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Abstract
Today, skin cancer is considered one of the most dangerous and common cancers in the
world, demanding special attention. Skin cancer can be developed in different types, includ-
ing melanoma, actinic keratosis, basal cell carcinoma, squamous cell carcinoma, and Merkel
cell carcinoma. Among them, melanoma is considered to be more unpredictable. However,
melanoma cancer can be diagnosed at early stages, which increases the possibility of suc-
cessful treatment. Automatic classification of skin lesions is a challenging task due to diverse
forms and grades of the disease, which demands the implementation of novel methods. Deep
convolutional neural networks (CNNs) have shown an excellent potential for data and image
classification. In this article, we examine the problem of skin lesion classification using CNN
techniques. Remarkably, we present that prominent classification accuracy of lesion detec-
tion can be achieved through proper design and application of transfer learning framework on
pre-trained neural networks. This can be accomplished without the need for data augmenta-
tion techniques; specifically, wemerged the core architectures of VGG16 and VGG19, which
were pretrained on a generic dataset, into a modified AlexNet network. We then fine-tuned
this combined architecture using a subject-specific dataset consisting of dermatology images.
The convolutional neural network was trained using 2541 images. In particular, dropout was
employed to mitigate overfitting. Finally, we assessed the model’s performance by applying
the K-fold cross validation method. The proposed model improved classification accuracy
with an increase of 3% (from 94.2% to 98.18%) compared to other methods.
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1 Introduction

Cancer encompasses various types of malignant tumors, commonly referred to as neoplasms
in medicine. Skin cancer originates from the skin cells, which comprise the primary com-
ponents of the skin. These skin cells undergo growth and division to generate new cells.
Subsequently, the cells undergo aging and eventual death, with new cells emerging to replace
them.Deviations can occur in the cell’s lifecycle; new cells appearwhen they are not required,
and old cells stay alive beyond their lifespan. This accumulation of excess cells takes the form
of an abnormal tissue known as a tumor. This might happen when one of the body’s cells
undergoes abnormal growth due to various possible factors, primarily, continuous exposure
to the sunlight, that eventually leading to the development of cancerous tumor. The tumor
then invades and damages the affected area of the body before potentially spreading to other
parts [13]. Interest in skin cancer diagnosis and therapy has significantly increased in recent
years due to the irreparable damage caused by this type of cancer and its widespread preva-
lence. Skin cancer lesions can be classified into two main categories: malignant lesions and
benign moles.

Among the malignant lesions, melanoma is considered one of the most deadly forms of
cancers. Approximately 70% of worldwide deaths caused by skin cancer are attributed to
melanoma. Skin cancer primarily manifests as extensive damage to the epidermal layer of
the skin.

In this regard, early diagnosis plays a crucial role in increasing the chances of patient
recovery. Therefore, significant efforts have been dedicated to develop effective methods for
diagnosing the disease at early stages. Traditional image feature classification techniques
have been employed to undertake this crucial task. However, given that human lives are
at stake, the utmost accuracy in detection is imperative. For this purpose, deep learning
algorithms have been exploited recently to ensure the highest possible accuracy of the results.
In their research, Jayalakshmi et al achieved an accuracy of 89.3% by customizing and tuning
the CNN model while using the PH2 dataset in a two-class classification scenario [14]. In
general, the excellency of convolutional neural network in image classification have been
widely approved across various applications. For instance, CNNs have been successfully
utilized for tasks such as car license plates recognition, and aerial target tracking, resulting
in high performance and accuracy [16, 23].

Brindha et al. unrevailed the superiority of the CNN algorithm over the SVM algorithm in
the classification of ISIC image dataset, resulting in a significant increase in accuracy from
61% to 83%. [4].

Pham and his colleagues achieved an accuracy of 79.5% and 87% in classifying the
ISIC dataset by utilizing Transfer Learning methods, specially, Reznet50, and InceptionV3,
respectively [19].

Mijwil exploited and compared three different architectures; namely, VGG19, ResNet,
and Inception V3, to detect skin cancer using ISIC2019 and ISIC2020 archives. The dataset
consisted of a significant number of more than 24,000 images. They found an accuracy of
73.11%, and the best 86.9% for the mentioned architectures [17].

In their study, Nawaz et al. combined a region-based CNN technique with the support
vector Machine (SVM) classifier and utilized the ISIC2016 dataset for melanoma classifica-
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tion. To increase the dataset size, they employed data augmentation techniques, resulting in
more than 7,000 images. Their approach achieved an accuracy of 89.1% [18].

In their investigation, Alzubaidi and his colleagues achieved a classification accuracy of
97.5% for skin lesion images using a deep learning method. They employed a multi-phase
training scenario and a multistage CNN model with the aim of surpassing the limitations
posed by limited number of labeled data for medical applications [2].

In their paper, Ashraf et al. conducted an examination of skin lesion images with the
help of deep learning method. They employed region of interest segmentation preprocess-
ing and image augmentation. The initial result without region of interest segmentation and
augmentation was approximately 81.3%. However, by implementing the segmentation and
augmentation, they acquired an increase to 97.2% in the classification accuracy [3]. Rafi and
coworkers achieved an accuracy of 98.7% by applying transfer learning architectures based
on Efficient NET-B7. Their approach involved extensive image pre-processing, including
resizing, conversion, augmentation, and in particular a post scaling step [20].

Lafraxo and coworkers proposed a CNN architecture for recognizing malignancy in der-
moscopic images. In their approach, they employed regularization, as well as geometric and
color augmentations to enlarge the datasets. Specifically, they augmented the ISBI dataset
to 18,000 images, the PH2 dataset to 2,880 images, and the MED-NODE dataset to 1,800
images. The achieved accuracies were 98.44%, 97.39%, and 87.77% respectively [15].

Rasel and his colleagues implemented a deep CNN model based on transfer learning,
with the main ideas borrowed from LeNet. Their model consists of a total of 31 layers and
utilized nonlinear variable Leaky ReLU activation function. The training was conducted over
250 epochs. They achieved accuracies of 75.50%, 97.50%, and 98.33% for PH2, augmented
(rotated) PH2, and a smaller subset of images from ISIC archives, respectively [21].

Hassan et al. conducted a comprehensive literature survey to assess the performance of
different optimization algorithms.Additionally, they demonstrated accuracies of 97.3% (92%
up to 98%) and 99.07% for their deep learning model applied to the ISIC dataset (with 6000
iterations) and the COVIDx dataset (with 300 iterations), respectively. These impressive
results were obtained by utilizing the Adam optimizer [10].

Furthermore, Hassan et al. achieved a superior accuracy of 97.47%, employing ResNet50
and Adam optimizer for the classification of retinal optical coherence tomography images
with 84495 total number of images [9].

Alahmadi and coworkers presented aCNN/transformer couplednetwork, that incorporated
both supervised and unsupervised training techniques. Their approach yielded accuracy rates
of 95.51% and 97.11% for ISIC and PH2 datasets, respectively [1].

Wu et al. proposed and developed a novel two-stream network, that efficiently capture both
local features and global long-range dependencies by combining a CNN with an additional
transformer branch. They achieved accuracies of 95.78% (ISIC2018), 93.26% (ISIC2017),
96.04% (ISIC2016), and 97.03% (PH2) for the respective datasets. For a better model initial-
ization, they used deit-tiny-distilled-patch16-224 and ResNet34. They also utilized dynamic
polynomial learning rate decay [26].

In this manuscript, our aim is to achieve superior performance and precision through the
utilization of a transfer learning model. Our approach involves an innovative adaptation and
fusion of network architecture and weights, with the primary objective of attaining better
detection accuracy while reducing computational burden. Notably, our methodology yields
remarkable results in prime detection accuracy without resorting to any data augmentation
techniques.

123



57498 Multimedia Tools and Applications (2024) 83:57495–57510

The rest of the paper is organized as follows: Section 2 discusses the methods, model
architecture, and the dataset used. Then, in Section 3 experiments and results are presented
along with a discussion on the outputs. Finally, Section 4 concludes the paper.

2 Methods

In this research, we undertook the task of redesigning and training deep neural networks
using images of skin lesions. A deep convolutional neural network (CNN) is trained using a
dataset consisting of skin lesions images. To update the network weights, we employed the
Adam optimizer and implemented early stopping. The experiments are performed on Google
Colaboratory [12]. Eventually, the output layer was dedicated to performing the final binary
classification. In order to prevent any increase in the loss value a random removal method
has been employed.

2.1 Convolutional neural network (CNN)

Deep learning methods have broadened the borders of machine learning technology for prac-
tical applications. In this class ofmethods, intermediate layers are employed for datamapping
and feature learning, which allows the elimination of non-automatic feature engineering, as
the most advantageous distinction of the method. In this regard, for instance, convolution
layers operate as the kernel in one of the most promising deep learning algorithm, known as
CNN. Various architectures can be used for processing and classifying the input image as
well as the intermediate feature maps. Subsequently, a pooling layer is used to reduce the size
of the feature maps and network parameters. In our model, we incorporate the max-pooling
strategy. After the final pooling layer, the fully connected layer is positioned. This layer is
primarily responsible for converting the output of the neural network into a one-dimensional
representation. The softmax function is placed as the last layer responsible for performing
binary indexing (0 and 1) to represent the two classes of the images under investigation i.e.
normal versus cancerous [5]. The described model is sketched in Fig. 1.

2.2 Model architecture

The basis of our proposed model lies in the integration of transfer learning principles with
the renowned AlexNet architecture, thereby enhancing its performance within the context of
our specific dataset. To accomplish this, we embark on a layered approach, supplementing
the pre-trained architecture with additional layers through the application of transfer learning
techniques. In essence, we amalgamate the weights garnered from the training of the Ima-
geNet dataset using VGG16 and VGG19 architectures with those associated with both the
initial three layers and the concluding two layers of our tailored AlexNet variant.

This intricate fusion of weights and architectural components not only imparts a sophis-
ticated depth to our network but also endows it with a broader capacity to discern intricate
patterns within the data. Moreover, the amalgamation of these diverse sources of knowledge
mitigates overfitting tendencies, a feat that can be attributed to our strategic implementation
of the dropout method. This approach introduces a deliberate element of randomness dur-
ing training, thereby curbing the network’s inclination to excessively fit the training data.
Through these meticulous steps, our model emerges as a robust solution that not only har-
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Fig. 1 A view of the customized CNN architecture

nesses the strengths of transfer learning and architectural customization but also effectively
manages the delicate balance between model complexity and overfitting prevention [25].

Theproposedmodel has been implementedonGoogleColab alongwith the other reference
architecture. For the training of each network, we conducted 100 epochs while incorporating.
This technique enables us to halt the training process once the highest attainable performance
is reached, ensuring optimal results in the shortest time possible [11]. Finally, to address the
task of classifying the image set into two classes, we implemented the last layer of the neural
network with two neurons.

For the central component of our proposed model, we leveraged the frozen ImageNet
weights from the VGG16 and VGG19 architectures. Adhering to the established protocol of
transfer learning implementation, we fine-tuned and trained the last two layers of our model
to facilitate custom classification based on our specific image dataset. It’s worth noting that
our dataset comprised medical dermatological images, a category not explicitly represented
in the 1000 classes of the ImageNet dataset.

In order to better tackle this challenge, we made the strategic decision to retrain the
first three layers of the pre-trained AlexNet network. Notably, this choice had a substantial
positive impact on the model’s ability to accurately delineate the boundaries of the lesions, as
evidenced in our results. Throughout the training process, we retrained the weights of these
three layers in addition to the last two layers. In this context, our approach can be described
as a dual transfer learning methodology. [7, 27].

Figure 2 depicts the schematic of our CNN model, which utilizes a customized transfer
learning scheme. This customization enhances the algorithm’s capability to accurately detect
lesions, improves the speed of convergence, and also ensures high model accuracy.

2.3 Dataset

Medical datasets often suffer from unbalanced data, with a much larger number of benign
samples than malignant ones. There are several methods to tackle this problem, one of which
is random undersampling, as discussed in [24]. This method randomly reduces the number
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Fig. 2 Proposed transfer learning to customize CNN

of benign samples to balance the dataset. To increase the number of malignant samples, we
combined the image samples from the Complete-MedNode-Dataset.

In the current study, a total of 2541 input imageswere utilized, comprising 1200melanoma
lesions and 1341 benignmole images. To ensure dataset balance, a reduced number of benign
samples were randomly selected [6]. For model evaluation, 762 images (30%) were set aside,
while the remaining 1779 images were allocated for model training.

The image set is from the International Skin Imaging Collaboration dataset (ISIC) [22],
which comprises images labeled by various institutions including the Hospital Clinics
de Barcelona, Medical University of Vienna, Memorial Sloan Kettering Cancer Center,
Melanoma Institute Australia, the University of Queensland, and the University of Athens
Medical School.

In addition, other images of benign and malignant have been taken from the Complete-
Mednode-Dataset, published by the Department of Dermatology of the University Medical

Fig. 3 The first row shows some examples of melanoma lesions, and the second row some examples of
harmless moles
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Fig. 4 A comparison chart of transfer learning changes based on VGG16, green: model performance using
normal transfer learning, red: model performance using modified transfer learning

Fig. 5 A comparison chart of transfer learning changes based on VGG19, green: model performance using
normal transfer learning, blue: model performance using modified transfer learning
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Center Groningen [8]. To conduct the experiments in this study, we combined and balanced
the image datasets from these two sources.

In general, these lesions are typically categorized into two groups: melanoma lesions and
moles Benign (nevus). These categories are used to identify and detect suspected malignant
melanoma lesions. Figure 3 shows some examples of both cases. In general, the size of the
images are 224×224 pixels. It is noteworthy that, especially, since each network architecture
implementation requires a particular specifications for the input images, we employed a pre-
processing function for each case. Some researches conducted in the field has attempted
to augment their dataset by cropping or rotating the images or applying data weighting
techniques. However, in the present study, we integrated multiple datasets to prevent the use
of duplicate image.

3 Results and discussion

To demonstrate the effectiveness of the proposed model, Fig. 4 illustrates the accuracy and
performance of our customized transfer learning network, which is based on, VGG-16 in
comparison to the performance of the reference transfer learning network [24]. As can be
observed, the detection accuracy shows an increase from 96.5% to 97.51%. Furthermore,
Fig. 5 illustrates the distinction between the utilization of a simple transfer learning network
based on VGG-19 and the model that we have developed. In particular, it is evident that
higher accuracy can be achieved by reducing the number of epochs required (from 97% to
98.4%).

Fig. 6 Comparison of SGD and Adam optimizers
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3.1 Ablation study

In this experiment, we conducted three separate runs, systematically excluding each of the
newly introduced layers, and assessed the resulting impact on the network’s performance.
The outcomes clearly underscored the remarkable efficacy of the added layers, as the omis-
sion of any single layer invariably led to a noticeable decline in accuracy. This compelling
evidence highlights the indispensable contribution of each layer to the overall functionality
and effectiveness of the network, reaffirming their role in enhancing themodel’s performance
and robustness.

3.2 Optimizer selection

In this experiment, we looked at different optimizers. We focused on two specific ones: SGD
and Adam. We compared how well they worked and put the results into a graph shown in
Fig. 6. From the graph, it’s pretty clear that the Adam optimizer performed better than the
SGD optimizer. This finding is important because it helps us understand which optimizer is
more effective for our specific experiment.

3.3 K-fold cross validation

We employed K-fold cross-validation algorithm in order to evaluate and obtain a reliable
perdiction of the true performance of the proposedmodel in accurately detecting skin lesion in
unseen data. The incorporation of the K-fold cross-validation technique enabled the effective

Fig. 7 Comparing the results of the validation data on VGG-16 when the early stop is used with when the
early stop is not used
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determination of optimal hyperparameter values for the implemented neural network. In this
experiment, we employed aKvalue of 10. By utilizing theK-foldmethod, themodifiedVGG-
16 and VGG-19 architectures achieved an average accuracy exceeding 97.5%. A summary
of the details is presented in Table 1.

3.4 Early stopping

Two methods have been utilized to mitigate overfitting: dropout and early stopping. The
graphs illustrate that early stopping not only helps prevent overfitting but also contributes to
a relative reduction in the processing time required for data analysis.

Figures 7 and 8 compare the results obtained from the proposed method that employs
early stopping with the reference cases for the both VGG-16 and VGG-19 based architec-
tures networks. As evident from the figures, we avoided extra unnecessary data processing
(shortened green plots).

In order to evaluate the performance of the proposed model in comparison with other
models, Table 2 summarizes and compares the results of the present study and researches
reported in the literature. It can be observed that the proposed (dual) transfer learning method
achieves a significant level of accuracy while requiring relatively less workflow compared to
other methods.

As the wrap-up, the analysis of skin lesion images is a challenging task due to high degree
of similarity between these images. However, with the modification that was introduced in
the transfer learning method, a significant increase in accuracy for lesion detection could

Fig. 8 Comparison of the results of the validation data on VGG-19 when the early stop is used and when the
early stop is not used
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be achieved. Table 2 summarizes the superiority of the proposed model in present paper
compared to the reference studies. The table present the average values.

4 Conclusion

In recent years, the adoption of the transfer learningmethod has gained considerable attention
among researchers, owing to its advantages in enhancing model performance. However, it
remains imperative to tailor the network’s training to suit the specifics of each dataset. This
paper has delved into this intricate landscape, striving to enhance the capabilities of deep
networks by meticulously adjusting the layer configuration and weight distribution to align
with the demands of detecting lesion-affected regions within images. As a testament to our
endeavors, achievements have been realized, with accuracy levels reaching 92.5% for the
VGG-16 architecture and an even more impressive 94.2% for the VGG-19 architecture.
We also used k-fold cross-validation methodology, which ensures a robust and unbiased
assessment of our proposed model’s performance. Employing k-fold the accuracy of 97.51%
for the VGG-16 architecture and 98.1% for the VGG-19 architecture have been achieved.

Looking ahead, our work opens paths for future exploration. It would be worthwhile to
consider the impact of different pre-trained architectures, as well as to explore how varying
degrees of fine-tuning could further enhance the model’s efficacy. Additionally, while our
study showcases promising outcomes, it’s essential to acknowledge its limitations. As with
any methodology, there are constraints to consider, such as the potential for overfitting in
more complex datasets or the challenges associated with domain shifts. Addressing these
shortcomings and expanding upon the strengths of our approach will undoubtedly pave the
way for the continued evolution of accurate and efficient lesion detection methods.
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5. Coşkun M, YILDIRIM Ö, Ayşegül U et al (2017) An overview of popular deep learning methods. Eur J
Techn (EJT) 7(2):165–176

123

https://challenge2020.isic-archive.com/
https://www.cs.rug.nl/\protect \unhbox \voidb@x \penalty \@M \ {}imaging/databases/melanoma_naevi/
https://doi.org/10.1109/ACCESS.2022.3224005
https://doi.org/10.3390/cancers13071590
https://doi.org/10.1109/ACCESS.2020.3014701
https://doi.org/10.1109/ACCESS.2020.3014701
https://doi.org/10.31838/jcr.07.11.117


Multimedia Tools and Applications (2024) 83:57495–57510 57509

6. FahadNM, Sakib S, Khan RaiaanMA et al (2023) Skinnet-8: an efficient CNN architecture for classifying
skin cancer on an imbalanced dataset. In: 2023 International conference on electrical, computer and
communication engineering (ECCE), pp 1–6. https://doi.org/10.1109/ECCE57851.2023.10101527

7. Gao Y, Mosalam KM (2018) Deep transfer learning for image-based structural damage recognition.
Comput Aided Civ Infrastruct Eng 33(9):748–768. https://doi.org/10.1111/mice.12363

8. Giotis I, Molders N, Land S et al (2015) MED-NODE: a computer-assisted melanoma diagnosis system
using non-dermoscopic images. Expert Syst Appl 42:6578–6585. https://doi.org/10.1016/j.eswa.2015.
04.034

9. Hassan E, Elmougy S, Ibraheem MR et al (2023) Enhanced deep learning model for classification of
retinal optical coherence tomography images. Sensors 23(12):5393. https://doi.org/10.3390/s23125393

10. Hassan E, Shams MY, Hikal NA et al (2023) The effect of choosing optimizer algorithms to improve
computer vision tasks: a comparative study.Multimedia Tools Appl 82(11):16591–16633. https://doi.org/
10.1007/s11042-022-13820-0

11. Hinton GE, Srivastava N, Krizhevsky A et al (2012) Improving neural networks by preventing co-
adaptation of feature detectors. arXiv:1207.0580

12. Hoefler T, Alistarh D, Ben-Nun T et al (2021) Sparsity in deep learning: pruning and growth for efficient
inference and training in neural networks. J Mach Learn Res 22(241):1–124. https://doi.org/10.1145/
3578356.3592583

13. Jain S, Pise N et al (2015) Computer aided melanoma skin cancer detection using image processing.
Procedia Comput Sci 48:735–740. https://doi.org/10.1016/j.procs.2015.04.209

14. Jayalakshmi G, Kumar VS (2019) Performance analysis of convolutional neural network (CNN) based
cancerous skin lesion detection system. In: 2019 International conference on computational intelligence
in data science (ICCIDS), IEEE, pp 1–6. https://doi.org/10.1109/ICCIDS.2019.8862143

15. Lafraxo S, Ansari ME, Charfi S (2022) MelaNet: an effective deep learning framework for melanoma
detection using dermoscopic images. Multimedia Tools Appl 81(11):16021–16045. https://doi.org/10.
1007/s11042-022-12521-y

16. Mahdavi F, Rajabi R (2020) Drone detection using convolutional neural networks. In: 2020 6th Iranian
conference on signal processing and intelligent systems (ICSPIS), IEEE, pp 1–5. https://doi.org/10.1109/
ICSPIS51611.2020.9349620

17. Mijwil MM (2021) Skin cancer disease images classification using deep learning solutions. Multimedia
Tools Appl 80(17):26255–26271. https://doi.org/10.1007/s11042-021-10952-7

18. NawazM,MasoodM, JavedA et al (2021)Melanoma localization and classification through faster region-
based convolutional neural network and SVM. Multimedia Tools Appl 80(19):28953–28974. https://doi.
org/10.1007/s11042-021-11120-7

19. PhamTC, Tran CT, LuuMSK et al (2020) Improving binary skin cancer classification based on best model
selection method combined with optimizing full connected layers of deep CNN. In: 2020 International
conference on multimedia analysis and pattern recognition (MAPR), IEEE, pp 1–6. https://doi.org/10.
1109/MAPR49794.2020.9237778

20. Rafi TH, Shubair RM (2021) A scaled-2D CNN for skin cancer diagnosis. In: 2021 IEEE conference on
computational intelligence in bioinformatics and computational biology (CIBCB), IEEE, pp 1–6. https://
doi.org/10.1109/CIBCB49929.2021.9562888

21. Rasel M, Obaidellah UH, Kareem SA (2022) convolutional neural network-based skin lesion classifica-
tion with variable nonlinear activation functions. IEEE Access 10:83398–83414. https://doi.org/10.1109/
ACCESS.2022.3196911

22. Rotemberg V, Kurtansky N, Betz-Stablein B et al (2021) A patient-centric dataset of images and metadata
for identifying melanomas using clinical context. Sci Data 8(34):1–8. https://doi.org/10.34970/2020-
ds01

23. Shahidi Zandi M, Rajabi R (2022) Deep learning based framework for Iranian license plate detection and
recognition. Multimedia Tools Appl 81(11):15841–15858. https://doi.org/10.1007/s11042-022-12023-x

24. Sonsare PM, Gunavathi C (2021) Cascading 1D-convnet bidirectional long short term memory network
with modified COCOB optimizer: a novel approach for protein secondary structure prediction. Chaos
Solitons Fractals 153:111446. https://doi.org/10.1016/j.chaos.2021.111446

25. Wu H, Gu X (2015) Towards dropout training for convolutional neural networks. Neural Netw 71:1–10.
https://doi.org/10.1016/j.neunet.2015.07.007

26. Wu H, Chen S, Chen G et al (2022) FAT-Net: feature adaptive transformers for automated skin lesion
segmentation. Med Image Anal 76:102327. https://doi.org/10.1016/j.media.2021.102327

123

https://doi.org/10.1109/ECCE57851.2023.10101527
https://doi.org/10.1111/mice.12363
https://doi.org/10.1016/j.eswa.2015.04.034
https://doi.org/10.1016/j.eswa.2015.04.034
https://doi.org/10.3390/s23125393
https://doi.org/10.1007/s11042-022-13820-0
https://doi.org/10.1007/s11042-022-13820-0
http://arxiv.org/abs/1207.0580
https://doi.org/10.1145/3578356.3592583
https://doi.org/10.1145/3578356.3592583
https://doi.org/10.1016/j.procs.2015.04.209
https://doi.org/10.1109/ICCIDS.2019.8862143
https://doi.org/10.1007/s11042-022-12521-y
https://doi.org/10.1007/s11042-022-12521-y
https://doi.org/10.1109/ICSPIS51611.2020.9349620
https://doi.org/10.1109/ICSPIS51611.2020.9349620
https://doi.org/10.1007/s11042-021-10952-7
https://doi.org/10.1007/s11042-021-11120-7
https://doi.org/10.1007/s11042-021-11120-7
https://doi.org/10.1109/MAPR49794.2020.9237778
https://doi.org/10.1109/MAPR49794.2020.9237778
https://doi.org/10.1109/CIBCB49929.2021.9562888
https://doi.org/10.1109/CIBCB49929.2021.9562888
https://doi.org/10.1109/ACCESS.2022.3196911
https://doi.org/10.1109/ACCESS.2022.3196911
https://doi.org/10.34970/2020-ds01
https://doi.org/10.34970/2020-ds01
https://doi.org/10.1007/s11042-022-12023-x
https://doi.org/10.1016/j.chaos.2021.111446
https://doi.org/10.1016/j.neunet.2015.07.007
https://doi.org/10.1016/j.media.2021.102327


57510 Multimedia Tools and Applications (2024) 83:57495–57510

27. Zhang T, Zhang X (2021) Squeeze-and-excitation Laplacian pyramid network with dual-polarization
feature fusion for ship classification in SAR images. IEEE Geosci Remote Sens Lett 19:1–5. https://doi.
org/10.1109/LGRS.2021.3119875

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1109/LGRS.2021.3119875
https://doi.org/10.1109/LGRS.2021.3119875

	Diagnosis of skin cancer using VGG16 and VGG19 based transfer learning models
	Abstract
	1 Introduction
	2 Methods
	2.1 Convolutional neural network (CNN)
	2.2 Model architecture
	2.3 Dataset

	3 Results and discussion
	3.1 Ablation study
	3.2 Optimizer selection
	3.3 K-fold cross validation
	3.4 Early stopping

	4 Conclusion
	References


