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Abstract
This paper mainly studies the problem of finding new fault classes under different modes
in the field of intelligent fault diagnosis, that is, in the case of some labeled faults, new
classes are revealed in unlabeled fault samples. In this paper, we introduce a comprehen-
sive multi-modal framework for novel fault discovery and explore the impact of different
modalities on the task of identifying new fault classes. To enhance the robustness of feature
representation in complex environments, We adopted the approach inspired by ChatGPT,
wherein we conducted pre-training on a substantial amount of labeled data to learn general
features, patterns, and representations of various fault types. During the pre-training pro-
cess, we integrated multiple modalities of data to prevent the loss of information due to the
absence of single-modal data, thereby enhancing the accuracy of clustering. Furthermore,
we introduced a multi-modal fusion method based on saliency correlation to complemen-
tarily fuse the information from different modalities. This approach effectively eliminated
data redundancy arising from diverse modalities. Adhering to the principle that improving
the quality of pseudo-label generation during the new class discovery phase enhances the
accuracy of clustering for new classes, we extend the multi-modal concept. We introduce
a Discriminative Relationship Enhancement method that capitalizes on cross-validation of
pseudo-label predictions from different modalities during the pseudo-label prediction phase.
This augmentation enhances the precision of pseudo-labels during the new class discovery
phase. We evaluated the effectiveness of our proposed framework on fault datasets CWRU
and PU, achieving promising results.
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1 Introduction

Rolling bearings play a crucial role as essential components in rotating machinery. The
state of their health directly impacts the operational condition of mechanical equipment. In
severe scenarios, their deterioration can even result in mechanical failures [1, 2]. Hence,
the timeliness and accuracy of fault recognition are of paramount importance in industrial
production. Intelligent fault detection refers to the use of artificial intelligence techniques to
monitor, identify, and predict equipment faults. Unknown faults refer to fault scenarios that
have not been previously recorded or analyzed. In complex working environments where
multiple factors come into play, the variety of possible fault types can increase. Therefore,
the detection of unknown faults can be even more precise compared to traditional intelligent
fault detection. This precision enables the accurate identification of fault information and
aids in making informed decisions to minimize losses, particularly in intricate operational
contexts.

The more complex the situation, the greater the need for a substantial amount of data
for analysis. Deep learning, a commonly used method in the era of artificial intelligence,
has developed rapidly due to the vast amount of data available. It has achieved amazing
results in computer vision, natural language processing, and other fields. However, while
the abundance of data has led to performance improvements through supervised learning,
it has also brought about challenges in data annotation and incurred high costs. To address
these issues and adapt to scenarios where labeled data is scarce or unavailable in practical
applications, an increasing number of researchers have shifted their focus towards utilizing
techniques that involve a limited amount of labeled or entirely unlabeled data. As a result,
four approaches have emerged: unsupervised learning, semi-supervised learning, transfer
learning, and new class discovery. These methods aim to tackle the challenges posed by the
scarcity of labeled data and enable the utilization of the extensive amount of unlabeled data
for diverse tasks.

Unsupervised learning relies on neither labeled information nor annotations. It discovers
relationships between samples by exploring the inherent structure or features of the data,
thereby accomplishing tasks such as clustering and dimensionality reduction [3–5]. Due
to the lack of labeled information and the need for more empirical parameter tuning, it
may exhibit significant biases during prediction.Semi-supervised learning [6–9] solves the
problems of weak generalization ability and imprecision in the supervised learning model by
adding a large number of unlabeled samples to a small number of labeled samples for learning.
The core of transfer learning lies in finding similarities between new and existing knowledge,
using pre-existing knowledge to learn new knowledge. It aids themodel in better convergence
and generalization by leveraging pre-training and enhances learning efficiency for the target
domain. However, transfer learning [10] is applicable under the basic premise that the data
in the source domain and the target domain are different but of the same category. To address
this limitation, researchers introduced the concept of new class discovery, aiming to classify
previously unseen, unlabeled data into appropriate categories. Unsupervised clustering, in
principle, can solve the new class discovery problem, but its effectiveness in practice is
limited. The goal of the new class discovery method is to use the prior knowledge of known
classes to identify new classes in unlabeled data, train a model by learning the potential
commonality of known class knowledge in labeled data, and use the model to classify the
new class data. This concept is similar to that of ChatGPT, both involving extensive pre-
training to extract generic features for improved performance on specific tasks [11–13]. The
new class discovery realizes the effect of efficient classification of both known and unknown
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class data and becomes the current state-of-the-art method to solve the classification of
unknown data.

Currently, the known methods for new class discovery are primarily focused on the nat-
ural image domain, with limited achievements in other domains. However, as the country
vigorously developing industrial intelligence, fault diagnosis technology has become par-
ticularly important in the industrial sector. Traditional fault diagnosis methods heavily rely
on specialized skills and expertise, often demanding substantial human, material, and time
resources, and their accuracy is limited. Furthermore, with the increasing complexity of
modern automated and intelligent equipment that underpins industrial production and ser-
vices, fault diagnosis has become increasingly challenging, presenting significant challenges
to fault diagnosis technology. Despite the gradual replacement of traditional fault diagnosis
techniques with many deep learning-based methods, the issue of unknown fault types that
may arise in real fault diagnosis scenarios remains unresolved. In the context of industrial
intelligence, there is a pressing need for new class discovery techniques that can effectively
handle unknown fault types and contribute to more accurate and efficient fault diagnosis,
reducing reliance on manual expertise and mitigating the challenges posed by complex and
automated systems.

In order to solve the above problems, a method of unknown fault diagnosis for rolling
bearings is proposed in this paper. Considering the different data characteristics of different
data sources, in the face of today’s more complex fault situations, we aim to make better
use of the diversity of data. The central idea is based on multimodality [14, 15], which
involves integrating fault features from various data formats to enhance fault diagnosis. In the
subsequent experimental section, different data formats are individually tested to demonstrate
the superiority of the multimodal approach. To apply multimodality to the discovery of new
fault classes, a framework suitable for bearing fault diagnosis is designed, building upon the
existing UNO model. The contributions to this article are shown below:

1. This paper introduces a new class discovery framework for fault detection that utilizes
multimodal data information, effectively leveraging the complementary nature of differ-
ent modalities and enriching feature information. It proposes a novel multimodal data
representation fusion module based on saliency correlation to address redundancy issues
in data fusion and fully exploit the complementarity between different modalities.

2. A novel multi-scale deep feature extractor is proposed that adopts different multi-scale
feature extraction structures for different modalities. By combining multi-scale infor-
mation from shallow features and deep semantic features, the model’s feature extraction
capability is enhanced, thereby improving the accuracy of clustering during the new class
discovery stage.

3. A novel multimodal pseudo-label generation module is proposed. It initially calculates
the weight hyperparameters for fusing different modalities by leveraging the difference
in information entropy between modalities to form a fused multimodal discriminative
relation vector. Additionally, it enhances the significance of inter-class discriminative
relations in the fused vector by utilizing the probabilities of inter-class discriminative
relations.

The remainder of this paper is structured as follows: Section 2 of this paper mainly
describes the research related to this work. Details about the methodology of this article are
provided in Section 3. In the fourth section, the experimental process, relevant data, and
indicators to verify the validity of this model are introduced in detail. Section 5 summarizes
the full text and looks forward to future work.
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2 Related work

Unknown fault detection technology involves analyzing and processing known fault data to
learn feature representations that can be applied in the process of novel fault discovery, even
when the fault patterns are unknown. In the pre-training phase of unknown fault discovery, the
capability to recognize and extract features from known fault classes is a crucial prerequisite
for successful novel fault class discovery. Therefore, accurate diagnosis of fault classes is of
paramount importance in our endeavor.

The accuracy of extracted features or representations is an important prerequisite for
improving the performance ofmachine learning algorithms [16].Moreover,models built upon
these features have limited diagnostic capabilities and insufficient generalization, making
it challenging to effectively handle complex situations [17]. The presence of non-linear
processing units in hierarchical structures enables deep learning methods to create high-
level representations of data [18]. With the rapid advancement of computer hardware and the
availability of vast amounts of data, deep learning has gradually replacedmachine learning as
themainstreammethod of intelligent fault diagnosis.Within the realm of deep learning-based
fault diagnosis, there are generally four categories: fault diagnosis based on autoencoders,
fault diagnosis utilizing Restricted Boltzmann Machines (RBM), fault diagnosis through
Convolutional Neural Networks (CNN), and fault diagnosis employing transfer learning.
Due to the rapid development of pattern recognition technology represented by CNN, it
has shown a strong ability to extract defect features from noise and vibration signals for
fault diagnosis. Therefore, this paper also proposes a multi-scale network structure based on
high-level semantic features based on convolutional neural networks.

Next, a detailed expositionof the development process ofCNNin intelligent fault diagnosis
is presented: In 2016, CNNwas first utilized for bearing fault recognition. In order to achieve
a better balance between training speed and accuracy, adaptive CNN (ADCNN) is proposed
to dynamically change the learning rate [19]. Initially, one-dimensional time-domain raw
data is superimposed into a two-dimensional vector form similar to image representation and
then passed to the convolution layer for feature extraction. Directly using traditional CNN
for processing vibration signals would lead to lengthy training times and redundant com-
putational costs. To address this, the one-dimensional convolutional network (Conv1D) was
introduced, which possesses fewer parameters and operational requirements. It can directly
extract abstract features from raw vibration signals, making it suitable for fault diagnosis
applications.

Subsequently, methods such as the Fast Fourier Transform were applied to convert one-
dimensional vibration signals into spectrograms. The bearing fault diagnosis problem is
effectively transformed into an image classification problem [20]. Tomitigate high-frequency
noise interference, a Wide First Layer Deep Convolutional Neural Network (WDCNN) was
introduced. It directly processes raw vibration data, utilizing significant kernel convolution
in the first layer to achieve data denoising [21]. Similar to this, Pythagorean Space Pooling
(PSPP) was introduced as the first layer of the CNN, leading to improved diagnostic accu-
racy at varying rotational speeds [22]. To capture distinct signal resolutions, an improved
Multi-Scale Cascaded Convolutional Neural Network (MC-CNN) was proposed, leverag-
ing different-scale filters to effectively enhance signal information [23]. Additionally, apart
from CNN-based methods, there are three other deep learning-based approaches capable
of addressing fault diagnosis. These approaches are briefly showcased in the subsequent
Table 1.
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Table 1 Introduction to other deep learning-based methods

Model and method Main role

Fault Diagnosis
Method Based
on Autoencoders

Autoencoder (AE) [24] Improve feature extraction ability by learning fea-
tures in high-level representation.

Denoising autoen-
coder (DAE) [25]

During training in AE, noise is added to the raw
data to learn a more robust representation.

Stack Denoising
encoder (SDA) [26]

This guarantees the effectiveness of feature
extraction and is suitable for robust feature extrac-
tion from different noisy signals.

Autoencoder based
on Extreme Learn-
ing Machine (AE-
ELM) [27]

It solves the problem of high computational load
of deep AE model, and the learning speed is fast,
the computational load is small, and the classifi-
cation accuracy is high.

Competitive Sparse
Autoencoder (WTA-
AE) [28]

Solve the problem of sparse AE, apply to the
sparse rate of any target, and train fast.

Depth Wavelet autoen-
coder based on Extreme
Learning Machine
(DWAE-ELM) [29]

As a nonlinear activation function, wavelet func-
tion can capture signal features effectively.

Fault diagnosis
method based on
constrained
Boltzmann
machine

DBM [30] Undirected, each layer captures complex, higher-
order correlations between the hidden neurons of
the previous layer, potentially learning some com-
plex internal representations, and can adjust its
feedback regulation from top to bottom, with bet-
ter robustness.

DBN [31] Oriented, using layer by layer greedy training, so
the distribution of the front layer does not depend
on the back layer. It has a good effect of unsuper-
vised clustering, and the computation amount is
reduced compared with DBM.

Transfer learning
based approach

— Some commonalities and similarities exist
between different but similar domains to help
learn and optimize new tasks. [32]

The goal of new class discovery (NCD) is to infer new object classes in unlabeled data
by learning prior knowledge of labeled data containing different but related classes, mainly
using single-stage and two-stage methods [33].

The two-stagemethods first focus on the labeled dataset and then investigate the unlabeled
dataset. They can be further categorized into learning similarity functions in the labeled data
and learning latent space. CCN [34], KCL [34], andMCL [35] belong to the former category.
CCN addresses the cross-task transfer learning problem related to NCD. KCL found that
similarity information can be passed in addition to features, so the category information is
simplified into pair-to-pair constraints, and the network is trained by using KL divergence
to calculate the difference in distribution between data pairs. The network trained on the
labeled dataset (Dl ) is then applied to perform clustering on the unlabeled dataset (Du).
MCL improves upon KCL by optimizing the loss function and introducing a new strategy for
learningmulti-class classification through binary decision problems. DTC [36] is a two-stage
method that learns the latent space from Dl . It uses deep transfer clustering to discover new
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visual categories in a two-stage task. It first trains amodel on Dl and then applies themodel to
Du , utilizing the knowledge learned in Dl to simultaneously learn new class representations
and clustering in Du . On the other hand, single-stage methods, unlike two-stage methods,
leverage both Dl and Du and jointly cluster them. Single-stage methods tend to obtain better
latent representations and are less biased toward known classes.

AutoNovel [37] is the first single-stage method to solve the NCD problem. It uses the
RoNet [38] self-supervised learning (SSL) method to initialize the encoder and then adds
classification and clustering networks on top of the encoder for joint learning on and. NCL
[39] extends AutoNovel’s loss by adding two contrastive learning terms to enhance the learn-
ing of discriminative representations. The first term involves supervised contrastive learning
on labeled data with ground-truth labels, while the second term applies unsupervised con-
trastive learning to NCD on unlabeled data. RS [37, 40] addresses the issue that pre-training
features only on labeled data can lead to biased features towards labeled data, which may be
detrimental to clustering. Therefore, RS proposes to solve this problem by self-supervised
pre-training on mixed labeled and unlabeled data, using the ranking statistical index as a
pair of data similarity measures, and generating noisy pseudo-labels for training. UNO [41]
breaks away from considering multiple objective functions for NCD and introduces a uni-
fied objective function for discovering new classes. UNO emphasizes the importance of
high-quality pseudo-labels for unlabeled data and uses a unified cross-entropy loss for super-
vision, pioneering a new paradigm for NCD task learning. OpenMix [42] aims to enhance
the robustness of pseudo-labels for unlabeled data by harnessing labeled data. It achieves this
by generating novel training samples through a mixture of labeled and unlabeled samples,
where pseudo-labels are established by combining the actual labels from labeled samples
with cosine similarity scores calculated from unlabeled samples.

In contrast to the above methods, this approach proposes a multi-modal, multi-scale
method.During the pre-training phase, amulti-scale deep encoder efficiently extracts features
from different modalities, and a multi-modal information fusion mechanism is employed to
merge the primary feature information from different modalities, improving the accuracy of
novel class discovery.

3 Method

Given a mixed dataset D = {xi , i = 1, . . . , M} containing both labeled and unlabeled data,
our goal is to have these data automatically divided into C = (Cl + Cu) different data cate-
gories. Additionally, we assume there is a labeled dataset | Dl = {(

xli , y
l
i

)
, i = 1, . . . , N

}
,

where the class assignments yli = {1, . . . ,Cl} are known. The goal of automatic clustering
of unlabeled data Du is realized by learning the feature expression of data in labeled data set.

For this purpose, we propose amulti-modal-basedmethod for discovering unknown faults.
Figure 1 illustrates the overall architecture of the method, which consists of two stages: the
pre-training stage and the new class discovery stage. First, the original vibration signals xsi
are transformed into time-frequency domain images xv

i using the Fast Fourier Transform
ϕ, enabling the data augmentation to obtain the input data xi = (xsi , x

v
i ). Then, the image

deep encoder fv and the signal deep encoder fs encode the signal and image data into two
feature vectors Zs

i and Zv
i , respectively. Subsequently, the data fusion is performed through

the Saliency-CorrelatedMulti-Modal Representation Complementary FusionModule, which
retains salient features and data diversity from eachmodality. In the new class discovery stage,
the method is used to identify and discover new classes, utilizing the mixed data as input
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Fig. 1 Multi-modal fault diagnosis new class discovery architecture. The method includes two steps: pre-
training and new class discovery. In the pre-training phase, the model is supervised trained on the labeled
dataset using a multi-scale deep encoder to learn feature information from multi-modal samples, enhancing
the pre-training model’s generalization ability. In the new class discovery phase, the feature information of
multi-modal data is extracted to improve the clustering accuracy of the unlabeled data. In this diagram, xsi
represents labeled vibration signal data in the pre-training phase, xv

i represents time-frequency domain image

data, Y l is the labels, ϕ represents the Fast Fourier Transform (FFT), “GT” stands for ground-truth label, and
“PL” stands for pseudo label

data. In this stage, the present invention utilizes a pre-trained multi-scale deep encoder as
the feature extractor. The labeled dataset Dl from the mixed data is used as the input to the
encoder, and it goes through a SoftMax classification layer with Cl outputs to obtain the
output FCl . The unlabeled dataset Du is fed into the encoder and trained using a multi-layer
perceptron. Finally, the SoftMax layer with Cu outputs is used for classification to obtain the
output FCu . Subsequently, the two output features FCl and FCu are concatenated, and both
labeled and pseudo-labeled data are used for training.

The end-to-end trainingof thismodel consists of twocrucial parts: fully supervised training
on the labeled dataset and unsupervised clustering training on the mixed dataset. The model
used for unsupervised clustering is obtained through fully supervised training. Now, we will
introduce the main components of the invention’s framework.
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3.1 Multi-modal learning andmulti-modal representation complementary fusion
module based on significance correlation (MMCF-SC)

In complex problems, single-modal learning may encounter difficulties because it provides
limited information and is constrained by the data it receives. It may also suffer from noise,
distortion, and other issues. In contrast, multi-modal learning can extract different forms of
feature information across modalities and fuse information from multiple data sources. This
enables the extraction of deeper and more enriched semantic features, making full use of
the correlations and complementarity among different modalities. As a result, multi-modal
learning achieves more efficient feature representation and learning compared to single-
modal learning. In the field of fault diagnosis, xsi represents vibration signals, xv

i represents
time-frequency domain images, zsi and zvi are the feature vectors extracted from the signals
and images, respectively, using encoders. For tasks that require analyzing signal features over
time, zsi contains more desired feature information. On the other hand, tasks that focus on
signal frequency features, zvi might be more relevant. Through multi-modal learning, feature
vector zi = [

zvi , z
s
i

]
is obtained, which encompasses all the major feature information from

modalities zsi and zvi . This enables the model to handle both types of tasks mentioned above
simultaneously, providing more detailed feature information than single-modal approaches
and enhancing the model’s performance in complex environments.

In the multimodal data generation stage, the fast Fourier algorithm is used to convert the
vibration signal into time-frequency image.

In the multi-modal representation fusion phase, it is common to use concatenation or
feature addition to integrate the data. While this approach preserves the original information
from each modality and provides a more comprehensive and rich feature representation, it
also introduces several issues: (a) High dimensionality: The feature dimension significantly
increases, leading to complexity in computation and storage. (b) Feature weight balance:
Different modalities have varying importance and expressive abilities, and simple addition
or concatenation cannot handle the weight relationships between features. (c) Feature redun-
dancy: Different modalities may contain redundant information, and direct concatenation or
addition can result in feature redundancy, reducing feature discriminability and generaliza-
tion. To address these issues, a multi-modal representation complementary fusion module
based on significance association is proposed. This module improves the effectiveness and
robustness of fusion results by considering the importance and relevance of features in the
fusion process.

The fusion module shown in Fig. 2 is divided into two parts: data saliency-related align-
ment and multi-modal data balanced complementary fusion. After the previous feature
extraction step, we obtain the vibration signal feature vector zsi ∈ R

m×d and the time-
frequency domain image feature zvi ∈ R

n×d (where m = n). In the data alignment part,
we first calculate the original correlation matrix Sorigin between the vibration signal and the
time-frequency domain image by performing the transpose crossmultiplication of zvi and
zsi :

Sorigin = zvi · (
zsi

)T
, (1)

After obtaining the original correlation matrix E, we apply a sparsity mechanism to obtain
the sparsity-aligned correlation matrix Smask . In this sparsity process, we set the elements si j
in the original correlation matrix E that are greater than or equal to 0.5 to 1, and the elements
si j that are less than 0.5 to 0. This is done to emphasize the relevant vectors and mask out
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Fig. 2 Multi-modal representation complementary fusion module based on saliency correlation

irrelevant vectors in the correlation matrix.

si j =
{
1, si j ≥ 0.5
0, otherwise

, (2)

By utilizing the aligned correlation matrix, we achieve the alignment of multi-modal data
and obtain the aligned feature vectors:

ẑvi = zvi · (
si j

)T
,

ẑsi = zsi · si j , (3)

After achieving saliency-related alignment of multi-modal data, the aligned feature vectors
are subjected to modality data balancing and complementary fusion. This is achieved by
learning weight parameters that control the contribution of eachmodality’s feature during the
fusion process. For each modality’s feature vector, a weight value is computed, indicating the
importance of that modality’s feature in the final fusion result. Modality features with higher
importance are assigned larger weights, while those with lower importance are assigned
smaller weights, thereby enhancing the quality and effectiveness of the fusion.

λ = Sigmoid
(
W1 ẑ

v
i + W2 ẑ

s
i

)
,

z̄i = (1 − λ)ẑsi + λẑvi , (4)

Where, in this process, W1,W2 represents the learned parameter matrix, and λ represents
the corresponding weight coefficients. The zi represents the final fused multi-modal feature
vector after alignment, which contains a richer information representation. This improves the
robustness and expressive power of the features, allowing the model to effectively leverage
the complementary information from different modalities for enhanced performance in the
subsequent tasks.
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3.2 Multi-scale depth encoder

This invention extracts features fromdifferentmodal samples atmultiple scales in the phase of
higher-level feature representation that possessesmore semantic information. This effectively
mitigates noise interference and information loss in complex environments. Inspired by the
swin-transformer [43], both the image deep encoder and the signal deep encoder adopt a
1:1:3:1 deep encoding structure, as illustrated in Fig. 3. Taking signal data as an example, for
vibration signal data xsi = (xsi,1, x

s
i,2, . . . , x

s
i,n), at each layer of the convolutional network,

local structured operations are employed instead of traditional convolutional operations.
This enhances the model’s feature extraction capability, reduces computational complexity,
and improves robustness. Furthermore, in the deep stage, by applying feature extraction
with different scales k1, k2, k3 to high-level features rich in semantic information, the feature
representation is further refined, perceptual capability is enhanced, and semantic denoising of
vibration signals is achieved. In the deeper stagewithmore semantic information, features are
extracted at different semantic scales using dilation convolution with varying dilation factors
(3, 2, 1). These features are thenmapped to the same feature space togetherwith image features
extracted by the image deep encoder, achieving a multi-modal complementary fusion based
on salient correlations. The distinction between the image encoder and the signal encoder lies
not only in the different convolutional approaches used but also primarily in how they process
the data. In addition to the variation in convolution methods, the most significant difference
is in their data processing. Due to the larger size of vibration signal samples, during the initial

Fig. 3 Multi-scale high-level semantic feature deep encoder model diagram. Primarily composed of a Signal
Deep Encoder fs and an Image Deep Encoder fv , wherein the Signal Deep Encoder employs a large convolu-
tional kernel for feature extraction in the first convolutional layer. Each layer of both encoders undergoes local
region partitioning, and varying scales of feature extraction are applied to high-level feature representations
rich in semantic information
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convolution, larger convolutional kernels are applied in the signal encoder. Furthermore, in
each localized structural processing step, the convolutional kernels used in the signal encoder
are also larger compared to those used in the image encoder. This larger kernel size in the
signal encoder serves the purpose of noise reduction.

The multi-scale feature extraction for the data primarily manifests in the deep semantic
features, while shallow-level features mainly capture the fundamental characteristics of the
signal. In the context of complex signals and fault diagnosis, deep semantic features are more
discriminative. This paper strengthens the multi-scale enhancement of high-level features
with semantic information, effectively improving the model’s feature extraction capability.

3.3 Pseudo-label generationmodule

In the main direction of this invention, we have designed a pseudo-label generation module
suitable for multi-modal fault discovery, as shown in Fig. 4, which consists of two main
components: theDiscriminativeEnhancementModule and theSinkhorn-Knopp [44]Module.
The Discriminative Enhancement Module leverages the complementary characteristics of
multiple modal information sources to optimize the discriminative vector logits from various
perspectives, enhancing the saliency of inter-class discriminative relationships in the logits
vector.

Thismeans that theDiscriminativeEnhancementModule explores the differences between
classes in multiple modal features, thereby making the generated pseudo-labels more dis-
criminative and better able to distinguish between different class samples. By optimizing the
logits, this module ensures more accurate and reliable generation of pseudo-labels, contribut-
ing to improved performance in the discovery of faults with unknown classes.

Vibration signal features zsi and time-frequency domain image features zvi are processed
through the new class classification head to obtain their discriminative vectors lsi and lvi .

Fig. 4 Discriminative enhancement module (DE)
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Then, their discriminative probability distributions are calculated separately:

Pv = Softmax
(
lvi

) = {p1, p2, . . . , pCn } ,

Ps = Softmax
(
lsi

) = {p1, p2, . . . pCn } , (5)

Where, Cu represents the number of categories in the new class, we first consider the dis-
criminative probability relationships of samples among different categories from multiple
modalities and perspectives, aiming to enhance the saliency of the discriminative vectors:

Q = Softmax (Pv · Ps) . (6)

For the discriminative relationship vectors, which are low-dimensional vectors, a smaller
information entropy indicates better stability, robustness, and noise tolerance. Therefore,
based on the information entropy of each modality, we determine the weights of different
modalities for the fusion of their discriminative relationship vectors.

H
(
lvi

) = −
Cu∑

i=1

(
pv
i

(
log

(
pv
i

))
, (7)

H
(
lsi

) = −
Cu∑

i=1

(
psi

(
log

(
psi

))
, (8)

H (li ) = H
(
lvi

) + H
(
lsi

)
, (9)

α = H
(
lvi

)
/H (li ) , (10)

β = H
(
lsi

)
/H (li ) , (11)

l̂i = αlsi + βlvi , (12)

where, α + β = 1. Finally, we use the inter-class discriminative probability relationship as
the inter-modal weights for the fused discriminative relation vector, optimizing to obtain the
final logits vector with significantly enhanced discriminative relations:

li = Q · l̂i . (13)

Formula (13) can be applied to each view individually, but it does not recommend pre-
dicting the consistency of the output of different views. Therefore, we perform a secondary
transformation on Q by multiplying the value of the largest element in Q by a certain factor
and reducing the values of the remaining elements by another factor. This is done to enhance
the saliency of output predictions, resulting in distinct predictions for another view:

Qtransform =
{
10 ∗ Qmax, Qmax = max (Qi )

Qi/10, otherwise
(14)

l̃i = Qtranform · l̂i (15)

In the pseudo-label assignment module, We adopt the approach from the UNO method; for
the case where logits are equal to each other [45, 46], the Sinkhorn-Knopp algorithm is used.
An entropy term is added to penalize situations where all logits are equal and encourage
the unified assignment of pseudo-labels for all clusters Cu . Let L = [

l̄i 1, l̄i 2, . . . , l̄ Bi
]
be

the matrix computed for the new class heads with a size of B for the samples, and let
Ỹ = [y1, y2, . . . , yB ] be the matrix of current batch’s unknown pseudo-labels. The solution
Ỹ is obtained as follows:

Ỹ = max
Y∈�

Tr(Y L) + εH(Y), (16)
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Where H is the entropy function. Tr denotes the trace function, ε > 0 is a hyperparameter,
and � is the transportation polytope, defined as:

� =
{
Y ∈ R

Cu×B+ | Y1B = 1

Cu
1Cu ,YT 1Cu = 1

B
1B

}
, (17)

The generated pseudo-labels are represented by each row of yi in Ỹ.

4 Experiment

4.1 Data sets

CWRU dataset [47] The CWRU dataset is a dataset developed by researchers from the
Department of Mechanical and Aerospace Engineering at Case Western Reserve University
in the United States. It is designed for studying the condition monitoring of mechanical
bearings. The dataset includes vibration data from normal bearings and faulty bearings at the
drive end. The experiment collected data on the normal bearing signal and the drive end fault
signal at speeds of 12,000 samples per second and 48,000 samples per second, respectively.
The data file is in Matlab format and contains fan and drive vibration data as well as motor
speed. The points of failure were manufactured in 5 different sizes: 7 mils, 14 mils, 21 mils,
28 mils, and 40 mils (1 mil = 0.001 inch), and the load was divided into 0 HP, 1 HP, 2 HP, and
3 HP under each failure. The fan fault data collection speed is 12,000 samples per second.
The outer raceway faults are located at different locations and tested at 3 oclock, 6 oclock,
and 12 oclock, respectively. This paper is based on the driver fault data and the normal data
set under 12k sampling. The faults under all loads of different diameters, such as 0.007 inch,
0.014 inch, and 0.028 inch at the 6 oclock position of the rolling body fault (ball), InnerRace
fault, and OutRace fault, are divided into nine fault types, which form ten different fault
categories with the normal type.

PUdataset [48] The data set is the 6203 bearing data set obtained fromPaderbornUniversity,
which includes both human-induced and real damage cases. A total of 32 different bearing
experiments were carried out: 12 bearings were used as artificially damaged bearings, 14
bearings were damaged from accelerated life tests, and 6 bearings were in a healthy state. The
dataset utilizes electrical dischargemachining (EDM), drilling, andmanual electric engraving
to perform artificial damage and generate real damage samples through accelerated life tests.
According to different damage combinations, multiple losses, and damage degrees, the PU
data set is divided into 20 different fault types.

4.2 Experimental indicators

ACC We use the average clustering accuracy as the primary evaluation metric. It is defined
as follows:

ACC = max
pred ∈P

1

N
1

{
yi = pred

(
ŷi

)}
, (18)

Where, yi and ŷi represent the ground-truth lapels and clustering predictions of the unlabeled
data samples in xui ∈ Du , respectively. P denotes all possible permutations calculated using
the Hungarian algorithm [49].
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NMI (NormalizedMutual Information) Mutual Information is a useful measure of informa-
tion in information theory, which can be viewed as the amount of information contained in
one random variable about another random variable. The mutual information I(X;Y) is the
relative entropy of the joint distribution p(x, y) and the product of the marginal distributions
p(x) and p(y). It is defined by the following formula:

I (X; Y ) =
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)p(y) (19)

NMI normalizes the mutual information and is calculated by the formula:

NM(X; Y ) = 2
I (X; Y )

H(x) + H(Y )
, (20)

Where H(x) and H(y) are information entropy.

ARI The Adjusted Rand Index (ARI) is an external evaluation metric used to assess the
performance of clustering algorithms. Itmeasures the similarity between the clustering results
and the true labels. ARI is obtained by improving upon the Rand Index (RI), which takes
values in the range of [0, 1]. A higher ARI value indicates a better alignment between the
clustering results and the ground truth.

RI = T P + T N

T P + FP + T N + FN
, (21)

The value of ARI ranges from -1 to 1. The closer the value is to 1, the better the clustering
result is; the closer the value is to 0, the more random the clustering result is; and the closer
the value is to -1, the worse the clustering result is. The formula is as follows:

ARI = RI − E(RI )

max(RI ) − E(RI )
(22)

4.3 Contrast test

In order to verify the superiority of the framework proposed in this paper, two sets of experi-
ments were carried out on the CWRU data set and the PU data set, respectively, with 10 kinds
of models. The number of categories of new and old classes was set at 4 and 6, respectively,
on the CWRU data set. Set the number of new class categories to 10 and the number of old
class categories to 10 on the PU dataset. The experimental results are shown in Table 2. For
a clearer visual display, we converted the tabular data into the graphical data shown in Fig. 5.
In the comparative experiments for novel class discovery, we conducted a pre-training phase
of 20 epochs and a discovery training phase of 100 epochs for all experiments. We used a
learning rate of 0.4 throughout the training process. Both the UNOmethod and our proposed
method utilized 20 heads.

In the above table, the first four methods belong to unsupervised learning approaches,
while the remaining six are all related to novel class discovery methods. These six novel
class methods were originally designed for the field of natural image analysis. However,
we have reimagined and adapted their underlying concepts to the domain of fault diagnosis
to discover unknown faults. Due to the differences in data sources, some models exhibit
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Table 2 New class discovery and comparison of unsupervised clustering methods based on CWRU and PU

Method(Param) Number of new classes=4 (CWRU) Number of new classes=10 (PU)
ACC NMI ARI ACC NMI ARI

K-means (-) 36.82±0.50 15.62±0.10 8.34±0.15 8.38±0.15 13.35±0.15 2.21±0.15

Affinity Propa-
gation (-)

0.01±0.10 28.55±0.15 0.28±0.15 0.0005±0.00 48.25±0.50 0.88±0.01

DBSCAN (-) 0.33±0.10 39.10±0.10 0.00±0.00 0.01±0.01 32.40±0.50 0.00±0.00

HDBSCAN (-) 16.00±0.01 33.43±0.50 14.35±0.50 20.00±0.25 4.22±0.25 0.15±0.15

DTC (7.34M) 99.96±0.20 99.96±0.20 99.96±0.20 63.71±2.15 69.55±2.45 48.49±2.75

MCL (0.11M) 79.00±1.80 83.91±1.80 70.96±1.80 44.96±1.25 54.16±1.55 30.41±2.55

KCL (0.11M) 75.00±0.50 85.71±1.50 71.42±0.50 53.83±1.25 62.02±1.55 41.54±2.55

NCL (11.03M) 95.83±1.20 90.48±2.20 89.74±2.20 64.98±1.75 66.20±1.55 48.42±2.55

UNO (19.5M) 99.98±0.10 99.98±0.10 99.98±0.10 65.10±1.25 60.04±2.15 45.10±2.55

ours (56.6M) 99.99±0.10 99.99±0.10 99.99±0.10 77.10±1.80 80.47±2.10 66.53±2.70

The boldface in the table is to highlight the effect achieved by our model, and also to highlight the best effect

relatively less impressive performance on fault signals compared to their performance on
natural images.

As depicted in the charts, while unsupervised algorithms are capable of clustering unla-
beled data without labeled information, their performance is comparatively inferior. On the
other hand, novel class discovery methods yield more favorable outcomes. Among these
novel class discovery methods, our proposed model demonstrates superior performance on
both the CWRU dataset and the PU dataset. In the case of the CWRU dataset, which is
relatively simpler with lower fault recognition difficulty, most models exhibit satisfactory
performance, leading to limited enhancement in our model’s performance. Conversely, the
PU dataset comprises a wide range of fault types and complex scenarios, making fault recog-
nition more challenging. Consequently, our model shows significant improvement in such
complex scenarios, indicating that it outperforms existing alternatives in handling intricate
situations.

In conclusion, when facing complex scenarios, our model demonstrates superior perfor-
mance compared to existing models, as evidenced by the results obtained on both the CWRU
dataset and the PU dataset.

Fig. 5 Line graph of new class discovery and unsupervised clustering methods based on CWRU and PU
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Table 3 Ablation study1:
Performance comparison of
independent functional modules
on the PU dataset

Method MMCF-SC DE Model ACC NMI ARI

ISF2EM � ✗ ✗ 71.60 75.98 61.61

� ✗ � 71.80 74.31 59.79

� � ✗ 72.90 75.30 60.30

✗ � � 74.90 75.92 61.87

✗ � ✗ 67.00 71.60 54.04

✗ ✗ � 71.10 77.37 60.79

✗ ✗ ✗ 69.60 72.91 57.87

� � � 77.10 80.47 66.53

The boldface in the table is to highlight the effect achieved by our model,
and also to highlight the best effect

4.4 Ablation experiment

To validate the superiority of the proposed functional modules, we conducted ablation exper-
iments by running 60 epochs on the PU dataset with a new class count of 10 and an old
class count of 10. Our validation process focused on two aspects. Firstly, we examined the
impact of the presence or absence of each module on the overall model architecture. Sec-
ondly, we substituted equivalent methods for each module based on the specific problem they
addressed, aiming to compare the superiority of these modules against alternative methods.

4.4.1 Ablation study

ISF2EM represents the image and signal series feature fusion enhancement method proposed
in our work,MMCF-SC represents our proposedmulti-modal complementary fusionmodule
based on significance correlation to fusion multi-modal data, DE represents our discriminant
relationship enhancement module in the pseudo-label generation stage, and model represents
our proposed feature extractor architecture. It can be seen from the data in Table 3 that the
proposed method has an obvious effect on performance improvement, and the evaluation
indicators ACC, NMI, and ARI have improved by about 7.5

4.4.2 Contrast ablation

Feature extractor ablation In Table 4, our proposed feature extractor showed improvements
over commonly used feature extractors such as ResNet18 and VGG in terms of evaluation

Table 4 Ablation study2:
Performance of different feature
extractors in PU data sets

ACC NMI ARI

ResNet18 72.90 75.30 60.30

VGG 72.30 74.83 59.22

ours 77.10 80.47 66.53

The boldface in the table is to highlight the effect achieved by our model,
and also to highlight the best effect
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Table 5 Ablation study3: The
effect of multimodal fusion in the
pre-training stage

ACC NMI ARI

Option 1 70.90 76.00 59.90

Option 2 69.90 73.82 57.51

Option 3 67.50 78.01 62.13

Ours 77.10 80.47 66.53

The boldface in the table is to highlight the effect achieved by our model,
and also to highlight the best effect

metricsACC,NMI, andARI. Specifically, compared toResNet, our feature extractor achieved
an improvement of 4.2%, 5.17%, and 6.23% for ACC, NMI, and ARI, respectively. Com-
pared to VGG, our feature extractor achieved improvements of 4.8%, 5.64%, and 7.31%
for ACC, NMI, and ARI, respectively. This improvement can primarily be attributed to our
consideration of semantic information within the deep network architecture as well as the
balanced incorporation of both global and local information. As a result, our approach yields
superior performance.

Multimodal fusion ablation In Table 5, “option1” represents the direct addition of signal
and image data, “option2” indicates denoising alignment between image and signal data, and
“option3” signifies direct adaptive fusion without alignment between image and signal data.
From Fig. 6, it is evident that our proposed multimodal fusion approach based on saliency-
driven cross-modal complementarity outperforms other multimodal fusion techniques.

Multimodal frame contrast ablation To validate the effectiveness of our proposed multi-
modal approach, we conducted two sets of experiments within our new class discovery
framework, replacing the input data with vibration signals and time-frequency domain image
data, respectively. The experimental results are presented in Table 6. Since time-frequency
domain images are obtained from vibration signals through the fast Fourier transform, their
purpose is to compensate for the lack of time-frequency information in the original signals.

Fig. 6 Comparison of multimodal fusion methods
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Table 6 Ablation study4:
Comparison of the effects of
multimode and single mode

ACC NMI ARI

Only signal 73.30 72.72 59.36

Only image 63.20 60.70 44.15

Ours 77.10 80.47 66.53

The boldface in the table is to highlight the effect achieved by our model,
and also to highlight the best effect

Consequently, using only time-frequency domain images yields inferior results compared to
using only vibration signals.

However, when combining both approaches, the performance improvement is even more
significant. It results in a 3.8% increase in ACC, 7.75% in NMI, and 7.17% in ARI compared
to using only vibration signals.Moreover, compared to using only time-frequency image data,
the combined approach yields a substantial enhancement, with a 13.9% increase in ACC,
19.77% in NMI, and 22.38% in ARI. The visual representation in Fig. 7 further highlights the
evident advantages of this combined approach, providing strong evidence that our notion of
utilizing multimodal information to compensate for the limitations of single-modal features
is indeed valid.

5 Conclusion

In this paper, we propose a data diversity-based multi-modal fusion framework for new
class discovery. This method learns recognition features from different data formats of the
same fault type, leveraging the enriched properties of multi-modal feature information to
improve clustering accuracy during the pre-training phase. Furthermore, in the new class dis-
covery phase, we utilized the relative independence of discriminative relationships between
single-modal information to guide each other, reducing the inter-class prediction fluctuations

Fig. 7 Comparison of clustering accuracy among different modes
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among new classes and further enhancing the model’s advantages. On both the CWRU and
PU datasets, our approach outperformed the latest NCD method significantly for different
numbers of new classes, with the advantage becoming more pronounced in more complex
scenarios. However, the way we interacted between modalities was straightforward, and we
plan to conduct further research on multi-modal interaction methods to improve the model’s
performance.
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