn point cloud representations from
both intrinsic and extrinsic properties [46]. Similar graph attention mechanism is also uti-
lized to refine the visual and textual features in image-text retrieval. The most graph-based
methods either fail to construct a explicit semantic subspace or only leverage the structured
information to refine intra-modal fragment-level representations. In contrast, the proposed
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model not only explicitly provides the common cross-modal representations for images and
sentences, but also promote the cross-modal semantic alignment by learning the shared struc-
tured information between visual and textual graphs.

3 Flexible graph attention network

In this paper, we propose a flexible graph attention network to perform graph-level image-
sentence retrieval. The Fig. 1 presents an overview of the proposed model. As illustrated in
the Fig. 1, both images and sentences are first transformed to the data of type graph. And
then our model projects both visual and textual graphs into a shared semantic subspace. In
this work, we regard the graph data as the combination of fragment (vertex) and structured
(edge or relationship) semantic information. The fragment and structured information flows
are depicted as green and blue directed arrows in the Fig. 1. Besides, the fusion information
flow is depicted as the brown directed arrows. Finally, we model the cross-modal semantic
subspace with the rank loss and mutual information estimation loss. In this section, we will
elaborate on the proposed model from three aspects, the generation of visual and textual
graphs in the Section 3.1, the model architecture in the Section 3.2 and the training strategy
in the Section 3.3.

3.1 Semantic graph generation

As in many previous works, we first apply the pretrained Faster RCNN [47] model to detect
salient regions in each image. The 36 proposals with top confidence scores are selected
as the visual fragment-level features. The averages of corresponding outputs in pooling
layer are extracted as the feature vectors of proposals. Given these proposals and tentative
classification results, we further build the visual scene graph using the Causal TDE [48]
and NeuralMotifs [35] algorithms, in which the categories of all proposals are refined and
all possible relationships are detected and classified. Finally, each image is represented as a
graph GV = {V ,Cv,Cr }, where V ∈ RM×d is the node embedding matrix, i.e., row-wise
packed pooled feature vectors extracted from salient regions, Cv ∈ RM and Cr ∈ RM×M are
the category matrices of which each element is the index of categories of the corresponding
vertices and relationships.

Fig. 1 Overview of the proposed graph attention network
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Given the textual data, we first split each sentence to an ordered sequence of words using
the WordPiece tokenizer trained in the work [49]. And then we further extract the semantic
dependency relationship using the SPICE [50] and Stanford CoreNLP toolkit [51]. Finally,
we represent each sentence as a textual semantic graph GT = {T ,Cr }, where T ∈ RN×d is
the sum of word embedding and position embedding.Cr is the category matrix of which each
element is an index corresponding to specific dependency relationship. Because the visual
relationships are also categorized with respect to various predicates, the Cr in graphs GV and
GT are all the subsets of same relationship set, i.e., the most frequent 50 predicates in Visual
Genome dataset. Therefore, it allows that a shared predicate embedding matrix is utilized to
mitigate the heterogeneous gap between images and sentences.

3.2 Architecture of network

The proposed graph attention network aims to transform both visual and textual graphs into
a common semantic subspace. As illustrated in the Fig. 1, the visual and textual branches are
mutually independent and built with similar architecture composed of three components. We
will detail the fragment embedding module (FE) in the Section 3.2.1, the structured semantic
enhancement (SSE) module in the Section 3.2.2 and graph-based pooling module (GPN) in
the Section 3.2.3.

3.2.1 Feature embedding module

As the backbone of ourmodel, the fragment embeddingmodule aims to improve the fragment-
level representations for further pooling operation. Due to the prominent performance in deep
learning domain, the multi-head attention mechanism [31] is adopted to construct the embed-
ding module. The core of attention mechanism is the scale dot-product attention operation
which is defined as the (1)-(2), where X represents the fragment embedding matrices V or
T and dh is the dimension of features in the h-th head. Wh ∈ Rd×dh and bh ∈ Rd

h is the
learnable weight matrix and bias.

Hh(X) = softmax(
QhKT

h√
dh

)Vh (1)

Zh = XW Z
h + bZh , Z ∈ {Q, K , V } (2)

Attention(X) = [H1(X), · · · , Hh(X)]Wo + bo (3)

Given the outputs of multiple self-attention modules, the multi-head attention mechanism
is defined as the (3), where [·] represents the concatenation operation along the feature
dimension. Wo ∈ Rd×d and bo ∈ Rd are the learnable weight matrix and bias.

FFN(x) = W2(GELU(W1x + b1)) + b2 (4)

˜T (X) = LayerNorm(X + Attention(X)) (5)

XS = LayerNorm
(

˜T (X) + FFN(˜T (X))
)

(6)

Finally, the feature embedding module is define as (4)-(6). The FFN represents a position-
wise feed-forward network and the GELU is the Gaussian error linear units [52]. And the
normalization layer [53] and residual connection are introduced for improving the stability
of training. Note that the feature dimension is invariant due to the residual connection. And
we adopt two sequential embedding modules (formulated as (5) and (6)) as the backbones
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in visual and textual branches. The first one aims to improve intra-modal semantic features
and the second one is combined with the structured semantic enhancement module (detailed
in the Section 3.2.2) for generating more informative cross-modal representations.

3.2.2 Structured semantic enhancement module

The structured semantic enhancement (SSE) module aims to embed the relationship label
information into the fragment embedding module for further improving the cross-modal
semantic alignment. Concretely, we compute a coefficient matrix R given the relationship
category matrix Cr ∈ RM×M using the (7)-(8). The WR

e ∈ RNR×dR is the relationship
embeddingmatrixwhere the NR and dR are respectively the number of relationship categories
and dimension of embedding. The ⊗ represent a index operation, i.e., replace the elements
of Cr with the corresponding row vectors in embedding matrix WR

e . Then we apply the max
pooling operation along the second dimension to aggregate the context label information
for each vertex. The weight matrix Wir ∈ Rd×dR maps the initial node embeddings into
the relationship embedding space. The representations of node features and their context
information are concatenated as the relation-aware embeddings. And we further apply a
parametric bilinear function (8) to generate the final coefficient matrix R.

˜R =
[

Wir X ,maxpool[WR
e ⊗ Cr ]

]

(7)

Rh = ˜RWrh ˜RT (8)

Hh(X) = softmax(
QhKT

h√
dh

+ λRh)Vh (9)

We embed the structural information into the fragment embedding module by adding the
coefficient matrix R to the weight matrix in self-attention mechanism (1) before computing
the so f tmax function, which can be rewritten as the (9). The λ is a predefined coefficient.
On the one hand, we regard the row vectors of matrix ˜R as the context-aware representations
of vertices. The elements of coefficient matrix R is larger if two vertices have more similar
context semantic environment. And an important property of so f tmax function is that adding
the same scores to each variable dose not change the final weight distribution. Therefore,
we leverage the structured information to modulate the fragment embedding module with
the summation operation in (9). And it endows the proposed model with the capability that
dealing with the graph data while the structured information lacks. Note that we refer the
outputs of SSE module as X R .

3.2.3 Graph-based pooling module

The graph-based poolingmodule aims to transform the structured semantic enhanced features
X R to a feature point xg in the shared semantic subspace. To this end, the average and
max pooling are widely adopted in the most existing models. However, the average pooling
operation treats all feature vectors equally which may suppress the information from which
the cross-modal alignment benefits. On the contrary, the max pooling operation preserves the
most prominent feature informationbutmay lose someother valuable information. Intuitively,
the more other targets an object connects to, the more important it is for understanding the
semantic content. Therefore, we argue that introducing structured information in pooling
operation is able to preserve as much valuable information as possible. To this end, we
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implement the graph-based pooling module with two-layer GCN [33] which is derived from
the spectral graph theory.

P(X) = XT softmax( Ã(GELU( ÃXW1))W2) (10)

Ã = D−1/2(A)D−1/2 where Dii =
∑

j

Ai j (11)

The GCN treats the graph data as one-dimension signal with multiple channels and filters
out the noise and useless information with the parametric filters. The whole pooling function
is formulated as the (10) where theW1 ∈ Rd×d andW2 ∈ Rd×1 are the learnable parameters
of graph filters. And the normalized adjacency matrix Ã is defined as the (11) where the A
is the adjacency matrix with self-loop and the D is the diagonal degree matrix. The graph
filter takes as input the node features XS in the (6) and output the weight coefficients used
to compute weighted sum of the output of SSE module, i.e., xg = P(X)X R . Finally, we
concatenate the average of self-attention module XS and the output xg as the representations
of images and sentences.

3.3 Objective functions

In this subsection, we elaborate on the training strategy given the batched N samples O =
{(vn, tn)}Nn=1. The v ∈ Rd and t ∈ Rd are the visual and textual common representations
computed using the (10). We use subscript i and j to index the images and sentences in
the batch. We apply the bidirectional triplet rank loss to promote the cross-modal semantic
alignment in the shared subspace. The rank loss is defined as the (12) where the si j is the
cosine similarity between image vi and sentence t j . The i− and j− indicate the hard negative
samples [54] in the batch and them = 0.2 is a predefined marginal value. The rank loss aims
to push away the irrelevant items and push the relevant items together.

Lr =
∑

i

[si j− − si j+ + m]+ +
∑

j

[si− j − si+ j + m]+ (12)

We argue that the cross-modal retrieval benefits from the features with high correlation
between images and sentences. Therefore, a cross-modal mutual information (MI) estimation
loss is used to search the feature subspace with maximum correlation. Follow the work [55],
the low bound of mutual information between two high-dimension variables can be esti-
mated using an estimator and the Donsker-Varadhan (DV) representation of KL divergence.
Briefly, as the (13), the mutual information between two variables can be formulated as the
KL divergence between joint distribution and multiplication of two marginal distributions.
Therefore, the DV representation defined as the (14) is the low bound of mutual information,
the estimator T is a function from the sample space to the real number space.

I (x, y) = Px,y log
Px,y

Px · Py = K L(Px,y‖(Px · Py)) (13)

K L(P‖Q) ≥ sup
T∈F :�→R

EP [T ] − log (EQ[eT ]) (14)

In our work, the variables are visual and textual cross-modal representations v and t . We
implement the estimator with the neural network defined as (15), where the notation [·] is a
concatenation operation. And we compute the final estimated value using a sigmoid function
to avoid numerical overflow at the training stage. Therefore, we can define the cross-modal
mutual information estimation loss as the (16), where we use the n to index positive pairs and
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(ṽn, t̃n) are the n-th negative sample pairs in the batch. We construct the batch of negative
samples by packing each image with the sentence next to its positive sample.

Me(v, t) = W2(GELU (W1[v, t] + b1)) + b2 (15)

Lm = log(
1

N

∑

n

eMe(ṽn ,t̃n)) − 1

N

∑

n

Me(vn, tn) (16)

Finally, the whole objective function is formulated as the L = αLr + βLm , where the
α and β are trade-off coefficients. And the proposed graph attention network can be trained
end-to-end.

4 Experiments and analysis

4.1 Datasets and evaluation

In this section, we experiment with our model on two publicly available datasets. Flickr30k
[56] containing 31,783 images about person and sports. MS-COCO [57] contains 123,287
images which belongs to 91 common object categories. Each image in both Flickr30k and
MS-COCO is annotated with five sentences. Follow the work [54, 58], we use same splitting
manner for Flickr30k (identical 29000, 1000 and 1000 images for training, validation and
testing) and MS-COCO (identical 5000 validation images, 5000 test images and the rest are
training images). We evaluate the proposed model using recall rate at K (R@K), i.e., the
percent of query for which at least one correct sample is returned in the top K retrieved items.
Follow the prior work, we report the results on either averaging over five folds of 1000 images
or 5000 images for the MS-COCO. We also report the sum of all recall rates in both image
and sentence retrieval tasks. The model which achieves the maximum sum of recall rates on
validation set is regarded as the optimal model, and the corresponding results on test set are
reported.

4.2 Experiment setup

We implement all experiments with the Pytorch [59] framework and optimize the model with
AdamW [60]. The dimension d is equal to 768 and the number of attention heads is set to
12. The internal size of feed-forward network (4) is set to 2048. The dimension of category
label embedding is set to 512 and the embedding matrix is randomly initialized. The internal
size of mutual information estimator is set to 768. For Flickr30k dataset, we train the model
with initial learning rate 0.0002 for 30 epochs and decay the learning rate by 10 for every
10 epochs. And the hyper-parameters λ, α and β are set to 0.6, 1.0 and 0.2. For MS-COCO
dataset, we train themodel with initial learning rate 0.0002 for 40 epochs, and set the learning
rate to 0.00002 for the last 20 epochs. And the hyper-parameters λ, α and β are set to 0.6, 1.0
and 0.3.We refer the model with default configuration as FGA in the following experiment
results.

4.3 Comparison with state-of-the-art methods

In this section, we compare our model with several state-of-the-art baselines. The fragment-
based methods include SCAN [9], SAEM [32], CVSE [42], CAMERA [18] and RRTC [10].
The graph-based methods include VSRN [21], SMFEA [41], ABGR[23] and SGM [24]. The
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comparison results on Flickr30k and MS-COCO are respectively illustrated in the Tables 1
and 2. And the superscript ∗ indicate the results are achieved using ensemble technique.

As shown in the Table 1, the proposed model can achieve competitive performance in
all tasks. The CAMERA model which achieves the best performance only gains an average
2.5% improvement than our model. However, except for the VSRN, the other models fail to
provide the common cross-modal representations for the efficient retrieval. And our model
with ensemble technique gains a total 5.0% improvement than the VSRN. On the one hand,
we can see that out model achieves more competitive performance in R@10 in both image
and sentence retrieval tasks, i.e., only gains an average of 0.65% degradation when compared
with the CAMERA. On the other hand, our model gains about 3.4% degradation in both R@1
and R@5. We think the reason lies in the different metric functions adopted by these models.
For example, the CAMERA stores each database item as a set of local feature vectors and
evaluates the similarity by selecting partial features with respect to the specific query, from
which the fine-grained alignment task may benefit. But it also significantly increases the
computation burden at the retrieval stage.

Similarly, as shown in the Table 2, our model also achieves competitive performance in
all tasks when compared with other models. Due to the balanced category distribution in
MS-COCO, the 1000-images retrieval task is easier than in Flickr30k. Therefore, all models
achieve similar performance in all 1000-images retrieval tasks. When it comes to the results
on 5000-images retrieval task, our model gains only total 0.3% degradation than the VSRN
which achieves the best comprehensive performance. And the results on two datasets also
shown that the retrieval performance can be further improved using the ensemble technique.
In conclusion, our model is capable of achieving acceptable trade-off between efficiency and
effectiveness.

4.4 Ablation study

4.4.1 The effect of modules

In this section, we experiment with multiple ablation models to investigate the effectiveness
of different components. A baseline model (FGAbase) is first constructed with only fragment
embedding module and the average pooling operation is adopted to generate the cross-

Table 1 Comparison results with state-of-the-art methods on Flickr30k

Models Sentence retrieval Image retrieval Sum
R@1 R@5 R@10 R@1 R@5 R@10

SCAN 67.4 90.3 95.8 48.6 77.7 85.2 465.0

CVSE 70.5 88.0 92.7 54.7 82.2 88.6 476.7

SAEM 69.1 91.0 95.1 52.4 81.1 88.1 476.8

CAMERA 76.5 95.1 97.2 58.9 84.7 90.2 502.6

RRTC 72.7 93.8 96.8 54.2 79.4 86.1 483.0

VSRN∗ 71.3 90.6 96.0 54.7 81.8 88.2 482.6

ABGR 72.3 91.8 95.1 53.7 80.1 87.2 480.2

SMFEA 73.7 92.5 96.1 54.7 82.1 88.4 487.5

FGA 71.0 91.7 97.0 54.6 82.1 88.1 484.5

FGA∗ 71.2 92.3 97.1 55.2 82.8 89.0 487.6

The bold entries refer to the best results in the comparison experiments
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Table 2 Comparison results with state-of-the-art methods on MS-COCO

Models Sentence retrieval Images retrieval Sum
R@1 R@5 R@10 R@1 R@5 R@10

1000 images

SCAN 72.7 94.8 98.4 58.8 88.4 94.8 507.9

SGM 73.4 93.8 97.8 57.5 87.3 94.3 504.1

VSRN∗ 76.2 94.8 98.2 62.8 89.7 95.1 516.8

SAEM 71.2 94.1 97.7 57.8 88.6 94.9 504.3

SMFEA 75.1 95.4 98.3 62.5 90.1 96.2 517.6
CAMERA 75.9 95.5 98.6 62.3 90.1 95.2 517.6
RRTC 76.2 96.3 98.9 61.6 89.3 94.6 516.9

ABGR 73.0 94.7 98.3 59.5 89.4 95.2 510.1

FGA 75.7 95.3 98.7 59.1 89.2 94.2 512.2

FGA∗ 75.6 95.2 98.8 59.7 90.0 94.4 513.7

5000 images

SCAN 50.4 82.2 90.0 38.6 69.3 80.4 410.9

SGM 50.0 79.3 87.9 35.3 64.9 76.5 393.9

VSRN∗ 53.0 81.1 89.4 40.5 70.6 81.1 415.7
CAMERA 53.1 81.3 89.8 39.0 70.5 81.5 415.2

SMFEA 54.2 − 89.9 41.9 − 83.7 −
FGA 52.9 79.4 89.5 39.2 69.7 81.9 412.6

FGA∗ 52.6 80.9 89.5 40.3 70.0 82.1 415.4

The bold entries refer to the best results in the comparison experiments

modal representations. Then the structured semantic enhancement module is removed from
the default model to investigate its effectiveness. We refer the ablation model as FGAsse.
Similarly, we construct the model FGAgp by replacing the graph-based module with the
averagepoolingoperation.Except for thesemodules,we also experimentwith amodelFGAmi

which removes the cross-modal mutual information estimation loss function. Finally, we test
the model with default configuration using the data which lacks the structured information,
i.e., all relationships between fragments. The default value of normalized adjacency matrix
Ã is set to the identity matrix and the coefficient matrix R is set to zero. We refer the model
in this case as FGA f rag .

We experiment with these models on the Flickr30k dataset and report the results in the
Table 3. The default model gains an average 3.9% improvement than the model FGAsse,
which proves the effectiveness of structured semantic enhancement module. Similarly, the
default model gains an average 2.6% improvement than the model FGAgp, which has shown
that the graph-based pooling module works better than an average pooling operation. In
contrast to the baselinemodel, we can see that both enhancementmodule and poolingmodule
improve the performance to some extent. The baseline model is trained using only fragment-
level features. Therefore, it is feasible to promote cross-modal semantic understanding by
introducing auxiliary structured information. When it comes to the loss function, the default
model gains an average 1.2% improvement than the model FGAmi. The cross-modal mutual
information estimation loss slightly improves the retrieval performance by maximizing the
low bound of mutual information between visual and textual representations. When the
structured information lacks, the model FGAfrag performs better than the baseline model by
an average 2.3% improvement on all tasks. Because the enhancement module does nothing
while the relationship labels lack, the graph-based pooling module mainly contributes to the
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Table 3 Results of the ablation experiments on Flickr30k

Models Sentence retrieval Image retrieval Sum
R@1 R@5 R@10 R@1 R@5 R@10

FGA 71.0 91.7 97.0 54.6 82.1 88.1 484.5

FGAbase 63.9 84.3 90.0 48.2 74.1 78.4 438.9

FGAsse 65.3 86.9 93.4 50.6 77.9 87.0 461.1

FGAgp 67.7 89.2 95.7 52.6 79.6 84.3 469.1

FGAmi 69.1 90.3 96.1 54.0 81.0 86.9 477.4

FGA f rag 65.0 85.9 92.1 50.0 77.3 82.6 452.9

improvement. Since we set the default value of adjacency matrix to the identity matrix, the
GCN network is equivalent to a two-layer feed forward network given the Ã = I . And the
weights of linear maps are the parameters of graph filters. Therefore, the pooling module still
tend to preserve as valuable information as possible.

4.4.2 The effect of hyper-parameter

Next we investigate how the performance changes as the value of specific hyper-parameters
change. We first experiment with several models of which the trade-off coefficients λ are
selected from the range [0, 1] with the interval 0.1. The results on Flickr30k are reported in
the Fig. 2(a).We can see that themodel achieves approximate performancewhile the λ ranges
from 0.4 to 0.8 and the maximum sum appears at λ = 0.6. The performance curve shows that
introducing the structured information can promote the cross-modal semantic understanding.
To further explore the effectiveness of cross-modal mutual information estimation loss, we
carry out several experiments in which the values of trade-off coefficient β are selected from
the range [0, 1] with the interval 0.1. The results on Flickr30k are reported in the Fig. 2(b).
We can see that the best performance appears at β = 0.2 and the difference between low and
upper bounds is approximate 10%, i.e., less than 2.0% on average. In contrast to the other
components, the mutual information estimation loss is not capable of significantly affecting
the retrieval performance.

Fig. 2 The results of ablation experiments on the hyper-parameters
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Table 4 Results of the ablation experiments on Flickr30k

Models Parameters(×106) FLOPs(×106) Dimension Common space

FGA 32.34 503.01 768 �
ABGR 110.32 530.67 1024 ×
SMFEA 146.30 430.00 1024 �
SGM 25.28 875.55 1024 ×

4.4.3 The effect of graph data

Finally, we investigate the retrieval performance of the model under case where either visual
or textual structural data is missing. And we select three classical graph-based cross-modal
retrieval models for comparison, i.e., SMFEA [41], ABGR [23] and SGM [24]. We first
present a brief comparison between these models in the Table 4 from four aspects: amount
of parameters, floating point operations (FLOPs), target dimension and whether the common
space exists or not. The first one directly reflects the storage cost of models. And the last
three items comprehensively reflect the time cost at both precomputing and retrieval stages.
Specially, we set the lengths of image and text sequences to 36 and 1 when computing the
FLOPs. We can see that our model has considerable advantage in time and storage cost.

We carry out the comparison experiments on Flickr30k dataset and train ourmodelwith the
default configuration mentioned above. The other models are trained with the configuration
reported in the original papers and open-source codes. All models adapt to the graph data
preprocessed as described in the Section 3.1. We report all results in the Table 5. We refer
the complete input data as visual graph GI and textual graph GC , the incomplete data as VI

and VC . For our model, we set the default adjacent matrix R to the identity matrix when the
structural information is missing. For other models, we simply treat the incomplete data as
the graph with only self-loop and represent the self-loop with background label embedding.
Consider that the SMFEAmodel takes as input the graph with fixed three-layer structure, we
appropriately trim our scene graph to meet the requirement. From the results of both scenes,
we can see that our model performs better that the other models. Obviously, the incomplete
data is not taken into account when the other models are designed. And the model achieves
better comprehensive performance in the second scene in the Table 5. In our view, it may be
caused by the fact that exact scene graph is easier to detect for text than image.

Table 5 Results of the ablation experiments on Flickr30k

Scene Models Sentence retrieval Image retrieval Sum
R@1 R@5 R@10 R@1 R@5 R@10

GI , VC FGA 64.7 86.0 92.3 51.0 77.6 83.1 454.7

ABGR 60.1 78.7 86.0 42.3 69.3 74.5 410.9

SMFEA 62.3 81.1 88.3 43.1 70.6 78.1 423.5

SGM 61.2 80.4 86.7 43.0 72.1 78.3 421.7

VI ,GC FGA 67.2 88.5 94.0 51.1 77.0 83.4 461.2

ABGR 59.3 76.7 82.1 38.3 65.8 70.3 392.5

SMFEA 63.0 80.9 88.1 40.2 67.5 77.6 417.3

SGM 63.7 83.5 89.9 45.5 75.0 80.1 437.7
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4.5 Visualization analysis

To better illustrate the effect of the proposed method, we visualize the learned cross-modal
representations in a 2-D subspace using the t-SNE algorithm [61] in the Fig. 3. We randomly
select 100 images and 500 corresponding sentences from test set in Flicikr30k for visualiza-
tion analysis, and visualize the distribution of these learned common representations in the
Fig. 3. Image and sentence are respectively marked as product sign and dot, the points with
same color represent those samples belonging to the same semantic category. From the visu-
alized result in Fig. 3, we can see that the most of samples are located near the semantically
relevant items. And there is no obvious trend that similar samples are distributed along the
radial direction.

Next we provide several retrieval examples selected from the test set in MS-COCO to
illustrate the effect of the proposed model. The results of sentence retrieval are illustrated
in the Table 6, where the top-5 sentences are arranged from top to bottom in order. And we
report the negative sentences using red font. We can see that all positives samples are ranked
at top 5 for the first two examples, and the negative samples in the rest examples also present
partial relevant semantic information. Table 7 shows several examples of image retrieval and
the samples are ranked from left to right. We mark the positives samples using green bound
box. We can see the correct image can be ranked at top 1 for the first three examples and
those incorrect samples generally present similar visual semantic information.

5 Conclusion

Many prominent works in multimodal deep learning domain have shown that structured
graph information is capable of improving semantic understanding. In this paper, we attempt
to learn the common cross-modal representations for heterogeneous graph data, i.e., project
both visual and textual graphs into a shared semantic subspace. To this end, we propose a
graph attention network to embed structured semantic information into the learned cross-
modal representations. Concretely, a structured semantic enhancement module leverages the
structured information to modify the attention weights for fragment-level feature enhance-

Fig. 3 Visualization of the cross-modal representations using t-SNE algorithm
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Table 6 The examples of sentence retrieval

Image query Results

Dog with orange ball at feet, stands on shore shaking off water. A white dog
shakes on the edge of a beach with an orange ball. White dog playing with
a red ball on the shore near the water. A dog shakes its head near the shore
, a red ball next to it. White dog with brown ears standing near water with
head turned to one side.

A man in a red long-sleeved shirt bikes over a body of water on a bridge.
A man riding his bike across the bridge that is over the river. A man in red
on a bicycle rides past a glass structure. Man in a red shirt riding his bicycle
around water. A man in a red shirt rides his bicycle.

Two different breeds of brown and white dogs play on the beach. Two dogs
run towards each other on a rocky area with water in the background. Two
large tan dogs play along a sandy beach. Two dogs playing together on a
beach. A white dog is running down a rocky beach.

Yellow-orange pecial purpose train engine with American flag painted in the
side. A very bright colored train near a big building. A group of yellow and
blue umbrellas near a building clock. A lot of blue and yellow umbrellas
sitting under a clock. Many blue and yellow umbrellas are shown next to a
building.

Table 7 The examples of image retrieval

Text query Results

A long-haired man is playing the
recorder and a seagull is sitting
nearby on a wall.

A girl with a soccer ball at her feet is
standing in front of a boy.

A bathroom featuring a walk in
shower, mirror, sink and toilet.

A lone climber on a snowcapped
mountain with several huge
mountains in the background.
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ment. And a graph-based pooling module compresses a set of enhanced features to a single
vector in the shared semantic subspace.

In contrast to the most of existing fragment-level and graph-level methods, the proposed
model is capable of constructing an explicit semantic subspace where retrieval is equivalent
to the vector-based ranking problem, which make it feasible to process a huge amount of
data with acceptable time cost. And the proposed model is flexible to process the data no
matter whether there exists structured semantic information. The comparison experiments on
two publicly available datasets show that our model achieves competitive performance when
comparedwith several state-of-the-art models. And the ablation experiments have also shown
that our model is capable of achieving effective retrieval while the structured information
lacks.

However, there are still some shortcomings in our work. One is that the work of graph-
based pooling module is to generate the weight distribution, i.e., the common cross-modal
representations are still essentially the linear combination of fragment-level features, which
may limit the quality of cross-modal representations. The other one is that ourmodel still need
to select some empirical hyper-parameters for various datasets. To mitigate these problem,
the future work will attempt to study a more robust and superior strategy to embed structured
semantic information into the cross-modal representations.

Acknowledgements The research was supported by TheNational Natural Science Foundation of China (grant
nos. 61728204, 61802182).

Data Availability The Flickr30k and MSCOCO are publicly available datasets in published papers [56, 57].
The code of the current study are available from the corresponding author on reasonable request.

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

References

1. Liu D, Cui Y, Cao Z, Chen Y (2020) Indoor navigation for mobile agents: a multimodal vision fusion
model, pp 1–8

2. Yan L, Liu D, Song Y, Yu C (2020) Multimodal aggregation approach for memory vision-voice indoor
navigation with meta-learning 5847–5854

3. Yan L et al (2022) Gl-rg: global-local representation granularity for video captioning
4. Wang Q et al (2022) Webformer: the web-page transformer for structure information extraction. Proc

ACMWeb Conf 2022:1–2
5. Yang L et al (2023) Findings of the association for computational linguistics. In: Rogers A, Boyd-Graber

J, Okazaki N (eds) Mixpave: mix-prompt tuning for few-shot product attribute value extraction: ACL
6. Wang Q et al (2023) Proceedings of the 61st annual meeting of the association for computational linguis-

tics. In: Rogers A, Boyd-Graber J, Okazaki N (eds) Mustie: multimodal structural transformer for web
information extraction, vol 1. Association for Computational Linguistics, Toronto, pp 2405–2420

7. HuangY,WangW,WangL (2017) Instance-aware image and sentencematchingwith selectivemultimodal
lstm 1:2310–2318

8. Nam H, Ha J-W, Kim J (2017) Dual attention networks for multimodal reasoning and matching, pp
299–307

9. LeeK-H, ChenX,HuaG,HuH,HeX (2018) Stacked cross attention for image-textmatching, pp 201–216
10. Wu J, Wu C, Lu J, Wang L, Cui X (2022) Region reinforcement network with topic constraint for image-

text matching. IEEE Trans Circuits Syst Video Technol 32(1):388–397. https://doi.org/10.1109/TCSVT.
2021.3060713

11. Zhang K,Mao Z,Wang Q, Zhang Y (2022) Negative-aware attention framework for image-text matching.
IEEE, pp 15640–15649. https://doi.org/10.1109/CVPR52688.2022.01521

123

https://doi.org/10.1109/TCSVT.2021.3060713
https://doi.org/10.1109/TCSVT.2021.3060713
https://doi.org/10.1109/CVPR52688.2022.01521


Multimedia Tools and Applications (2024) 83:57895–57912 57911

12. Wang S, Chen Y, Zhuo J, Huang Q, Tian Q (2018) Joint global and co-attentive representation learning
for image-sentence retrieval, pp 1398–1406

13. Zhang Q, Lei Z, Zhang Z, Li SZ (2020) Context-aware attention network for image-text retrieval, pp
3536–3545

14. Yu T et al (2021) Heterogeneous attention network for effective and efficient cross-modal retrieval, pp
1146–1156

15. Wei X, Zhang T, Li Y, Zhang Y, Wu F (2020) Multi-modality cross attention network for image and
sentence matching, pp 10941–10950

16. Qu L, Liu M,Wu J, Gao Z, Nie L (2021) Dynamic modality interaction modeling for image-text retrieval,
pp 1104–1113

17. Li J, Niu L, Zhang L (2022) Action-aware embedding enhancement for image-text retrieval. AAAI Press
1:1323–1331

18. Qu L, Liu M, Cao D, Nie L, Tian Q (2020) Context-aware multi-view summarization network for image-
text matching, pp 1047–1055

19. Lan H, Zhang P (2022) Learning and integrating multi-level matching features for image-text retrieval.
IEEE Signal Process Lett 29:374–378. https://doi.org/10.1109/LSP.2021.3135825

20. Cheng Z et al (2023) Fusion is not enough: single-modal attacks to compromise fusion models in
autonomous driving. ArXiv:abs/2304.14614, https://api.semanticscholar.org/CorpusID:258417952

21. Li K, Zhang Y, Li K, Li Y, Fu Y (2019) Visual semantic reasoning for image-text matching, pp 4654–4662
22. Liu C et al (2020) Graph structured network for image-text matching, pp 10921–10930
23. Zhong, X et al (2021) Auxiliary bi-level graph representation for cross-modal image-text retrieval. IEEE,

pp 1–6
24. Wang S,WangR,YaoZ, Shan S, ChenX (2020)Cross-modal scene graphmatching for relationship-aware

image-text retrieval, pp 1508–1517
25. Long S, Han SC, Wan X, Poon J (2022) Gradual: graph-based dual-modal representation for image-text

matching. IEEE, pp 2463–2472. https://doi.org/10.1109/WACV51458.2022.00252
26. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
27. Huang F, Zhang X, Zhao Z, Li Z (2019) Bi-directional spatial-semantic attention networks for image-text

matching. IEEE Trans Image Process 28(4):2008–2020. https://doi.org/10.1109/TIP.2018.2882225
28. Ji Z, Wang H, Han J, Pang Y (2019) Saliency-guided attention network for image-sentence matching, pp

5754–5763
29. Liu C et al (2019) Focus your attention: a bidirectional focal attention network for image-text matching,

MM ’19. Association for Computing Machinery, New York, pp 3–11
30. Wang Y et al (2019) Position focused attention network for image-text matching. arXiv:1907.09748
31. Vaswani A et al (2017) Attention is all you need 5998–6008. https://proceedings.neurips.cc/paper/2017/

hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
32. Wu Y, Wang S, Song G, Huang Q (2019) Learning fragment self-attention embeddings for image-text

matching, pp 2088–2096
33. Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks, OpenRe-

view.net.https://openreview.net/forum?id=SJU4ayYgl
34. ChoK,VanMerriënboerB, BahdanauD,BengioY (2014)On the properties of neuralmachine translation:

encoder-decoder approaches. arXiv:1409.1259
35. Zellers R, Yatskar M, Thomson S, Choi Y (2018) Neural motifs: scene graph parsing with global context,

pp 5831–5840
36. Li Y, Ouyang W, Zhou B, Wang K, Wang, X (2017) Scene graph generation from objects, phrases and

region captions, pp 1261–1270
37. Krishna R et al (2016) Visual genome: connecting language and vision using crowdsourced dense image

annotations. arXiv:1602.07332
38. Xu D, Zhu Y, Choy CB, Fei-Fei L (2017) Scene graph generation by iterative message passing, pp

3097–3106
39. Liang Y et al (2019) Vrr-vg: refocusing visually-relevant relationships. IEEE, pp 10402–10411. https://

doi.org/10.1109/ICCV.2019.01050
40. Lu X, Zhu L, Liu L, Nie L, Zhang H (2021) Graph convolutional multi-modal hashing for flexible

multimedia retrieval, pp 1414–1422. https://doi.org/10.1145/3474085.3475598
41. Ge X et al (2021) Structured multi-modal feature embedding and alignment for image-sentence retrieval.

ACM, pp 5185–5193
42. Wang H, Zhang Y, Ji Z, Pang Y,Ma L (2020) Consensus-aware visual-semantic embedding for image-text

matching. Lecture notes in computer science, vol 12369. Springer, pp 18–34
43. Yan L, Cui Y, Chen Y, Liu D (2021) Hierarchical attention fusion for geo-localization, pp 2220–2224

123

https://doi.org/10.1109/LSP.2021.3135825
http://arxiv.org/2304.14614
https://api.semanticscholar.org/CorpusID:258417952
https://doi.org/10.1109/WACV51458.2022.00252
https://doi.org/10.1109/TIP.2018.2882225
http://arxiv.org/abs/1907.09748
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=SJU4ayYgl
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1602.07332
https://doi.org/10.1109/ICCV.2019.01050
https://doi.org/10.1109/ICCV.2019.01050
https://doi.org/10.1145/3474085.3475598


57912 Multimedia Tools and Applications (2024) 83:57895–57912

44. Cui Y, Yan L, Cao Z, Liu D (2021) Tf-blender: temporal feature blender for video object detection, pp
8138–8147

45. Liu D et al (2021) Densernet: weakly supervised visual localization using multi-scale feature aggregation.
Proc AAAI Conf Artif Intell 35(7):6101–6109. https://doi.org/10.1609/aaai.v35i7.16760

46. Cui Y et al (2021) Geometric attentional dynamic graph convolutional neural networks for point cloud
analysis. Neurocomputing 432:300–310

47. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-time object detection with region
proposal networks. Adv Neural Inf Process 28:91–99

48. Tang K, Niu Y, Huang J, Shi J, Zhang H (2020) Unbiased scene graph generation from biased training.
Computer Vision Foundation/IEEE 1:3713–3722

49. Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers
for language understanding

50. Anderson P, Fernando B, Johnson M, Gould S (2016) Computer vision – ECCV 2016. In: Leibe B, Matas
J, Sebe N,WellingM (eds) Spice: semantic propositional image caption evaluation. Springer International
Publishing, Cham, pp 382–398

51. Manning CD et al (2014) The stanford corenlp natural language processing toolkit. Assoc Comput Lin-
guistics 1:55–60. https://doi.org/10.3115/v1/p14-5010

52. Hendrycks D, Gimpel K (2016) Gaussian error linear units (gelus)
53. Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. arXiv:1607.06450
54. Faghri F, Fleet DJ, Kiros JR, Fidler S (2017) Vse++: improving visual-semantic embeddings with hard

negatives. arXiv:1707.05612
55. Belghazi MI et al (2018)Mutual information neural estimation. (eds Dy JG, Krause A) Proceedings of the

35th international conference onmachine learning, ICML 2018, vol 80. Proceedings ofMachine Learning
Research, Stockholmsmässan, pp 530–539. http://proceedings.mlr.press/v80/belghazi18a.html

56. PlummerBAet al (2015) Flickr30k entities: collecting region-to-phrase correspondences for richer image-
to-sentence models, pp 2641–2649

57. Lin T-Y et al (2014) Microsoft coco: common objects in context. Springer, 740–755
58. Karpathy A, Fei-Fei L (2015) Deep visual-semantic alignments for generating image descriptions, pp

3128–3137
59. Collobert R, Kavukcuoglu K, Farabet C (2011) Torch7: a matlab-like environment for machine learning
60. Loshchilov I, Hutter F (2017) Decoupled weight decay regularization. arXiv:1711.05101
61. van der Maaten L, Hinton GE (2008) Visualizing data using t-sne. J Mach Learn Res 9:2579–2605

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1609/aaai.v35i7.16760
https://doi.org/10.3115/v1/p14-5010
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1707.05612
http://proceedings.mlr.press/v80/belghazi18a.html
http://arxiv.org/abs/1711.05101

	Flexible graph-based attention and pooling network  for image-text retrieval
	Abstract
	1 Introduction
	2 Related work
	2.1 Fragment-level matching
	2.2 Graph-level matching

	3 Flexible graph attention network
	3.1 Semantic graph generation
	3.2 Architecture of network
	3.2.1 Feature embedding module
	3.2.2 Structured semantic enhancement module
	3.2.3 Graph-based pooling module

	3.3 Objective functions

	4 Experiments and analysis
	4.1 Datasets and evaluation
	4.2 Experiment setup
	4.3 Comparison with state-of-the-art methods
	4.4 Ablation study
	4.4.1 The effect of modules
	4.4.2 The effect of hyper-parameter
	4.4.3 The effect of graph data

	4.5 Visualization analysis

	5 Conclusion
	Acknowledgements
	References


