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Abstract
Accurate and automatic analysis of electrocardiogram (ECG) signals plays a key role in the
diagnosis of cardiovascular disease. This paper aims to investigate the performance of the
multifractal detrending fluctuation analysis (MF-DFA) method based on a sliding window in
ECG signal classification. We apply ECG signals to the detrended fluctuation analysis (DFA)
method to obtain a group of local Hurst exponents and compose the DFA series. Afterwards,
we use the MF-DFA method to get 6 generalized Hurst exponents of atrial premature beats
(APB) and ECG signals with normal sinus rhythm (NSR), respectively. The 6 generalized
Hurst exponents compose a feature vector and it is used in support vector machine (SVM)
to examine the accuracy of ECG signal classification. The calculated results show that the
MF-DFA method combined with a sliding window (SWD-MF-DFA) method performs well.
Compared with directly using the MF-DFA method, with the same parameters, the accuracy
of SWD-MF-DFA is higher, so as is the sensitivity and the specificity. As well, the proposed
model can better analyze the local detailed features of time series and allows the application
of MF-DFA in different parts of the time series, enabling the detection and analysis of time
series variability.

Keywords Hurst exponent · Sliding window · MF-DFA

1 Introduction

In recent years, heart disease has consistently ranked as one of the leading causes of death
worldwide. The mortality rate attributed to heart disease causes remains the highest globally,
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with related deaths accounting for one-third of all global fatalities each year. Consequently,
urgent attention is required to address the prevention and timely diagnosis of heart disease.

Electrocardiogram (ECG) is one of the earliest biological signals studied and applied in
clinical medicine.Meanwhile, ECG data is typically large-scale time-series data that requires
reliable data storage and management. Cloud computing [1] provides an efficient solution
for this, including features such as data backup, recovery, security, and access control, which
has been successfully applied in [2]. As well, ECG is a crucial tool in the clinical diagnosis
of cardiovascular disease. Consequently, improving the accuracy of ECG classification has
become an attractive research focus [3–6]. Einthoven [7] invented the ECG machine in 1903
and it has been applied in clinical practice since then, making a significant contribution
to the diagnosis, treatment and prevention of cardiovascular disease and arrhythmia. The
automatic classification of ECG signals [8–11] has gained interest among academics due to
the advancement of machine learning. Venkatesan et al. [12] utilized KNN to classify ECG
signals by preprocessing the signals based on LMS algorithm, and the classifier exhibited
excellent performance.

Sliding window algorithm is considered in this paper. Sliding windows are widely used in
arrays or strings and perform well in the classification of time series. In time series of social
indicators, Filho [13] combined the Detrended Fluctuation Analysis (DFA) with a sliding
window to analyze the crime indicator fluctuations, which dynamically analyzed the related
indicators like managing, monitoring, and controlling the information capacity of crime-
ralated data. In biological series, for the precise detection of foot-to-ground contact phases,
Jeon et al. [14] explored amodel based on a slidingwindow and considered overlapping labels
whose validation accuracy reached approximately 85%. Due to the excellent performance of
sliding windows in time series, sliding windows have been taken into analyzing ECG signals
[15–17]. Therefore, research of sliding windows is of great social significance.

Multifractal Detrended Fluctuation Analysis (MF-DFA) model is selected to extract fea-
tures in this paper. MF-DFA is developed on the basis of DFA [18, 19], a scalar index
calculation method proposed by Peng et al. in 1994 for analyzing long-range correlations
in time series using the DNA mechanism. DFA determines the statistical autocorrelation
of a signal based on Hurst exponents. However, traditional DFA only scales second-order
statistical moments and assumes process being normally distributed. As well, DFA can be
used to evaluate human ECG signals using the developed ECG device [20]. Subsequently,
MF-DFA was proposed by Kantelhardt [21], enabling the extraction of scaled exponential
and multifractal spectra of non-stationary time series. This allows for the efficient analysis of
multifractal features in time series. Subsequently, MF-DFA has been widely used in various
time series in different fields, such as meteorology, and financial mathematics [22, 23]. Mor-
ever, MF-DFA is also extensively used in practical applications, especially in classification.
MF-DFA was adopted to extract features and performed excellently in classification [24].
Jiao et al. [25] used MF-DFA to identify chaotic features in three signal sets originating from
states of Myocardial Infarction (MI), Arrhythmia, and a healthy state. In [26, 27], MF-DFA
has satisfactory performance in classifying atrial premature beat people and normal sinus
rhythm subjects. In addition to the overall study classification of ECG signals, a nearest
neighbor classifier based on the local fractal dimension has been processed, demonstrating
excellent adaptability [28].

In order to obtainmore detailed information of ECG signals, the slidingwindow algorithm
is adopted in this paper. Meanwhile, considering the multifractal nature of ECG signals, a
classifier consisting of slidingwindows and theMF-DFAmethod has been taken in to account.

The remainder of the paper is structured as follows. We introduce the methodology in
Section 2. Section 3 intrduces some information of ECG signals. Section 4 exhibits the
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experimental results. Section 5 presents the comparisonand discussion with some existing
methods. Section 6 reports the conclusion.

2 Methodology

2.1 Sliding window algorithm

The sliding window algorithm is used to solve the sub-element problem of an array or
alphabetic string. It can transform the nested loop problem into a single loop problem so
that the time complexity can be decreased. The specific operation is that using fixed-size
sublist and iterating over the whole list with the sublist. It is commonly used in processing
sequences [29].

The specific steps are given as follows:
Step1: Fix the size of the sliding window;
Step2: Fix q;
Step3: Move the sliding window with an increment of 15 until the right of the series, and

then calculate the local Hurst exponent H in each sliding window respectively.
Step4: Compose a new sequence by using the calculated H and then apply the new time

series to the MF-DFA model to extract 6 generalized Hurst exponents.
Step5: Calculate the accuracy, sensitivity and specificity of the classification using support

vector machine (SVM) based on 6 extracted generalized feature values.
Step6: Alter q , repeat the previous operations and compare the performances of the clas-

sification.

2.2 MF-DFA

Consider a time series {T }a , a = 1, 2, . . . ,W . Construct a cumulative sequence as follows:

t(i) =
j∑

i=1

(Ti − T ), j = 1, ..., N , (1)

where T is the mean of {T }Wa .
Divide the new time series t(i) into Ws segments and Ws = �W

s � where s is the size of
non-overlapping window and W is the length of the series.

Here, in order to save more information, the segmentation operation is then performed
again from the end to the begining. Therefore, 2Ws segments can be obtained. Then, for the s
points in each segment I, I = 1, 2, . . . , 2Ws , applying least square method to polynomial
fitting, we can obtain:

yI(α) = b1α
k + b2α

k−1 + ... + bkα + bk+1, α = 1, 2, ..., s. (2)

Calculate the mean squared error and then calculate the q−order wave function on this
basis. When I = 1, 2, . . . ,Ws :

f 2 = 1

s

s∑

α=1

{t[(I − 1)s + α] − yI} . (3)

123



54776 Multimedia Tools and Applications (2024) 83:54773–54789

When I = Ws,Ws+2, . . . , 2Ws :

f 2 = 1

s

s∑

α=1

{t[(W − (I − Ws)s + α] − yI} . (4)

Fq(s) =

⎧
⎪⎨

⎪⎩

{
1
Ws

∑Ws
w=1[ f 2]q

} 1
q

, if q �= 0,

exp
(

1
Ws

∑Ws
w=1 ln[ f 2]

)
, if q = 0.

(5)

With the increase of s, Fq(s) will increase in a power-law relationship, which can be
interpreted as Fq(s) ∝ sh(q). h(q) is called generalizedHurst exponent.Also,whenq = 2,we
call it standard DFAmodel. When h(q) varies with q , the time series will exhibit multifractal
properties. Otherwise, when the original sequence is a single fractal, h(q) is a constant
independent of q .

2.3 Support vector machine

Support vector machine (SVM) is a commonly used classifier [30], which is widely used
in binary classification problems. SVM plays a major role not only in linear classification
but also nonlinear classification. When it comes to nonlinear classification, a suitable Kernel
function is selected to transform nonlinear classification problem into linear classification
problem, allowing us to avoid computing dot product in high-dimensional feature space.
Therefore, the problem needs to be solved is given as follows.

min
λ

[1
2

n∑

i=1

n∑

j=1

λiλ j yi y j (φ(xi ) · φ(x j )) −
n∑

i=1

λi ], (6)

s.t .
n∑

i=1

λi yi = 0, 0 ≤ λi ≤ C, i =, 1, 2, . . . , N , (7)

where x represents the original sample and φ(x) represents the new feature vector. yi and
y j are the classification labels, where yi , y j ∈ {+1,−1} and C is a constant greater than 0,
representing the penalty function. Meanwhile, from (7), the best solution can be obtained
λ∗ = (λ∗

1, λ
∗
2, . . . , λ

∗
N )T .

Next, calculate the following formulas:

w∗ =
N∑

i=1

λ∗
i yi (xi · x j ),

b∗ = y j −
N∑

i=1

λ∗
i yi (xi · x j ).

(8)

Here, choose a component λ∗
j of λ∗, which should satisfy 0 < λ∗

j < C .
Finally, separate hyperplane.

w∗ · x + b∗ = 0. (9)

The split hyperplane can be expressed as f (x) = sign(w∗x + b∗) or f (x) =
sign(

∑N
i=1 λ∗

i yi (xi · x j )+ b∗). The inner product can be replaced by kernel function, which
can obtain the nonlinear SVM. The commonly used kernel functions are shown in Table 1.
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Table 1 Kernel functions Name Expression

Linear kernal function k(x − i, x j ) = xTi x j

Polynomial kernel function k(xi , x j ) = (xTi x j )
d

Gaussian kernel function k(xi , x j ) = exp(−||xi−x j ||2
2σ2 )

3 Data collection

All ECG signals were obtained from the MIT-BIH Arrhythmia Database. All ECG signals
were recorded with a sampling frequency of 360 HZ and a sampling frequency of 200
[adu/mV]. We collect ECG signals from 50 subjects with atrial premature beat (APB) and 50
people with normal sinus rhythm (NSR). Each piece of ECG signals consists of 3600 points.

We use the sliding window with a fixed size of 100 to acquire a local Hurst exponent.
Then, move the sliding window to the end in a step size of 15 each time. Therefore, we can
obtain 234 local Hurst exponents from each time series. Subsequently, we treated these 234
local Hurst exponents as a new time series and utilize the MF-DFA method to require a set
of generalized Hurst exponents which is then used in the classification by SVM.

4 Computational results

First of all, we fix the size of the sliding window to 100 and move it at an interval of 15 each
time. Next, we fix q and calculate the local Hurst exponent H of ECG signals in each sliding
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Fig. 1 The original time series of NSR ECG signals and APB ECG signals
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Fig. 2 Schematic diagram of the process of constructing a new time series. 100 points represent the size of
the sliding window and we calculate the Hurst exponent of the 100 points. The sliding window moves to the
right with an interval of 15 points

window. All calculations were conducted using MATLAB R2020a on a 2.50GHz Intel(R)
Core(TM) i5-7200U CPU.

An original ECG sequence is made up of 3600 points. Figure 1 exhibits the initial time
series. First, we consider the case when q equals 0. Therefore, we can obtain a new series
(for convenience, we call it DFA series). The process of extracting local Hurst exponents
from the original ECG signal sequence by using the sliding window can be referred to Fig. 2.
Figure 3 shows the new time series consisting of local Hurst exponents.

DFA method is used in the first step. It is a common method to handle non-stationary sig-
nals like meteorological signals [31]. DFA can quantitatively analyze the correlation nature
of signal sequences and determine the different properties of the signals by calculating the
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Fig. 3 A new times series composed by local Hurst exponents when q equals 0
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correlation index. As well, it is capable of effectively filtering out trend components of vari-
ous orders in the sequence and detecting long-range correlations containing noise, which is
suitable for the analysis of non-stationary time series with long-range power-law correlation.

The following step involves using theMF-DFAmethod to extract 6 feature values, referred
to as Sliding-Window-DFA-MF-DFA model (SWD-MF-DFA). SVM is utilized to examine
the accuracy based on the extracted generalizedHurst exponents andGaussian kernel function
is adopted.When constructing theDFA sequence, we adopt different values of q and calculate
the corresponding accuracies. Since the common range of q used in MF-DFA is (-10, 10),
so the q adopted to obtain local Hurst exponents are integers within this range, totaling 21
samples. Subsequently, extract 6 generalizedHurst exponents anduse themas a feature vector.
Then, apply the feature vector to SVM to calculate the accuracy, as well as the sensitivity
and the specificity. Since SVM is supervised learning, we label the feature vectors of NSR
ECG signal with the value 1 as the class 1 and label the feature vectors of NSR ECG signals
with the value -1 as the class 2. Due to the small number of samples, we use leave-one-out
cross-validation method. In this paper, we randomly disrupt the samples 100 times. Each
time, the samples are divided into 10 disjoint subsets, with one serving as the test set and the
rest as the training set. Therefore, the samples can be fully utilized so that the results are the
closest to the expectations of training on the entire test set. Table 2 displays the classification
accuracy, sensitivity, and specificity. We observe that when q deviates from 0, the accuracy
shows a downward trend generally. However, all the accuracies are higher than 60%.

Here, q represents the order of the fluctuation function in DFA series and Q represents
the range of q used in the MF-DFAmodel. Acc, Sen, and Spe represent accuracy, sensitivity

Table 2 SWD-MF-DFA model
based on different q

q Q ACC SEN SPE

−10 (−10, 10) 64.30% 74.18% 73.88%

−9 (−10, 10) 64.50% 73.68% 74.07%

−8 (−10, 10) 64.34% 73.05% 74.15%

−7 (−10, 10) 65.43% 72.55% 75.92%

−6 (−10, 10) 64.99% 71.31% 49.05%

−5 (−10, 10) 64.84% 70.78% 77.00%

−4 (−10, 10) 64.84% 70.06% 78.91%

−3 (−10, 10) 64.20% 71.75% 76.04%

−2 (−10, 10) 57.16% 68.55% 71.55%

−1 (−10, 10) 79.04% 77.28% 88.97%

0 (−10, 10) 88.00% 79.02% 100.00%

1 (−10, 10) 85.86% 78.13% 100%

2 (−10, 10) 83.24% 79.40% 93.31%

3 (−10, 10) 77.96% 78.54% 86.04%

4 (−10, 10) 77.10% 76.10% 86.79%

5 (−10, 10) 65.35% 72.83% 75.49%

6 (−10, 10) 65.30% 73.17% 75.62%

7 (−10, 10) 66.98% 74.89% 75.92%

8 (−10, 10) 67.33% 74.47% 76.24%

9 (−10, 10) 68.33% 77.72% 77.72%

10 (−10, 10) 67.87% 73.83% 77.96%
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and specificity, respectively. The specific calculations are given as follows:

Acc = T P + T N

T P + FN + FP + T N
,

Sen = T P

T P + FP
,

Spe = T P

T P + FN
,

(10)

where themeanings of T P , T N , FP and FN are True positive, True negative, False positive,
and False negative, respectively.

Figure 4 shows the distribution of the features. The blue line represents the generalized
Hurst exponent when q equals 0. We observe that the points above the blue line represent
generalized Hurst exponent when Q belongs to (-10, 0), are quite scattered. Conversely,
below the blue line, when Q is (0, 10), the distribution of the points is clustered. When the
fluctuation of the features is larger, the self-similarity is sacrificed more. In other words,
the similarity of NSR ECG signals and APB ECG signals increases, indicating that it is
challenging to distinguish NSR and APB ECG signals, leading to a decrease in classification
accuracy.

It is difficult to determine the distinctiveness of the features from Fig. 4. As well, we
observe the fluctuation in APB ECG signals is evident. When Q is in the range of (-10,0), the
dissimilarity before the APB and NSR ECG signals appears to be smaller compared to when
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Fig. 4 Six generalized Hurst exponents of (a) NSR ECG signals and (b) APB ECG signals
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Q is in the range (0, 10). Therefore, we divide the extracted feature values in Fig. 4 into 2
parts equally, delimited by the blue line, where the blue line is the Hurst value when Q equals
0. Thus, three feature values are extracted when Q is (-10, 0) and the other feature values
are extracted when Q belongs to (0, 10). We use 3D coordinates to present their distribution.
Figure 5 exhibits a better fluctuation phenomenon. The red circles represent the features
extracted from APB ECG signals and the black circles are the features extracted from NSR
ECG signals. The one the left means the generalized Hurst exponents when Q < 0, and the
one on the right means Q > 0. Comparing with Fig. 5(a) and (b), the intersecting points in
Fig. 5(a) are more than those in Fig. 5(b). When the degree of mixing is higher, the similarity
of two signals is higher, indicating that it is hard to distinguish the signals, resulting in low
classification accuracy. It is evident that the degree of mixing is higher when Q is (-10, 0).
Few points are cross-distributed. Therefore, we select the range (0, 10) as the experimental
interval.

In order to better discriminate this pattern, for the previous 21 samples, we fix Q to (-10,
0) and extract 6 generalized Hurst exponents. Afterwards, the extracted 6 feature values form
a feature vector, which is then applied it to SVM to calculate the classification accuracy of
SWD-MF-DFAmodel. Subsequently, change Q to (0, 10) and repeat the previous operations.
All the calculated results are shown in Table 3. Under the same q, the bolded data represents
the higher accuracy obtained by reextracting the features from the newly obtained sequence
and classifying it. It is obvious to see from Table 3 that the accuracy when Q is (0, 10) is
higher than that when Q is (-10, 0) in most samples. It is clear from Fig. 6 that the extracted
feature values of NSR ECG signals in the interval (0, 10) have fewer intersections with those
of APB ECG signals. That means (0, 10) is the better interval that should be selected.

Figure 6 clearly illustrates the similarity of the extracted feature values. When Q belongs
to (-10, 10) and (-10, 0), various feature values of APB ECG signals are intertwined with
those of NSR ECG signals. However, in Fig. 6(c), the eigenvalues are basically separate,
suggesting that the accuracy of the classification will increase. In the two exceptions noted
in Table 3, we find they still satisfy the pattern. Observing Fig. 7, the Hurst exponents in
Fig. 7(a) and (b) have more intersections than those in Fig. 7(c). In some parts, a higher
accuracy is achieved when Q is in (-10, 0) because the intersectionality of feature values in
(-10, 0) is lower than that of (0, 10). Therefore, features in (-10, 0) are more differentiated.

Fig. 5 (a): x represents the first generalized Hurst exponent; y represents the second generalized Hurst expo-
nent; z represents the third generalized Hurst exponent; the three generalized Hurst exponents are extracted
when Q is (-10, 0), and (b): x represents the forth generalizedHurst exponent; y represents the fifth generalized
Hurst exponent; z represents the sixth generalized Hurst exponent; the three generalized Hurst exponents are
extracted when Q is (0, 10)

123



54782 Multimedia Tools and Applications (2024) 83:54773–54789

Ta
bl
e
3

SW
D
-M

F-
D
FA

m
od
el
ba
se
d
on

di
ff
er
en
tq

q
Q

A
cc
ur
ac
y

Se
ns
iti
vi
ty

Sp
ec
ifi
ci
ty

Q
A
cc
ur
ac
y

Se
ns
iti
vi
ty

Sp
ec
ifi
ci
ty

−1
0

(−
10

,
0)

51
.4
6%

68
.7
3%

66
.1
9%

(0
,
10

)
68

.2
1%

71
.5
9%

80
.7
5%

−9
(−

10
,
0)

50
.3
2%

67
.6
4%

66
.3
2%

(0
,
10

)
68

.3
5%

72
.1
5%

82
.0
2%

−8
(−

10
,
0)

46
.3
6%

66
.5
8%

64
.0
8%

(0
,
10

)
67

.4
6%

69
.6
8%

81
.2
7%

−7
(−

10
,
0)

45
.8
6%

65
.0
7%

65
.2
0%

(0
,
10

)
66

.5
3%

69
. 8
2%

80
.8
0%

−6
(−

10
,
0)

65
.9
2%

65
.5
3%

66
.4
0%

(0
,
10

)
64

.6
0%

70
.8
5%

77
.7
0%

−5
(−

10
,
0)

54
.1
3%

70
.0
0%

67
.2
3%

(0
,
10

)
64

.0
4%

71
.6
9%

75
.0
4%

−4
(−

10
,
0)

51
.6
7%

69
.0
6%

66
.0
9%

(0
,
10

)
67

.1
6%

76
.1
2%

75
.0
8%

−3
(−

10
,
0)

55
.8
7%

69
.8
0%

68
.9
9%

(0
,
10

)
63

.1
4%

70
.3
7%

76
.0
2%

−2
(−

10
,
0)

60
.6
9%

71
.4
6%

71
.7
0%

(0
,
10

)
68

.4
9%

71
.7
6%

80
.0
9%

−1
(−

10
,
0)

77
.0
6%

75
.9
2%

87
.8
4%

(0
,
10

)
81

.6
5%

77
.4
9%

92
.8
7%

0
(−

10
,
0)

87
.0
0%

79
.6
3%

10
0.
00

%
(0

,
10

)
90

.0
0%

81
.9
3%

98
.1
0%

1
(−

10
,
0)

83
.3
4%

77
.0
1%

97
.2
3%

(0
,
10

)
85

.9
7%

78
.1
3%

10
0.
00

%

2
(−

10
,
0)

82
.8
5%

82
.7
1%

88
.2
6%

(0
,
10

)
83

.8
4%

79
.0
1%

95
.0
9%

3
(−

10
,
0)

74
.5
3%

77
.9
1%

81
.3
7%

(0
,
10

)
79

.9
4%

80
.3
0%

86
.5
5%

4
(−

10
,
0)

69
.4
3%

73
.9
0%

79
.0
6%

(0
,
10

)
77

.3
0%

83
.1
2%

79
.6
3%

5
(−

10
,
0)

68
.4
5%

73
.4
5%

78
.4
3%

(0
,
10

)
68

.2
0%

75
.2
5%

76
.7
7%

6
(−

10
,
0)

68
.6
6%

73
.5
7%

79
.4
4%

(0
,
10

)
67

.2
8%

74
.4
8%

76
.8
8%

7
(−

10
,
0)

69
.8
0%

71
.8
2%

82
.3
0%

(0
,
10

)
70

.0
0%

75
.4
4%

78
.3
1%

8
(−

10
,
0)

70
.2
5%

72
.1
0%

82
.7
6%

(0
,
10

)
70

.3
0%

74
.8
4%

78
.9
9%

9
(−

10
,
0)

67
.6
8%

72
.3
0%

79
.6
0%

(0
,
10

)
68

.8
6%

74
.1
9%

78
.7
0%

10
(−

10
,
0)

68
.3
2%

72
.6
1%

79
.9
1%

(0
,
10

)
68

.7
7%

74
.4
2%

78
.4
3%

123



Multimedia Tools and Applications (2024) 83:54773–54789 54783

0 10 20 30 40 50
ECG signals

0

1

2

3

G
en

er
al

iz
ed

 H
ur

st
 e

xp
on

en
t

NSR-features
APB-features

0 10 20 30 40 50
ECG signals

0

1

2

3

G
en

er
al

iz
ed

 H
ur

st
 e

xp
on

en
t

NSR-features
APB-features

0 10 20 30 40 50
ECG signals

0

1

2

3

G
en

er
al

iz
ed

 H
ur

st
 e

xp
on

en
t

NSR-features
APB-features

Fig. 6 Based on MF-DFA, the distribution of feature values of the DFA series constructed when q equal 0.
(a): Six features are extracted when Q is (-10, 10), (b): Six features are extracted when Q is (-10, 0), and (c):
Six features are extracted when Q is (0, 10)

Then, we use MF-DFA to obtain six feature values without processing the original series.
The results are listed in Table 4:

Comparing with the traditional MF-DFA method, we find that the accuracy of SWD-MF-
DFA is higher. Table 5 shows when q equals 0 during constructing DFA series and the range
of Q in MF-DFA is (0, 10), the accuracy of classification is the best. At last, we pick it as the
parameter in our method. 90% of the samples are used as the training set, and the remaining
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Fig. 7 Based on MF-DFA, the distribution of feature values of the DFA series constructed when q equals 6.
(a): Six features are extracted when Q is (-10, 10), (b): Six features are extracted when Q is (0, 10), and (c):
Six features are extracted when Q is (-10, 0)

Table 4 The classification
accuracy, sensitivity and
specificity of the MF-DFA
method without prior treatment

Range of q Accuracy Sensitivity Specificity

(−10, 10) 85.00% 87.72% 86.17%

(0, 10) 77.03% 80.98% 84.36%

(−10, 0) 84.96% 85.97% 85.65%
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Table 5 The accuracy, sensitivity
and specificity based on
SWD-MF-DFA model and DFA
sequence constructed when q is 0

Q Accuracy Sensitivity Specificity

(0, 10) 90.00% 81.93% 98.10%

10% are used as the test set. We use SVM to perform 100 cross-validations and pick up the
mean value. At the same time, we calculate the sensitivity and specificity in Fig. 8.

5 Discussion

From Tables 4 and 5, it is evident that our proposed method has a higher accuracy, indicating
that our approach ismore effective at capturing the key information in the input data compared
to the sole use of the MF-DFA method. Meanwhile, we compare the performance of the
proposed method with existing approaches. Here, the experimental ECG data comes from

Fig. 8 The accuracy, the sensitivity, and the specificity of SWD-MF-DFA model. The accuracy is the mean
value after 100 calculations, so as the sensitivity and the specificity
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MIT-BIH Arrhythmia Database. Observing Table 6, although the classification accuracy is
not the highest, the accuracy of our proposed method is acceptable. As well, the sensitivity
needs to be further improved. However, it is gratifying that the specificity is satisfactory.

In fact, sliding window has been widely in various models [36–38]. Meanwhile, the pro-
posedmethod can effectively extract local features, so that the the local structures and patterns
in the data can be focused on. This aids in capturing the local information, thereby increas-
ing sensitivity to local variations. As well, the extraction of local features can decrease the
dimension of the data, indicating that the original data can be mapped to a more compact
representation, helping to reduce computational burden and prevent overfitting.

6 Conclusions

In this paper, consideringMF-DFAperformswell in ECGclassification, and in order to obtain
more detailed local information of ECG signals, we introduced a sliding window algorithm
to the MF-DFA model. We took 100 points as a group, then used the MF-DFA model to
extract the Hurst exponent of this set of points. Subsequently, we took another 100 points
to the right at an interval of 15, and calculated the Hurst exponent until the last point was
reached. Therefore, a total of 234 Hurst exponents can be obtained, which were used to form
a new series. Next, we extracted 6 generalized Hurst exponents using MF-DFA of the new
series, which were regarded as the input vector of SVM. Finally, we used SVM to examine
the performance of the proposed method.

Here, we employed the influence of q when forming the new sequence. Generally, when
forming the new sequence, we conducted 21 experiments, iterating over q with an interval of
1, ranging from -10 to 10. The results showed that when q = 0, the classification accuracy of
the new formed series was the highest. As well, we observed the difference of the fluctuation
when extracting 6 generalizedHurst exponents. Inmost conditions,when Qwas in (0, 10), the
accuracy was higher than that when Q was (-10, 0). As well, from the spatial distribution of
feature values, when Q was in the range of (0, 10), the intersection betweenNSRECG signals
and APB ECG signals was smaller, indicating that the similarity was low so that the accuracy
was higher. Finally, the SWD-MF-DFAmodel obtained a classification accuracy, sensitivity,
and specificity of 90.00%, 81.93%, and 98.10%, respectively. Meanwhile, we compared our
method to only using MF-DFA, our method performed better. As well, we compared the
proposed method with other methods, although there was still room for improvement, the
results were satisfactory. In the future, we will modify this model and render it suitable for
2D image classification.

Acknowledgements The corresponding author Jian Wang was supported by the Open Project of Center for
Applied Mathematics of Jiangsu Province (Nanjing University of Information Science and Technology). In
addition, the authors are grateful to Haixiao Wang for his contributions in language editing and polishing.
Meanwhile, the authors express deep gratitude to the reviewers for their valuable suggestions and comments,
which significantly improved the quality of this article.

Data Availibility Statement The datasets of ECG signals analysed during the current study are available in the
MIT-BIH Arrhythmia Database and the data can be acquired from the corresponding author upon reasonable
request.

Declarations

Conflicts of interest The authors declare that there is no conflict of interests regarding the publication of this
article.

123



54788 Multimedia Tools and Applications (2024) 83:54773–54789

References

1. Ahmad S, Mehfuz S, Mebarek-Oudina F, Beg J (2022) RSM analysis based cloud access security broker:
a systematic literature review. Cluster Comput 25(5):3733–3763

2. Nyo MT, Mebarek-Oudina F, Hlaing SS, Khan NA (2022) Otsu?s thresholding technique for MRI image
brain tumor segmentation. Multimedia Tools Appl 81(30):43837–43849

3. Dong X, Wang C, Si W (2017) ECG beat classification via deterministic learning. Neurocomputing
240:1–12

4. Dalal S, VishwakarmaVP (2021) Classification of ECG signals usingmulti-cumulants based evolutionary
hybrid classifier. Sci Rep-UK 11(1):15092

5. Sangaiah AK, ArumugamM, Bian GB (2020) An intelligent learning approach for improving ECG signal
classification and arrhythmia analysis. Artif Intell Med 103:101788

6. Wang S, Li R, Wang X, Shen S, Zhou B, Wang Z (2021) Multiscale residual network based on channel
spatial attention mechanism for multilabel ECG classification. J Healthc Eng 2021:6630643

7. Einthoven W (1902) Galvanometrische registratie van het menschelijk electrocardiogram. Herinnerings-
bundel Professor S S Rosenstein 101–107

8. Vafaie MH, Ataei M, Koofigar HR (2014) Heart diseases prediction based on ECG signals? classification
using a genetic-fuzzy system and dynamical model of ECG signals. Biomed Signal Proces 14:291–296

9. Ji Y, Zhang S, XiaoW (2019) Electrocardiogram classification based on faster regions with convolutional
neural network. Sensors 19(11):2558

10. He R, Liu Y,Wang K, Zhao N, Yuan Y, Li Q, Zhang H (2019) Automatic cardiac arrhythmia classification
using combination of deep residual network and bidirectional LSTM. IEEE Access 7:102119–102135

11. Diker A, Sönmez Y, Özyurt F, Avcı E, Avcı D (2021) Examination of the ECG signal classification
technique DEA-ELM using deep convolutional neural network features. Multimed Tools Appl 80:24777–
24800

12. Venkatesan C, Karthigaikumar P, Varatharajan R (2018) A novel LMS algorithm for ECG signal prepro-
cessing and KNN classifier based abnormality detection. Multimed Tools Appl 77(8):10365–10374

13. da Silva Filho AM, Zebende GF, Guedes EF (2021) Analysis of intentional lethal violent crimes: a sliding
windows approach. Physica A 567:125653

14. JeonH,KimSL,KimS,LeeD (2020) Fastwearable sensor?based foot?ground contact phase classification
using a convolutional neural network with sliding-window label overlapping. Sensors 20(17):4996

15. Papaloukas C, Fotiadis DI, Liavas AP, Likas A, Michalis LK (2001) A knowledge-based technique for
automated detection of ischaemic episodes in long duration electrocardiograms. Med Biol Eng Comput
39(1):105–112

16. TsipourasMG, FotiadisDI, SiderisD (2005)An arrhythmia classification systembased on theRR-interval
signal. Artif Intell Med 33(3):237–250

17. Yang R, Zha X, Liu K, Xu S (2021) A CNN model embedded with local feature knowledge and its
application to time-varying signal classification. Neural Networks 142:564–572

18. Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of
DNA nucleotides. Phys Rev E 49(2):1685–1689

19. Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover
phenomena in nonstationary heartbeat time series. Chaos 5(1):82–87

20. Pranata AA, Adhane GW, Kim DS (2017, January) Detrended fluctuation analysis on ECG device for
home environment. In: 2017 14th IEEE annual consumer communications & networking conference
(CCNC) IEEE, pp 126–130

21. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal
detrended fluctuation analysis of nonstationary time series. Physica A 316(1–4):87–114

22. Méndez-Gordillo AR, Cadenas E (2021) Wind speed forecasting by the extraction of the multifractal
patterns of time series through the multiplicative cascade technique. Chaos Soliton Fract 143:110592

23. Li S, XuN,Hui X (2020) International investors and themultifractality property: evidence from accessible
and inaccessible market. Physica A 559:125029

24. Zhang Z, Wen T, Huang W, Wang M, Li C (2017) Automatic epileptic seizure detection in EEGs using
MF-DFA, SVM based on cloud computing. J X-ray Sci Technol 25(2):261–272

25. Jiao D, Wang Z, Li J, Feng F, Hou F (2020) The chaotic characteristics detection based on multifractal
detrended fluctuation analysis of the elderly 12-lead ECG signals. Physica A 540:123234

26. Wang J, Shao W, Kim J (2020) ECG classification comparison between Mf-DFA and Mf-DXA. Fractals
29(02):2150029

27. Wang J, Jiang W, Yan Y, Chen W, Kim J (2021) ECG classification using multifractal detrended moving
average cross-correlation analysis. Int J Mod Phys B 35(32):2150327

123



Multimedia Tools and Applications (2024) 83:54773–54789 54789

28. Mishra AK, Raghav S (2010) Local fractal dimension based ECG arrhythmia classification. Biomed
Signal Proces 5(2):114–123

29. Li HF, Lee SY (2009) Mining frequent itemsets over data streams using efficient window sliding tech-
niques. Expert Syst Appl 36(2):1466–1477

30. Vapnik V (1999) The nature of statistical learning theory. Springer science & business media
31. Liu D et al (2016) Precipitation complexity measurement using multifractal spectra empirical mode

decomposition detrended fluctuation analysis. Water Resour Manag 30(2):505–522
32. Li Y et al (2018) Combining convolutional neural network and distance distribution matrix for identifi-

cation of congestive heart failure. IEEE Access 6:39734–39744
33. Liang Y, Yin S, Tang Q, Zheng Z, Elgendi M, Chen Z (2020) Deep learning algorithm classifies heartbeat

events based on electrocardiogram signals. Front Physiol 11:569050
34. Kuila S,DhandaN, Joardar S (2022) ECG signal classification and arrhythmia detection usingELM-RNN.

Multimedia Tools Appl 81(18):25233–25249
35. Romdhane TF, Pr MA (2020) Electrocardiogram heartbeat classification based on a deep convolutional

neural network and focal loss. Comput Biol Med 123:103866
36. Tseng KK, Wang C, Xiao T, Chen CM, Hassan MM, de Albuquerque VHC (2021) Sliding large kernel

of deep learning algorithm for mobile electrocardiogram diagnosis. Comput Electr Eng 96:107521
37. Naqvi SF et al (2020) Real-time stress assessment using sliding window based convolutional neural

network. Sensors 20(16):4400
38. Ma S, Cui J, Chen CL, Chen X, Ma Y (2022) An effective data enhancement method for classification of

ECG arrhythmia. Measurement 203:111978

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Classification of ECG signals based on local fractal feature
	Abstract
	1 Introduction
	2 Methodology
	2.1 Sliding window algorithm
	2.2 MF-DFA
	2.3 Support vector machine

	3 Data collection
	4 Computational results
	5 Discussion
	6 Conclusions
	Acknowledgements
	References


