
Vol.:(0123456789)

Multimedia Tools and Applications (2024) 83:50981–51007
https://doi.org/10.1007/s11042-023-17549-2

1 3

Budget‑based resource provisioning and scheduling
algorithm for scientific workflows on IaaS cloud

Rajasekar P1 · Santhiya P1

Received: 12 January 2023 / Revised: 11 September 2023 / Accepted: 16 October 2023 /
Published online: 9 November 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The deployment of cloud computing, specifically Infrastructure as a Service (IaaS) clouds,
have become an interested topic in recent years for the execution of compute-intensive sci-
entific workflows. These platforms deliver on-demand connectivity to those infrastructure
needed for workflow execution, providing customers to pay only for the service they uti-
lize. As a result schedulers are forced to meet a quid-pro-quo among two main QoS cri-
teria: cost and time. The maximum of this research work has been on making scheduling
algorithms with the goal of reducing infrastructure costs as fulfilling a user-specified dead-
line. Few algorithms, on the other hand, have considered the problem of reducing work-
flow execution time while staying within a budget. This work consider on the latter sce-
nario. We offer a Budget-based resource Provisioning and Scheduling (BPS) algorithm for
scientific workflows used in IaaS service. This proposal was developed to face challenges
specifically to clouds like resource performance variation, resource heterogeneity, infinite
on-demand connectivity, and pay-as-you-go type (i.e. per-minute pricing). It is efficient of
responding to the cloud dynamics, and is powerful in creating suitable solutions that fulfill
a user-specified budget and reduce the makespan of the leveraged environment. At last, the
experimental events confirms that it runs a workflow efficiently with respect to achieving
budget of 94% and minimizing makespan of 29% than the state-of-the-art budget-aware
algorithms.

Keywords Scientific workflows · Scheduling · Resource provisioning · IaaS cloud

 * Rajasekar P
 rajasekar.cse@sathyabama.ac.in

 Santhiya P
 santhiya.cse@sathyabama.ac.in

1 Department of Computer Science and Engineering, Sathyabama Institute of Science
and Technology, Chennai, Tamilnadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-17549-2&domain=pdf

50982 Multimedia Tools and Applications (2024) 83:50981–51007

1 3

1 Introduction

Advanced scientific tools can acquire massive amount of data, allowing scientists to do
more specific and significant evaluations and simulations. These scientific evaluations are
usually referred to as workflows, which are applications made up of many computing tasks
that are interdependent. Such workflows are compute-intensive applications that necessi-
tate a lot of computing power to process the data under a specified period. Thus, they are
mostly run over distributed machines. Scheduling algorithms are necessary for dynami-
cally executing workflows as they optimize tasks over distributed machines. They make
decisions based on predefined set of QoS definitions specified by the workflow customers
like reducing the makespan while fulfilling a defined budget. This non-trivial obstacle of
scheduling, in general, it is a familiar NP-Complete job [1–3] and as a result, algorithms
should consider on obtaining suitable solution in a reasonable interval of time.

IaaS clouds distribute a scalable, adaptable, and conveniently accessible infrastructure
for the execution of compute-intensive scientific workflows [4–6]. They let customers to
utilize a distributed computing platform on-demand while spending simply for what they
consume. This is made possible through the leasing of Virtual Machines (VMs), with a pre-
specified network bandwidth, CPU capacity, storage, and memory space. Users can choose
from a variety of resource bag (i.e. VM models) at different costs to serve a large-scale of
workflow requirements. Except computing resources, IaaS distributors also deliver storage
machines and network provisions to send the data out, in, and within their machines. To
properly utilize these customized products and facilities, scheduling algorithms be made to
consider multiple significant factors of clouds [6–8].

The initial feature is the on-demand, scalable resource platform. This service offers re-
enhancing the scheduling problem as it has been specified for former distributed services
like cluster and grids. Clouds do not deliver a bounded collection of computing machines,
rather than, they deliver a virtual unbounded collection of machines with a variety of con-
figurations available to be obtained and utilized simply for whenever they are required.
This platform necessitates the use of a resource provisioning protocol that interoperates
with the scheduling algorithm; a methodology that decides not only the number of VMs
and their models to obtain from the cloud but also decides when is the appropriate time to
obtain and shutdown them. As this contribution is adapted for cloud scenarios, the phrase
scheduling should be considered to define to an algorithm that could make both scheduling
and resource provisioning selections [9].

Next factor to investigate is the profit-based billing type adopted by cloud distributors.
The expenses of deploying the infrastructure requires to be properly evaluated, if not, cus-
tomers risk spending excessive and unreasonable costs. For example, the overall cost of
executing the workflow application in the cloud is affected by the total sum of VMs provi-
sioned, their model as well as the period of time they are run. Therefore, schedulers take to
discover a quid-pro-quo in-between cost and makespan [10, 11].

A third factor affecting clouds is their dynamic condition, which has its own set of
uncertainties. A typical case is the dynamics in performance shown by VMs with respect
to running times [12]. This dynamics represents that regardless of a VM model being
reported to have a defined CPU power, it would almost likely function at a less power that
will modify over time. It also defines that two VMs of the similar models may run very
differently. Additionally, when numerous concurrent users use a network at the same time,
performance variations is detected in the network [12]. Yet an additional root of cloud
dynamics are the resource deprovisioning and provisioning delays; there are no certainty

50983Multimedia Tools and Applications (2024) 83:50981–51007

1 3

on these times and they would be highly varied and unstable [13]. Being aware of per-
formance variation is significant for schedulers so that they could escape from uncertain
delays and meet the QoS requirements.

The motivation of this research could be defined as:

• BPS includes both dynamic and static instances. Its dynamic nature relates to the
instance that the scheduling selections are taken at compile-time, once tasks are trans-
ferred over to a scheduling queue.

• This enables it to respond to significant delays generated by inaccurate estimates or
changes in the environment like those of VM provisioning delays, resource perfor-
mance variation, and network congestion.

• The static phase broadens the algorithm’s capability further into creating scheduling
selections according to a single task to creating scheduling selections according to a
cluster of tasks.

• The goal is to make quid-pro-quo between dynamic algorithm’s local expertise and
static algorithm’s global expertise. This is accomplished by incorporating the pipeline
concept and heuristically scheduling multiple tasks in the scheduling queue at the same
time. As a result of this, BPS is capable to provide better optimization selections and
identify enhanced quality schedules.

The contribution of this research could be defined in this manner:

• Due to these aforementioned conditions, we offer a Budget-based resource Provision-
ing and Scheduling (BPS) algorithm for scientific workflows on IaaS cloud.

• Our findings determines a quid-pro-quo among providing efficient solutions to respond
to dynamics in the IaaS cloud and plan in advance to create high-quality schedules.

• It targets to minimize the total execution time as fulfilling a user-specified budget.
• It is potential of selecting what compute machines to deploy regarding heterogeneous

VM models, and when they should be obtained and when they be made to terminate to
escape from unnecessary costs.

• At last, our results reveal that it is elastic to the sum of tasks in the workflow, as well
as dynamic and quick to react to cloud performance variations and capable of creating
more efficient solutions than the advanced budget-aware algorithms.

The subsequent section of this paper is specified as does. Section II review works that
are corresponding to our research. Section III discusses the application and resource model,
Section IV explains proposed algorithm, and followed by their experimental results in Sec-
tion V. The conclusion and future work are discussed in Section VI.

2 Related work

It has been extensively researched how to schedule scientific workflows in IaaS clouds
[14–17]. The most of optimization techniques have the goal of meeting a deadline and min-
imizing the cost of infrastructure rental. Examples that have been proposed are [18–22].
Only very few available algorithms aim to satisfy a budget while reducing workflow
makespan. An example is the PCB2 algorithm [23], it divides the workflow as pipelines
and determines the best resource model that optimizes the budget allocation. Moreover, it

50984 Multimedia Tools and Applications (2024) 83:50981–51007

1 3

uses a time unit pricing model based on the new billing period model of per minute, which
is similar to our research. Next work, if there is budget leftover, the CG algorithm [24]
generates a workflow’s schedule through iteratively revising an original schedule plan that
favours the usage of more efficient VM models. Other proposals with similar goals have
used CGA [25], C-PSO [26], HPSO [27], CTDHH [28], CbCP [29], and I_MaOPSO [30]
to create a static plan that reduces the makespan prior to the execution time. These algo-
rithms depend on highly requiring meta-heuristic approaches to calculate a near-optimal
schedule. The methodology varies to our solution in that we adopts an adaptable, light-
weight, heuristic-made dynamic approach that creates resource provisioning and schedul-
ing decisions according to the current state of the system at runtime. The BDCWS [31]
optimization technique likewise considers budget as such a constraint, but unlike our solu-
tion, it also has a deadline as function of its scheduling goals.

Another such budget-constrained algorithms are BAGS [32], it divides the workflow as
SoTs (sets of tasks) under the same workflow phase. BAGS is designed on an automated
budget distribution model that dynamically manages the scheduling and resource provi-
sioning strategies of SoTs when tasks are ready to be executed. BAGS, like us, assumes
fine-grained billing intervals (e.g., one minute) that are suitable for average workflow task
execution time. Next, the BDT algorithm [33] adopts similar plan, integrating tasks under
the same workflow phase. The budget is allocated to every phase, and any excess budget is
gradually shifted to the next phase by the algorithm. It works on the basis of an hourly bill-
ing slot, but pay no attention to VM performance variations. The findings of BDT investi-
gate a set of phase-based budget allocation approaches determined by factors like the total
count of tasks in each level and the total count of phases in the workflow. Our approach dif-
fers compare to BDT in that it schedules tasks separately when they are ready to execute,
for example, once the task’s precedents have done running and the input file is accessible.

Algorithms HBCS [34], BDAS [35], and MSLBL [36] are another three examples of
budget-constrained approaches, and tasks are prioritized first in all of them, then, for each
task, a suitable solution is identified in a certain manner. For each task, the resource with
the largest aggregate weight of certainty over normalized cost and time is chosen using
the HBCS algorithm [34]. If the available budget is substantial, the time element has more
effect; if the available budget is little, the cost consideration takes precedence. The HBCS
algorithm is inappropriate to low-priority tasks since higher-priority tasks have more
budget available than low-priority tasks. The given budget is allocated on the workflow
tasks first, and the share of each task out of the overall budget is decided in the BDAS
algorithm [35]. Then, the fastest VM is chosen based on the defined budget for each task.
The problem is divided into two components in the MSLBL algorithm [36], specifically,
meeting the budget constraint and reducing the makespan. The initial step is handled by
allocating the budget requirement of workflow to that of every task, and the next step is
handled by scheduling every task heuristically. The MSLBL algorithm attempts to address
the unfairness of the HBCS algorithm. The major drawback of these strategies is their task-
level optimal solution, which is a quid-pro-quo for their capability to adapt to unanticipated
delays.

Another example is the MW-DBS [37], a scheduling algorithm for processing multiple
workflows execution within user specified budget and deadline limits. Anyway, the draw-
back is that it chooses a task according to the order of the task’s rank and without having
to consider the actual task’s execution cost. Hence, it fails to achieve an optimal balance
between budget and deadline. Next algorithm is the MQ-PAS [38], proposed for similar
scenario under user specified budget and deadline limits. Anyway, this strategy did not take
advantage of concurrent tasks entering from multiple workflows to reduce the amount of

50985Multimedia Tools and Applications (2024) 83:50981–51007

1 3

time when computing resources are idle and use the workflow budget as such a backup to
the deadline constraint. Other works are SFTD [39] and EBPSM [40], proposed for multi-
workflows execution under budget constraints. Anyway, these strategies are also not effi-
cient to minimize the unused slots of running resources. As a result, neither of them aim to
make full use of the allotted budget of each workflow in order to achieve quicker execution
time, however, contrary to ours, those are proposed for multiple workflows execution.

An adaptive budget-based algorithm that potential of generating scheduling and auto-
scaling selections to reduce the total execution time of workflow is developed by [41–44].
Anyway, they examine an hourly budget in place of a budget constraint for the whole work-
flow completion and target to enhance the running workload of workflows completion. In
contrast to our objective, the critical greedy [45–48] approach examines a financial restric-
tion as reducing the end-to-end delay of the workflow completion. Anyway, it performs not
incorporate billing slots on its cost evaluation and therefore examines VMs charged per
time unit. Moreover, the solution of the algorithm is mapping of a task to VM and motiva-
tors do not suggest a heuristic to allocate the task to existing VMs as examining their boot
time and performance variation.

Unlike approaches that are entirely dynamic or static, our approach integrates both to
create a quid-pro-quo between scalability and the potential benefits of optimization algo-
rithms. NBWS [49] and CB-DT [50] are the sample algorithms focussing to fulfill this. It
uses a global optimization technique to discover the best task-to-VM type mapping. This
methodology is using at running time to expand the resource pool in/out as needed, as
well as to schedule tasks as they become available. Our algorithm differs from NBWS and
CB-DT in that the static element does not analyse the complete workflow model and rather,
it significantly enhances the partition of the workflow tasks. Additionally, rather than
selecting a VM type, our algorithm makes a general schedule for these tasks. Moreover,
in Table 1, we give an overview of the works that have been discussed. To the best of our
knowledge, there is not a single model of aforementioned budget constrained approaches
that has been designed to handle the problem of single workflow scheduling, which is
related to the challenges faced by IaaS cloud infrastructures.

3 Application and resource model

We regard workflows designed as Directed Acyclic Graphs (DAGs); in other words,
graphs with fixed edges and no cycles dependencies. According to protocol, a workflow
W is formed of a collection of tasks T = {t1, t2,...,tn} and a collection of edges E. An edge
 eij = (ti,tj) persists if there is a data interdependency in-between task ti and tj, scenario in
which task ti is supposed to be parent of tj and task tj is supposed to be child of ti. Accord-
ing to this, a child task cannot execute until such time as all of its parents tasks have ended
and its input file is ready in the related computing resource. Additionally, a workflow is
integrated with a budget Bw, specified as a cost bound for its execution. On top of that, we
consider that the size of a task St is estimable in Million of Instructions (MIs) and that, for
each single task, this findings is given as recorded information to scheduler. The math-
ematical notations taken in this paper are described in Table 2.

VMs are obtained according to an on-demand charging model and are priced per
charging slot cs, with any insufficient usage outcome in the VM utilization being billed
up to nearest pricing slot. Our proposal handles a heterogeneous platform where VMs
with various VM models VMT = {vmt1, vmt2,...,vmtn} which have different processing

50986 Multimedia Tools and Applications (2024) 83:50981–51007

1 3

potential PCvmt and various cost per-pricing slot Cvmt. The processing potential of a VM
is computed in Million of Instruction Per Second (MIPS). We consider the CPU capac-
ity of VM is not static as studied by [6] and that vendors promote the maximum CPU
potential utilizable by VMs. Additionally, we consider an infinite sum of VMs could be
obtained from the vendor.

The runtime of a workflow task t in a VM of model vmt is defined as RTt
vmt

 and is com-
puted according to the size St of the task and the processing potential PCvmt of the VM.
This is demonstrated in Eq. 1. Regard that this measure is just an evaluation and our algo-
rithm does not depend on it being 100% fully precise. Additionally, we consider that VMs
with high CPU power are high expensive to obtain than VMs with low power. In this man-
ner, the task runtime computation through the less cost VM model to the larger estimate
value (slowest runtime) but possibly the lesser cost.

Table 1 Summary of related
works

Existing Works Strategies

Static
Heuristic

Static
Meta-heuristic

Dynamic
level-based

Dynamic
task-based

PCB2 [23] ✓ – – –
CG [24] – ✓ – –
CGA [25] – ✓ – –
C-PSO [26] – ✓ – –
HPSO [27] – ✓ – –
CTDHH [28] – ✓ – –
CbCP [29] – ✓ – –
I_MaOPSO [30] – ✓ – –
BDCWS [31] ✓ – – –
BAGS [32] ✓ – ✓ –
BDT [33] ✓ – – –
HBCS [34] ✓ – – –
BDAS [35] – – ✓ –
MSLBL [36] – – ✓ –
MW-DBS [37] – – ✓ –
MQ-PAS [38] – – ✓ –
SFTD [39] – – ✓ –
EBPSM [40] – – ✓ –
BDDC [41] – ✓ – –
EBABC-PF [42] – ✓ – –
Min-Max [43] – ✓ – –
Hybrid-ED [44] – – ✓ –
APRS [45] – – ✓ –
FDPM [46] – – ✓ –
SRPSM [47] – – ✓ –
EPSM [48] – – ✓ –
NBWS [49] – – ✓ –
CB-DT [50] ✓ – – –
[BPS] Ours – – – ✓

50987Multimedia Tools and Applications (2024) 83:50981–51007

1 3

We adopt a global storage (GS) service like Amazon S3 for data distribution in-between
tasks. Every task get back its input file Dt

in
 from the data repository and send its output file

Dt
out

 on the similar way. The read and write rates of the GS are GSread and GSwrite accord-
ingly. Also every VM has a bandwidth power Bvmt connected with it. This bandwidth power
and I/O processing rate of the storage resource modify over time, according to the sum of

(1)RTt
vmt

= St∕PCvmt

(2)Bvmt(t) =
(
Bvmt∕Trt

)

(3)GSread(t) =
(
GSread∕Tr

read
t

)

(4)GSwrite(t) =
(
GSwrite∕Tr

write
t

)

Table 2 Mathematical notations Notations Definitions

W A workflow
T A collection of tasks
E A collection of edges
(ti, tj) ti is the parent task, tj is the child task
ei, j Transfer time between ti and tj
Dt

in
Data input

Dt
out

Data output
VM Virtual Machine
VMT Virtual Machine Type
PCvmt Processing potential of VM
Cvmt Cost of VM
Bvmt Bandwidth of VM
Tpdelay Provisioning delay of VM
Tddelay De-provisioning delay of VM
cs Charging slot
GS Global Storage
GSread Global Storage reading rate
GSwrite Global Storage writing rate

T
Dt

in

vmt
Time required for input data transfer

T
Dt

out

vmt
Time required for output data transfer

RTt
vmt

Runtime of a task tin a VM
St Task Size of a task
PTt

vmt
Processing time of a task t in a VM

eftt
vmt

Earliest finish time of a task t in a VM
Ct
vmt

Cost of task t in a VM
TETw Makespan or Total Execution Time of a workflow
TECw Total Execution Cost of a workflow
Bw Budget of a workflow

50988 Multimedia Tools and Applications (2024) 83:50981–51007

1 3

transactions Tr processing at time t. And also we believe network congestion makes a vari-
ance in data transport times [22]. The bandwidth distributed to a transfer relies upon the
prevailing variance for the network component being run. Along with, we consider a global
storage with an unbounded storage power. In this manner, the speed at which it is efficient
of reading and writing file modify according to the sum of processes at the moment read-
ing or writing file from the resource. This is demonstrated in Eqs. 2, 3, and 4. The time
period it needs to input file from the shared storage to a VM is demonstrated in Eq. 5. Cor-
respondingly, the time period it needs to output file from a VM into the shared storage is
demonstrated in Eq. 6.

We adopt a design in which the GS and VMs are put in the same availability location.
Therefore, data transfer in-between VMs and storage is cost-free, as is the context for
majority IaaS vendors. Although, we consider that the output file of a task is also placed
on the VM’s common storage. In this manner, child tasks running on exactly the same VM
do not want to retrieve their input file from the shared storage. By executing this style,
the spending cost of the utilized environment could be considerably minimized. Therefore,
the overall processing time of a task on a VM of model vmt is demonstrated in Eq. 7. The
earliest finish time eftt

vmt
 of running a workflow task t after its parent tasks completion on

an offered vmt as defined in Eq. 8. Moreover, the cost of a task that executes on a VM
of model vmt including the VMs provisioning time delay Tpdelay and deprovisioning time
delay Tddelay is demonstrated in Eq. 9. Eq. 10 and 11 demonstrate how the total execution
time (i.e. makespan) and total execution cost of a workflow.

3.1 Problem formulation

According to the former calculations, the problem could be formally specified in this man-
ner: find a solution with lesser TET (Total Execution time or makespan) and for which the
sum of TEC (Total Execution Cost) does not violate the workflow’s budget is demonstrated
in Eq. 12. The above mentioned standard equations have been referred from (45-47). And a
proposed architecture for this system is shown in Fig. 1.

(5)T
Dt

in

vmt =
(
Dt

in
∕Bvmt

)
+
(
Dt

in
∕GSread

)

(6)T
Dt

out

vmt =
(
Dt

out
∕Bvmt

)
+
(
Dt

out
∕GSwrite

)

(7)PTt
vmt

=
(
PTt

vmt
+ T

Dt
out

vmt + T
Dt

out

vmt

)

(8)eftt
vmt

=
max

p ∈ t.parents
{eft} + PTt

vmt

(9)Ct
vmt

=
⌈ (

PTt
vmt

+ Tpdelay + Tddelay
)
∕cs

⌉
∗ Cvmt

(10)TET = max
{
eftt

vmt
∶ t ∈ T

}

(11)TEC = max
{
Ct
vmt

∶ vmt ∈ VMT
}

50989Multimedia Tools and Applications (2024) 83:50981–51007

1 3

4 BPS algorithm

This section explains the BPS heuristics’ concept as well as the algorithm in detail.

4.1 Overview

BPS includes both dynamic and static instances. Its dynamic nature relates to the instance
that the scheduling selections are taken at compile-time, once tasks are transferred over to
a scheduling queue. This enables it to respond to significant delays generated by inaccurate
estimates or changes in the environment like those of VM provisioning delays, resource
performance variation, and network congestion. The static phase broadens the algorithm’s
capability further into creating scheduling selections according to a single task to creating
scheduling selections according to a cluster of tasks. The goal is to make quid-pro-quo
between dynamic algorithm’s local expertise and static algorithm’s global expertise. This
is accomplished by incorporating the pipeline concept and heuristically scheduling multi-
ple tasks in the scheduling queue at the same time. As a result of this, BPS is capable to
provide better optimization selections and identify enhanced quality schedules.

(12)
Minimize TET or Makespan M

Constraint to TECw ≤ Bw

Fig. 1 Proposed Scheduling Architecture

50990 Multimedia Tools and Applications (2024) 83:50981–51007

1 3

A pipeline is a typical structural form in workflow applications and consisting of a clus-
ter of tasks having a 1 to 1 linear relationship in-between both of them. A pipeline P is
formally specified as a cluster of tasks Tp = {ta, tb,...,tz} wherein z ≥ 2 and there is a directed
edge ea,a + 1 connects task ta with task ta + 1. To put it another way, t1 is the parent task of t2,
 t2 of t3 and etc. The 1st task in a pipeline can have multiple parents but it can only share a
single child task. All such tasks could only have a single parent (the initial task of pipeline)
and a single child (the following task of pipeline). A pipeline therefore has a budget Bp,
which is same to the budget of the end task within the set. Figure 1a depicts this one.

With regard to exploring pipelines within a workflow, we should necessarily broaden
the context from a single task to such a cluster of tasks that could be scheduled very con-
veniently together instead of separately. To minimize overheads in execution and transfer of
data, as well as the delays in VM provisioning and deprovisioning, tasks within a pipeline
are grouped widely and always executed within the same VM. There are two significant
reasons for this. First and foremost, tasks are consecutive and must be completed sequen-
tially. So, assigning them to various VMs has no value in terms of parallelization. Second,
by executing within the same VM, the output data of parent task becomes the input data of
the child task, we save cost and time by not having to transport these data from and to the
global storage.

The solution for scheduling queued jobs is based on workflow application structure. In
addition to pipelines, a workflow can also have parallel layers comprised of tasks that do
not have any dependencies in-between them. These tasks could execute in parallel and are
commonly identified only when data consolidation or sharing exists. In the sharing of data
[51], a task’s output is allocated to various tasks for execution. In the consolidation of data
[51], the output of several tasks is transferred, or aggregated, by a single task. Both of these
structures is depicted in Fig. 2a.

These application’s parallel tasks could be homogeneous (similar type). In scientific
workflows, the circumstance where the tasks are homogeneous is common; instances of
popular applications by this attributes are CyberShake Epigenomics, Montage, and Ligo.
As a result, we develop an approach to optimally schedule homogeneous paralleled tasks
within the same size (MIs) while at the same level in the workflow application. These par-
allel tasks will do have the same budget when adopting a level-based budget distributing
plan. Consider the consolidation of data as an example, all parallel tasks must be com-
pleted prior to the consolidation task may proceed, thus they could be allotted the same
budget, which is the same as the budget for the consolidation task to execute.

BPS’s major static scheduling technique is to bundle queued tasks of the similar type
even with the same budget into clusters. Figure 1a shows two sample clusters, the first
of which contains all Type 1 tasks and the second of which has all Type 4 tasks. It’s a lot
easier to schedule these clusters of tasks than it is to schedule a workflow. There are no
inter-dependencies, the tasks are all the same, and they must all be completed within the
same budget. We define the problem of executing these tasks within budget and for the
least makespan as a form of the unbounded knapsack problem, and use dynamic program-
ming to find the best solution. Moreover, pipelines are also consolidated into clusters and
scheduled in the similar way as tasks are consolidated into clusters of tasks. Figure 2c and
d shows an example of a cluster of pipelines.

As a result, we created a dynamic algorithm that can adjust to some extent to unan-
ticipated delays caused by the uncertainty of cloud environments but also contains a static
module that allows it to create higher quality schedules and fulfill budget at less makes-
pan. Additionally, it consolidates a heuristic-based strategy and dynamic programming to
execute workflows in an elastic and cost-effective manner.

50991Multimedia Tools and Applications (2024) 83:50981–51007

1 3

Fig. 2 Workflow applications examples (a) Samples of cluster of tasks and three various structural forms
identified in workflows: data consolidation, data sharing & pipelines. (b) CyberShake workflow (c) Epig-
enomics workflow (d) Montage workflow (e) LIGO workflow

50992 Multimedia Tools and Applications (2024) 83:50981–51007

1 3

4.2 Unbounded knapsack problem (UKP)

The UKP is a NP-hard problem evolved from the complexity of deciding which element
to put in a given knapsack. Having n elements of various possibilities, each element
category 1 ≤ i ≤ n along with a related weight wi & value vi, the purpose is to identify
the number and category of elements to put such that the knapsack weight ratio W is
not surpassed and the element’s total value is optimized. Infinite load of each element
category are considered.

Let xi ≥ 0 be the number of variables of element i that will be put in the knapsack. There-
fore UKP is specified as (13).

This challenge could be handled suitably with dynamic programming by taking smaller
capacity knapsacks as sub-problems and keeping the optimal combination intended for each
capacity. As wi > 0, hence a vector would be written as m[wi], whereby m[wi] is the best solu-
tion that would be achieved with such weight ≤ wi. As a result, m [0] = 0 and (m[wi] = maxwj ≤ wi
 (vj + m[wi – wj]). This solution has an O(nW) time complexity since evaluating every m[wi]
requires finding n elements and there would be W values of m[wi] to compute. This compu-
tational time is pseudo-polynomial since it increases exponentially with size of W. However,
there are various algorithms that could solve UKP efficiently. The EDUK [52] algorithm, for
example, which incorporates the concepts of monotonic recurrence [53], dominance [54] and
periodicity [55]. Findings considered by the authors represent its adaptability. For e.g., the
average runtime for W > 2 × 108, n = 105, and the elements with weight in the [1, 105] ratio was
computed to be 0.150 seconds. Another example that could solve UKP efficiently by WRPS
algorithm [56].

4.3 Algorithm

BPS is divided into three major steps. The first is an offline technique that divides the DAG
as CoTs before scheduling. The next is an automated budget-distribution process that is con-
tinued during whole workflow execution. It allots a share of the available budget to tasks
that have yet to be scheduled. As tasks become ready for execution, the final phase is capa-
ble for generating a scheduling plan with respect to CoTs. The next sub-sections go through
each of these scenarios in further detail. The flow chart for this system is shown in Fig. 3.

4.3.1 DAG pre‑optimization

The objective of this step is to find and split the DAG as CoTs. Tasks are divided into clusters
if two or more tasks associated from the parallel data-distribution context and have the same
single parent or if the tasks are entry-level and do not have any parent tasks. If a task fails to
meet any of these criteria, it is specified to its own single-task cluster. CoTs with too many
tasks are therefore divided into three types. The first type is clusters of homogeneous tasks,
which means that all of the tasks in the cluster do the identical computations. The second is
filled of clusters of parallelizable tasks that are pipelines. The last is filled of clusters of a sin-
gle task. As a result of the pre-optimization stage, the following sets are identified:

(13)Maximize
n∑
i=1

vixi Subject to
n∑
i=1

wixi ≤ W

50993Multimedia Tools and Applications (2024) 83:50981–51007

1 3

4.3.2 Budget distribution

Then the budget distribution algorithm assigns sub-budget for each workflow task
according to a budget defined by the user. This sub-budget, combined with an possibil-
ity of input/output file sharing, will determine whether a task is scheduled on an already
provisioned VM in the pool of resources or a new VM supplied from the IaaS ven-
dor at runtime. This budget distribution algorithm’s process is to predict possible task
scheduling sequence in a workflow. The entrance task(s) in a workflow’s entry level are
scheduled early, then by their successors of next level while the last task is scheduled.
Under this scenario, we use the DTL technique to allocate each task from a level in a
workflow’s hierarchy, as shown in Eq. 14.

In addition, to identify the prioritization of tasks in a level, we rank them in ascend-
ing order based on their (EFT), as given in Eq. 15.

− − −CoThomogeneous =
{
cot1, cot2,… , cotn

}
Clusters of homogeneous task

− − − CoPpipelines =
{
cop1, cop2,… , copn

}
Clusters of pipelines

− − − CoTsingle task =
{
cot1, cot2,… , cotn

}
Clusters of a single task

(14)level(t) =

⎧
⎪⎨⎪⎩

0,

max

P ∈ parent(t)

level (p) + 1,
if pred(t) = ∅

otherwise

Start

DAG Pre-optimization (CoThom, CoPpipe,

and CoTsin)

Task Arriving (t1, t2, t3,... tn)

Calculating each task running time on

every VM

Budget allocation to each task according

to its chosen VM to be executed

Schedule the task on the VM

If task finish

within the

assigned

budget on VM

Stop

No (Re-assign budget)

Yes

Sc
he

du
le

 n
ex

t t
as

k

Task will be executed

Fig. 3 Flow chart for the proposed system

50994 Multimedia Tools and Applications (2024) 83:50981–51007

1 3

The algorithm iterates over the tasks based on this order and allocates the budget to
each task after predicting the possible task scheduling sequence. In addition to this, the
algorithm computes the sub-budget of a task according to the cost Cvmt of specific VM
instances. Initially, the process begins by selecting VM with the cheapest instances for the
task. If there is any extra budget after all tasks have been assigned sub-budgets, the algo-
rithm uses it to update the sub-budget distribution for such faster VM instance, starting
with the first task in the sequence. This process is called SFTD [32] and its complete strat-
egy is defined in Algorithm 1.

4.3.3 Scheduling

After a workflow has been pre-optimized and assigned sub-budget, task scheduling could
occur. Over the entry-level iteration, all entrance tasks (or share no parent tasks) get ready
to be executed and are assigned in a scheduling queue. These tasks are run first, and when-
ever they are completed, their successor tasks are added to the queue. This action is iterated
till all workflow tasks are executed efficiently. To execute the tasks in the scheduler, they
should be divided into clusters of tasks, clusters of pipelines and cluster of a single task. A
cot is a cluster of homogeneous tasks Tcot that could process in simultaneously. Every task
in a cluster has the same budget, is of the similar type (homogeneous), and does not belong
to a pipeline. Systematically, cothomogeneous = (Tcot, βcot, Tcot). The concept of cluster of pipe-
lines cop is same but rather than a cluster of tasks, the cluster comprises one or many
parallelizable pipelines Pcop. The subset coppipelines = (Pcop, βcop), where βcop is the common
budget shared by all pipelines in the cluster, explicitly specifies the idea. And the concept
of cluster of a single task cotsingle, holds only one task with a budget.

To pick the bundles of cluster of homogeneous tasks CoThomogeneous = {cot1,...,
cotn}, cluster of pipelines CoPpipelines = {cop1,...,copn}, and cluster of a single task

(15)eft(t) =

⎧
⎪⎨⎪⎩

PTt
vmt

,

max

P ∈ parent(t)

eft (p) + PTt
vmt

,
if pred(t) = ∅

otherwise

Algorithm 1 Budget distribution

50995Multimedia Tools and Applications (2024) 83:50981–51007

1 3

CoTsingle = {cot1,...,cotn}, every task in the scheduler is handled as follows. If a task is not
part of a pipeline, then it is incorporated into coti that has same tasks with the same budget.
In there is no suchlike coti, a new cluster is made and the task given to it. If the task, how-
ever, is part of a pipeline, the similar pipeline is added to the copi which comprises pipe-
lines with similar type of tasks and budget. If no such copi with these qualities exists, a new
cluster is made with the specified pipeline as its single entity. At last, if a task fails to meet
both of these criteria (i.e. Cot & Cop), it is specified to its own single-task cluster CoTsingle.

After CoT, CoP and CoTsingle are made, we begin to execute them. First two kinds of
clusters are scheduled adopting the similar strategy, with the exception that pipeline tasks
should be regarded as a single entity. We take CoT to demonstrate the heuristic; however,
relatively similar criteria apply for scheduling CoP. To schedule BoT, we repeat the steps
following for every cluster coti ∈ CoT with multiple tasks (clusters with a particular com-
ponent are regarded as a special instance and scheduled immediately). Firstly, BPS aims
to lower the capacity of the cluster and reutilize early provisioned VMs by distributing too
many tasks as feasible to idle VMs. The set of tasks are allocated to a single VMs is based
on set of tasks that can be completed and prior to the VM’s next charging slot and prior to
their deadline. As a result, wasting of early leased CPU cycles is avoided without compro-
mising the budget of the workflow. Following that, a resource provisioning strategy for the
upcoming tasks in the cluster is made.

To make a resource provisioning plan that is as efficient as possible, BPS should inves-
tigate several solutions through suitable VM types and evaluate their potential costs. We
fulfill this by defining the problem as a version of UKP and solving it through dynamic
programming to identify the optimal selection of VMs that could execute the tasks in the
bag in the shortest amount of time with the least amount of expense. A knapsack element
is specified by its kind, load, and costs. With respect to our scenario, we specify a sched-
uling knapsack element SKIj = (VMTj, NTj, Cj) where the element kind is relevant to VM
type VMTj, the load is the total count of tasks NTj that can execute in such a VM related to
the type NTj, and the cost Cj of executing NTj tasks in such a VM related to the type VMTj
within their budget. Furthermore, we assume that each type of VM might possibly lease
an infinite number of them, and we define the knapsack load capacity as the total count of
tasks in the cluster, that is, W = |Tcot|. The aim is to explore a cluster of SKI elements whose
total capacity (number of tasks) is at least equal as the knapsack load capacity (total count
of tasks in the cluster) and whose total value is as minimal as possible (the cost of execut-
ing the tasks is minimal). The scheduling problem regarding a cluster of tasks is stated as
Eq. 16.

For each VM type, a resource provisioning RPcot
i

 = (VMTi, numVMi, NTi) is obtained
after solving the UKP problem. It determines the number of VMTi type VMs to be used
(numVMi) and represents the number of tasks to execute on each VM (NTi). And a provi-
sioning plan of the type RPfastest

cot = (VMTfastest, W, 1) is made in rare instances where no VM
types are capable of completing the tasks within the budget. This proves that for each task
in the cluster, a VM of the quickest type should be provisioned so that they could execute
in simultaneously and finished as soon as possible. BPS then searches for a VM of type
VMTi that has early been provisioned and is available to utilize for every RPsot

i
 for which

numVMi > 0. If it remains, it is used to schedule NTi tasks from the cluster. So, we focus
on reducing cost by utilizing time slots that have been early leased for and try to minimize

(16)Minimize
n∑
i=1

Ci × xi Subject to
n∑
i=1

NTi × xi ≥
��Tcot��

50996 Multimedia Tools and Applications (2024) 83:50981–51007

1 3

provisioning delays with respect to newly provisioning VMs. If no free VMs of the desired
type are available, a new VM is launched and NTi tasks are executed to it. Algorithm 2
shows the pseudo-code for scheduling CoT.

As previously stated, the clusters of pipelines CoP set is scheduled by the same approach
as CoT. Pipelines, like tasks, have a budget and a capacity (the actual capacity of all pipe-
line tasks). As a result, we may use the similar scheduling strategy and describe the prob-
lem as a version of UKP with a little modification in how a knapsack element is defined.
With respect to pipelines, SKIj = (VMTj, NPj, Cj), where the load of an element NPj is equal
to total count of pipelines a VM type could execute within their budget. Finally, clusters of
a single pipeline are executed as specific scenarios and are scheduled to idle VMs if they
could execute them without violating their budget or to a new provisioned VM that could
execute them without violating their budget with minimum makespan.

At last, we regard the scenario of a cluster of a single task CoTsingle as specific scenario.
Single tasks are executed on idle VMs if they could meet the budget and even prior to the
end of their existing billing cycle. If no idle VMs are available, a new VM of model that
is suitable of executing the task by its budget at the minimum makespan is leased and the
task is assigned to it. If there is no such model of VM could meet the budget, the speediest
availability VM type is deployed and execute the task on it.

To better respond to the uncertainties that arise from performance variability and unan-
ticipated delays at the time of execution, the BPS has a control mechanism in place to
modify sub-budget allocation if a task’s execution cost exceeded its allocated budget. This
approach adds an extra budget parameter to hold the balance sub-budget obtained through
the available cost execution. Whenever a task has been completed, the algorithm uses
Eq. 9 to compute the available cost of execution and reallocates the balance sub-budget

Algorithm 2 CoT scheduling

50997Multimedia Tools and Applications (2024) 83:50981–51007

1 3

to unexecuted tasks. If the available cost exceeding the allocated sub-budget, the differ-
ence will be deducted from the unexecuted task sub-budget. As a result, every time a task
is completed, the budget reschedule (i.e., budget reallocation) will occur. Therefore, the
uncertainties that a specific task encounters (e.g., performance variability, unanticipated
delays) do not spread to the rest of the tasks. The description of this approach are defined
in Algorithm 3.

Eventually, BPS deactivates a VM if its billing period is nearing and it has no tasks
scheduled to it. A computation of the VM deprovisioning delay is provided to confirm the
VM deactivation signal is sent immediately hence that it doesn’t get billed again when the
current billing cycle is over.

5 Experimental results

Four popular workflow applications across multiple engineering fields were used to evalu-
ate BPS: Epigenomics relating to bioinformatics discipline, CyberShake relating to phys-
ics discipline, Montage relating to astronomy discipline, and LIGO relating to astrophysics
discipline. The CyberShake, Epigenomics, Montage, and LIGO are defined in Fig. 1b, c, d,
and e. Every scientific workflow has a unique structural features as well as computational
and data attributes. Their specification and representation is made available by [51].

The efficiency of the schedules made by BPS was evaluated using two algorithms. One
of these is the Normalization-based Budget-constraint Workflow Scheduling NBWS [49],
made for IaaS environment. It has an auto-scaled element that distributes and terminates
VMs according to the existing state of tasks. It was made to schedule multi-workflows
budget constrained problem. We tailored NBWS to run a single workflow with a few basic
changes. It has two optimization phases; first one is task-selection, and next one is resource
selection. It then picks the most cost-efficient form of VM for every task with respect to the
budget. At every scheduling cycle, this algorithm is refined the schedule, and it specifies

Algorithm 3 Budget re-schedule

50998 Multimedia Tools and Applications (2024) 83:50981–51007

1 3

how many VMs of each model are required to complete tasks within budget with minimum
makespan. The goal is to show how BPS’ dynamic component makes it to provide efficient
schedules than NBWS.

Next one is the Constrained Based-Decreased Time CB-DT [50], made for IaaS envi-
ronment. It distributes sub-budget to every task using back-tracking technique and schedule
them onto already provisioned or newly provisioned VMs to reduce makespan. It was con-
sidered since it is a static technique with the capability to make a near optimal solution. It
has also two optimization phases; first one is obtaining acceptable schedule, and next one
is improving the acceptable schedule. Its major drawback is its inefficiency to fulfill budg-
ets when uncertainties occur in cloud. However, we are particularly focused in contrasting
BPS to CB-DT when both are able to fulfill budget constraints. Moreover, we may further
test our solution’s scalability by comparing them, demonstrating how BPS succeeds while
NBWS and CB-DT failed to adapt from unanticipated delays.

Additionally, both comparison algorithms of NBWS [49] and CB-DT [50] do not con-
sider cloud basic feature of VM performance variation, and VM provisioning and de-pro-
visioning delays.

We deployed WorkflowSim [57] to setup the simulation of cloud framework. By
WorkflowSim, we created a single IaaS distributor with four VM instances. Table 3
shows the VM instance setups according to the Google Cloud Platform (GCP) offerings.
A 60-second pricing cycle was adopted, as provided by tech giants like GCP. The pro-
visioning delay was fixed to 30 seconds [58] for all VM types, while the deprovision-
ing delay was fixed to 3 seconds [7]. The results of Leitner and Cito [6] were used to
model CPU Performance variability. The VM processing power is minimized nearly 24%
according to a normal distribution by a 12% mean along with a 10% standard deviation.
The maximum capacity of a network bandwidth interface is distributed within all data
transmissions through the interface during any specific time. To represent bottleneck and
data transfer rate degradation, the progressive filling network system [59] was used to
allocate bandwidth. A GS was also modelled with maximum writing and reading speeds.
The number of activities constantly reading from the GS determines the reading speed of
a specific transfer, and relatively similar logic can be applied to writing speed. Like so,
bottleneck in the GS is modelled.

The evaluation was conducted using workflows with roughly 1000 tasks. We consider
that computation of task size is not 100% optimal, thus we include ±10% variance in the
size of every task in our simulation according to a, uniform distribution. The evaluations
were made by three various budgets, βw1 would be the hardest one, βw2 and βw3 would be
the average and flexible one. With respect to every workflow, βw1 is the cost of processing
the workflow’s critical path tasks plus the cost of transferring all of the input files into GS

Table 3 Types of VM based on
Google compute engine offering

Name Memory Google compute
engine units

Price per minute

nl-standard-8 30GB 22 $0.0084
nl-standard-4 15GB 11 $0.0042
nl-standard-2 7.5GB 5.50 $0.0021
nl-standard-1 3.75GB 2.75 $0.00105

50999Multimedia Tools and Applications (2024) 83:50981–51007

1 3

and all of the output files from GS. The rest of the budgets are made on βw1 and the size of
the parameter βint = βw1 / 2: βw2 = βw1 + βint and βw3 = βw2 + βint. The graphs shown are the
average of the findings obtained after repeating every evaluation 25 times.

5.1 Analysis and results

Budget and Makespan Evaluation: The purpose of these evaluation is to see how well
the algorithms perform in terms of cost and time to achieve. The ability of an algo-
rithm to fulfill a budget constraint by the workflow’s cost to budget ratio. As a result,
cost ratio more than one imply a cost bigger than the budget, a cost close to one imply
a cost identical to the budget, and a cost less than one imply a cost less than the budget.
The simulations carried out 25 times for every workflow, every budget interval, and
every algorithm.

In Fig. 4, for CyberShake, the hard budget constraint is impossible to meet for
NBWS and CB-DT. BPS proves its capability to handle unanticipated delays by being
the only algorithm capable of keeping under this budget. In terms of makespan, BPS
consistently beats the other algorithms for the remaining of the budget intervals. With
respect to βw2 and βw3, BPS not only gets the best makespan, but also the best price
(achieves less cost).

In Fig. 4, for Epigenomics, BPS is satisfied the three different budget criteria, and
NBWS is satisfied the last two different budget criteria, while CG not meets any of the
three budget criteria. BPS consistently gets the shortest time to completion among those
algorithms that finish under budget. This outcomes prove once again the ability of the
makespan-minimizing strategies in BPS.

In Fig. 4, for Montage, the hard budget constraint is far too difficult to satisfy for NBWS
and CB-DT. On the other hand, BPS’ ratio is significantly lower than the other algorithms’
ratios. By obtaining shorter makespans regarding three budget intervals, BPS outperforms
among other algorithms capable of fulfilling the budget. Most of the algorithms fulfill the
required budget interval, with BPS and NBWS generating fairly similar makespans that are
far less than those acquired by CB-DT once again.

In Fig. 4, for LIGO, for all five budget intervals, BPS is the only algorithm capa-
ble of reaching a ratio less than one. With respect to second and third budget inter-
vals, the mean ratio obtained by NBWS is below one, whereas CB-DT fails to satisfy
the budget in all three cases. BPS produces a shorter makespan in every situation
where BPS and NBWS satisfy the budget, representing its capacity to make high-
quality schedules.

Generally, BPS algorithm is the most effective at fulfilling budgets. It meets the con-
straint in most of the cases on average, compared to NBWS and CB-DT. These outcomes
are accurate with what was expected about every algorithm. The static algorithm of CB-DT
fails to meet budget, whereas the dynamic nature of BPS and NBWS, helps them to achieve
their objectives more frequently. The evaluation also shows that BPS is capable of produc-
ing low cost solution. In all circumstances, it outperforms NBWS and CB-DT; BPS has the
cheapest cost in comparison to the algorithms that fulfilled the budget. And these solutions
demonstrate the effectiveness of BPS’ DAG-pre-optimization contribution to improvement,
which means partitioning the DAG into clusters and execute on same VM to reduce the
data transfer time, makespan, and execution cost. An additional beneficial feature of BPS’

51000 Multimedia Tools and Applications (2024) 83:50981–51007

1 3

revealed by the data is its capability to continuously reduce the amount of time required
to execute the workflow while its budget increases. Moreover, NBWS and CB-DT do not
consider the cloud basic feature of VM performance variation, and VM provisioning and
de-provisioning delays during the workflow scheduling. If those algorithms considered
that cloud basic features, it would have increased the cost and makespan than the cost and
makespan it generates in Fig. 3.

Fig. 4 Budget and makespan evaluation. The three column in the budget graph defines the three budget
types and represented its makespan under cost/budget ratio graph (a) CyberShake workflow budget and
makespan (b) Epigenomics workflow budget and makespan (c) Montage workflow budget and makespan
(d) LIGO workflow budget and makespan

51001Multimedia Tools and Applications (2024) 83:50981–51007

1 3

5.2 Evaluating network usage

In cloud platforms, network bandwidth interfaces are still facing bottleneck problems. For
e.g., the findings [4, 60] define a 65% variation in data transmission time in Google com-
pute cloud. As a result, as a manner of eliminating the causes of variability and optimizing
the efficiency of workflow execution, it is necessary for schedulers to aim to minimizing
the number of data transmission over the cloud network technology. In this context, the
number of files read from the GS according to each algorithm is evaluated. It’s worth not-
ing that a task doesn’t need to be read by the GS if the input files it needs are early present
with the VM where it will run.

Figure 5 represents the actual number of files retrieved for each workflow and algo-
rithm throughout the three different types of budget. The referenced line refer to the num-
ber of files that the considered workflow retrieves as input. By partitioning the DAG into
the cluster of homogeneous tasks, the cluster of pipeline tasks, and the cluster of a single
task set, and executing them in a single VM or re-use already provisioned VM, BPS is
efficient in minimizing the amount of files retrieved from GS for each workflow (Cyber-
Shake, Epigenomics, LIGO and Montage) than the comparison algorithm of NBWS and
CB-DT. For execution, NBWS input file retrieval process is higher than BPS due to the
utilization of already provisioned VMs partially and partially the newly provisioned VMs
for each workflow task. At last, CB-DT input file retrieval process from GS is higher than
BPS and NBWS due to the execution of mostly newly provisioned VMs and fail to reutilize
the already provisioned VMs for each workflow task. Overall, BPS optimizes workflow
structure by DAG pre-optimization and executes parents and child tasks are mostly run on

0

1000

2000

3000

4000

5000

6000

Algorithms

of

 Fi
le

s R
et

rie
ve

d

5878

Workflow = CyberShake

NBWS

CB-DT

BPS

(a)

0

1000

2000

3000

4000

5000

Algorithms

of

 Fi
le

s R
et

rie
ve

d

4478

Workflow = Montage

NBWS

CB-DT

BPS

0

400

800

1200

1600

Algorithms

of

 Fi
le

s R
et

rie
ve

d

1488

Workflow = Epigenomics

NBWS

CB-DT

BPS

(c)

0

1000

2000

3000

4000

5000

Algorithms

of

 Fi
le

s R
et

rie
ve

d

4548

Workflow = LIGO

NBWS

CB-DT

BPS

(d)

(b)

Fig. 5 Actual number of files retrieved from the GS according to each algorithm. The referenced line refer
to the number of files that the considered workflow requires as input. a CyberShake (b) Epigenomics (c)
LIGO (d) Montage

51002 Multimedia Tools and Applications (2024) 83:50981–51007

1 3

same VM to reduce the retrieval of input files and reduce the makespan while minimizing
the budget for each workflow.

5.3 Responsiveness to provisioning delay

As workflow application execution facilitate more VM provisioning activities, it is neces-
sary to consider BPS abilities to perform execution with a reasonable cost no bigger than
the considered budget over different provisioning intervals. The interval were differed from
0 to 6 charging slots (150 s). Figure 6 represents the cost to budget ratios are computed for
each workflow application over hard budget ratio.

The CyberShake workflow’s last two ratio parameters have been exceeded. This occurs
because the algorithm budget seems to be too hard, and when the provisioning interval
rises, ratio parameters also elevate. According to Epigenomics workflow, all ratio values
are smaller than one, illustrating BPS capacity to adjust to getting high provisioning inter-
vals only if budget permits it. As respects to the Montage application, maximum ratio val-
ues larger than one apart from the last three. This is due to a too much hard budget for the
BPS algorithm to execute within budget with high provisioning intervals. At last, in terms
of the LIGO workflow, the significant number of the ratio values are smaller than one
over all provisioning intervals, with the exception of final two factors of 120 and 150. The
obtained provisioning interval ratio values are marginally larger than one. Since it turns too
hard to comply with such long provisioning intervals, BPS algorithm is not fulfilling the
budget standards.

0.50

1.00

1.50

0 30 60 90 120 150

H
ar

d
bu

dg
et

 ra
tio

Provisioning Interval (sec)

BPS
CyberShake

(a)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 30 60 90 120 150

H
ar

d
bu

dg
et

 ra
tio

Provisioning Interval (sec)

BPS
Epigenomics

(b)

0.50

0.75

1.00

1.25

1.50

0 30 60 90 120 150

H
ar

d
bu

dg
et

 ra
tio

Provisioning Interval (sec)

BPS
Montage

(c)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 30 60 90 120 150

H
ar

d
bu

dg
et

 ra
tio

Provisioning Interval (sec)

BPS
LIGO

(d)

Fig. 6 Hard budget ratio acquired for every considered workflow with various provisioning intervals

51003Multimedia Tools and Applications (2024) 83:50981–51007

1 3

5.4 Responsiveness to performance variation

Schedulers must be aware of performance fluctuation in order to avoid from unanticipated
delays and meet QoS standards. The cost-to-budget ratio at various degraded parameters
was used to evaluate the algorithm’s responsiveness to VM CPU performance fluctuation,
calculated by a normal distribution with a 1% variance and respective distinctive param-
eters. The estimated parameters were computed by taking halve of the greatest CPU power
degradation, ranges from 0% to 60%.

Figure 7 depicts the acquired results. Regarding CyberShake workflow, majority of
the ratio parameters are relatively close to one by efficient dynamic provisioning and
scheduling of BPS, and surpass the parameters of 50% and 60% performance deteriora-
tion caused by the given budget is too hard. Relating to Epigenomics and Ligo work-
flows, most parameter values are smaller than one apart from the last one, which repre-
sents 60% degradation caused by hard budget scenario. In relation to Montage workflow,
attain the ratio parameters less than one at 0%, 10%, 30% performance deterioration and
exceed the budget ratio parameter at 20%, 40% 50% and 60% deterioration caused by the
hard budget scenario.

Next potential factor that could force the budget to be violated for is that BPS makes a
dynamic provisioning policy for CoTs, CoPs and CoTsingle with multiple tasks. Though that
helps the algorithm to make efficient optimization selection in order to reduce the time it
takes for the workflow applications to complete, it also facilitates its ability to respond to

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0% 10% 20% 30% 40% 50% 60%

H
ar

d
bu

dg
et

 ra
tio

Performance Variation

BPS
CyberShake

(a)

0.80

0.85

0.90

0.95

1.00

1.05

0% 10% 20% 30% 40% 50% 60%

H
ar

d
bu

dg
et

 ra
tio

Performance Variation

BPS
Epigenomics

(b)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0% 10% 20% 30% 40% 50% 60%

H
ar

d
bu

dg
et

 ra
tio

Performance Variation

BPS
Montage

(c)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0% 10% 20% 30% 40% 50% 60%

H
ar

d
bu

dg
et

 ra
tio

Performance Variation

BPS
LIGO

(d)

Fig. 7 Hard budget ratio acquired for every considered workflow with various performance variation

51004 Multimedia Tools and Applications (2024) 83:50981–51007

1 3

the environmental dynamics. These estimates reveal that BPS remains efficient in meeting
its budget target in the majority of the situations.

Overall, compare with NBWS and CB-DT, BPS first splits the workflow into three topo-
logical parts according to their characteristics at each level and executes the tasks at each
level frequently on VMs which have the input data it claims (i.e., precedent and later tasks
are mostly run on same VMs) with its efficient resource provisioning and scheduling plan
considered with VM provisioning interval, performance variation and resource abundance
features while NBWS executes the tasks partially on same VMs which does have the input
file it claims (i.e., precedent and later tasks are partially run on different VMs by its strat-
egy of linear and non-linear graph) but it does not consider the significant IaaS cloud fea-
tures of VM provisioning interval, performance variation and resource abundance. CB-DT
executes the tasks on VMs which doesn’t have the input file it claims (i.e., precedent and
later tasks are mostly run on different VMs) as well as lease new VMs during the pro-
cess of scheduling due to the ignorance of resource abundance, hence demanding in higher
costs, lower utilization rate, and high makespan with more delays such as VM provisioning
interval.

Considerably, BPS is the topmost achievable algorithm in satisfying the deadline con-
straints by attaining its aim in all of the conditions. This shows the significance of custom-
izing an algorithm to investigate the fundamental cloud components to utilize benefits of
the consideration provided by the platform and satisfy the QoS specifications. The evalua-
tions also shows the effectiveness of BPS in making higher-standard schedules by attaining
a lesser execution cost in every scenario. These outcomes emphasize the effectiveness of
the time-optimization plans adopted by BPS. Another worthwhile feature of BPS that can
be noticed from the outcomes is its capability to repeatedly reducing the time it needs to
execute the workflow while the deadline increases. The significance of this considers in the
information that numerous users are ready to quid-pro-quo makespan for lesser cost dur-
ing which remaining users are ready to take care of larger cost for quicker executions. The
algorithm focus to perform in under this logic with the aim of the deadline value consid-
ered by users to be reasonable.

6 Conclusion and future work

BPS was offered the solution to make high standard schedules. Its aim include shortening
the makespan as well as fulfilling a user-specified budget. The algorithm was efficient to
some extent to adapt to the uncertain delays and dynamics that are typical in cloud comput-
ing. It also included dynamic provisioning, which enabled it build efficient schedules for a
cluster of workflow tasks. By optimizing the workflow into cluster of pipelines, cluster of
homogeneous tasks, and cluster of a single task that split a budget, we were capable to rep-
resent their scheduling as a UKP and find a solution through dynamic programming within
pseudo-polynomial timespan.

The experimental events reveal that our findings outperformed other advanced budget-
aware algorithms in terms of overall performance. And it fulfilled budget under uncertain
scenarios such as VM provisioning delay, network congestion, VM performance variation,
and indefinite task-size computations. It fulfilled this at lesser cost, even cheaper than the
scheduling algorithms that may optimize the overall workflow system and compare multi-
ple solutions before executing the workflow.

51005Multimedia Tools and Applications (2024) 83:50981–51007

1 3

As future work, we want to execute the workflow consisting of heterogeneous tasks at
every instance, like SIPHT and results, using several optimization methodologies, such
as the GA algorithm and comparing their efficiency with BPS. Additionally, we want to
expand the resource model to consider the cost of data communication between various
data locations so that VMs could be adopted on multiple datacentres. Moreover, a resched-
uling approach for multiple tasks CoTs will be analysed with the objective of further mini-
mizing the significance of performance degradation. Various budget allocation approaches
in addition to a greater scalable proposal to schedule heterogeneous CoTs will also be ana-
lyzed. Finally, we want to evaluate BPS with real-time tasks.

Author contribution Rajasekar P contributed to technical, conceptual and mathematical model (Unbounded
Knapsack Problem) of this paper, and Santhiya P contributed to guidance and counselling on writing of this
paper.

Funding No funding was received.

Data availability The data that support the findings of this study are available from the corresponding author
[Rajasekar p], upon reasonable request.

Declarations

Informed consent Informed consent was obtained from all individual participants involved in the study.

Conflict of interest The authors declare that they have no conflict of interest.

References

 1. Menaka M, Kumar KS (2022) Workflow scheduling in cloud environment–Challenges, tools, limitations &
methodologies: a review. Measurement: Sensors 100436. https:// doi. org/ 10. 1016/j. measen. 2022. 100436

 2. Stergiou C, Psannis KE, Kim BG, Gupta B (2018) Secure integration of IoT and cloud computing.
Futur Gener Comput Syst 78:964–975

 3. Lin W, Xu S, He L, Li J (2017) Multi-resource scheduling and power simulation for cloud computing.
Inf Sci 397:168–186

 4. Prakash V, Bawa S, Garg L (2021) Multi-dependency and time based resource scheduling algorithm
for scientific applications in cloud computing. Electronics 10(11):1320

 5. Prakash V, Bala A (2014) July. A novel scheduling approach for workflow management in cloud com-
puting. In 2014 International Conference on Signal Propagation and Computer Technology (ICSPCT
2014) (pp. 610-615). IEEE

 6. Doostali S, Babamir SM, Eini M (2021) CP-PGWO: multi-objective workflow scheduling for cloud
computing using critical path. Clust Comput 24(4):3607–3627

 7. Garg N, Singh D, Goraya MS (2021) Energy and resource efficient workflow scheduling in a virtual-
ized cloud environment. Clust Comput 24:767–797

 8. Xue S, Peng Y, Xu X, Zhang J, Shen C, Ruan F (2019) DSM: a dynamic scheduling method for con-
current workflows in cloud environment. Clust Comput 22:693–706

 9. Mousavi Nik SS, Naghibzadeh M, Sedaghat Y (2021) Task replication to improve the reliability of
running workflows on the cloud. Clust Comput 24:343–359

 10. Taghinezhad-Niar A, Pashazadeh S, Taheri J (2022) QoS-aware online scheduling of multiple work-
flows under task execution time uncertainty in clouds. Clust Comput 25(6):3767–3784

 11. Patra SS (2018) Energy-efficient task consolidation for cloud data center. Int J Cloud Appl Comput
(IJCAC) 8(1):117–142

 12. Lin W, Xu S, Li J, Xu L, Peng Z (2017) Design and theoretical analysis of virtual machine placement
algorithm based on peak workload characteristics. Soft Comput 21(5):1301–1314

https://doi.org/10.1016/j.measen.2022.100436

51006 Multimedia Tools and Applications (2024) 83:50981–51007

1 3

 13. Leitner P, Cito J (2016) Patterns in the chaos—a study of performance variation and predictability in
public iaas clouds. ACM Trans Internet Technol (TOIT) 16(3):1–23

 14. Mao M, Humphrey M (2012) A performance study on the vm startup time in the cloud. In 2012 IEEE
Fifth International Conference on Cloud Computing, pp. 423–430. IEEE

 15. Ahmad W, Alam B, Ahuja S, Malik S (2021) A dynamic VM provisioning and de-provisioning based
cost-efficient deadline-aware scheduling algorithm for big data workflow applications in a cloud envi-
ronment. Clust Comput 24(1):249–278

 16. Toussi GK, Naghibzadeh M (2021) A divide and conquer approach to deadline constrained cost-opti-
mization workflow scheduling for the cloud. Clust Comput 24(3):1711–1733

 17. Sun T, Xiao C, Xu X (2019) A scheduling algorithm using sub-deadline for workflow applications
under budget and deadline constrained. Clust Comput 22(3):5987–5996

 18. Iranmanesh A, Naji HR (2021) DCHG-TS: a deadline-constrained and cost-effective hybrid genetic
algorithm for scientific workflow scheduling in cloud computing. Clust Comput 24(2):667–681

 19. Geng X, Mao Y, Xiong M, Liu Y (2019) An improved task scheduling algorithm for scientific work-
flow in cloud computing environment. Clust Comput 22(3):7539–7548

 20. Saeedizade E, Ashtiani M (2021) DDBWS: a dynamic deadline and budget-aware workflow sched-
uling algorithm in workflow-as-a-service environments. J Supercomput 77:14525–14564. https://
doi. org/ 10. 1007/ s11227- 021- 03858-6

 21. Deldari A, Naghibzadeh M, Abrishami S (2017) CCA: a deadline-constrained workflow scheduling
algorithm for multicore resources on the cloud. J Supercomput 73(2):756–781

 22. Khorsand R, Safi-Esfahani F, Nematbakhsh N, Mohsenzade M (2017) ATSDS: adaptive two-stage
deadline-constrained workflow scheduling considering run-time circumstances in cloud computing
environments. J Supercomput 73(6):2430–2455

 23. Wu F, Wu Q, Tan Y, Li R, Wang W (2016) PCP-B2: partial critical path budget balanced schedul-
ing algorithms for scientific workflow applications. Futur Gener Comput Syst 60:22–34

 24. Medara R, Singh RS, Sompalli M (2022) Energy and cost aware workflow scheduling in clouds
with deadline constraint. Concurr Comput: Pract Experience e6922. https:// onlin elibr ary. wiley.
com/ doi/ epdf/ 10. 1002/ cpe. 6922

 25. Liu L, Zhang M, Buyya R, Fan Q (2017) Deadline-constrained coevolutionary genetic algorithm
for scientific workflow scheduling in cloud computing. Concurrency and Computation: Practice and
Experience 29(5):e3942

 26. Nirmala SJ, Bhanu SMS (2016) Catfish-PSO based scheduling of scientific workflows in IaaS
cloud. Computing 98(11):1091–1109

 27. Verma A, Kaushal S (2017) A hybrid multi-objective particle swarm optimization for scientific
workflow scheduling. Parallel Comput 62:1–19

 28. Alkhanak EN, Lee SP (2018) A hyper-heuristic cost optimisation approach for scientific workflow
scheduling in cloud computing. Futur Gener Comput Syst 86:480–506

 29. Nik SSM, Naghibzadeh M, Sedaghat Y (2020) Cost-driven workflow scheduling on the cloud with
deadline and reliability constraints. Computing 102(2):477–500

 30. Saeedi S, Khorsand R, Bidgoli SG, Ramezanpour M (2020) Improved many-objective particle
swarm optimization algorithm for scientific workflow scheduling in cloud computing. Comput Ind
Eng 147:106649

 31. Zhou N, Lin W, Feng W, Shi F, Pang X (2020) Budget-deadline constrained approach for scien-
tific workflows scheduling in a cloud environment. Clust Comput 1–15. https:// doi. org/ 10. 1007/
s10586- 020- 03176-1

 32. Rodriguez MA, Buyya R (2017) Budget-driven scheduling of scientific workflows in IaaS clouds
with fine-grained billing periods. ACM Trans Auton Adapt Syst (TAAS) 12(2):1–22

 33. Arabnejad V, Bubendorfer K, Ng B (2016) October. Budget distribution strategies for scientific
workflow scheduling in commercial clouds. In 2016 IEEE 12th International Conference on e-Sci-
ence (e-Science) (pp. 137-146). IEEE

 34. Arabnejad H, Barbosa JG (2014) A budget constrained scheduling algorithm for workflow applica-
tions. J Grid Comput 12(4):665–679

 35. Arabnejad V, Bubendorfer K, Ng B (2018) Budget and deadline aware e-science workflow schedul-
ing in clouds. IEEE Trans Parallel Distributed Syst 30(1):29–44

 36. Chen W, Xie G, Li R, Bai Y, Fan C, Li K (2017) Efficient task scheduling for budget constrained
parallel applications on heterogeneous cloud computing systems. Futur Gener Comput Syst
74:1–11

 37. Arabnejad H, Barbosa JG (2017) Maximizing the completion rate of concurrent scientific applica-
tions under time and budget constraints. J Comput Sci 23:120–129

 38. Arabnejad H, Barbosa JG (2017) Multi-QoS constrained and profit-aware scheduling approach for
concurrent workflows on heterogeneous systems. Futur Gener Comput Syst 68:211–221

https://doi.org/10.1007/s11227-021-03858-6
https://doi.org/10.1007/s11227-021-03858-6
https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.6922
https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.6922
https://doi.org/10.1007/s10586-020-03176-1
https://doi.org/10.1007/s10586-020-03176-1

51007Multimedia Tools and Applications (2024) 83:50981–51007

1 3

 39. Hilman, M.H., Rodriguez, M.A. and Buyya, R., (2017) October. Task-based budget distribution
strategies for scientific workflows with coarse-grained billing periods in iaas clouds. In 2017 IEEE
13th International Conference on e-Science (e-Science), pp. 128–137. IEEE

 40. Hilman MH, Rodriguez MA, Buyya R (2019) Resource-sharing Policy in Multi-tenant Scientific
Workflow-as-a-Service Cloud Platform. arXiv preprint arXiv:1903.01113

 41. Taghinezhad-Niar A, Pashazadeh S, Taheri J (2021) Workflow scheduling of scientific workflows
under simultaneous deadline and budget constraints. Clust Comput 24(4):3449–3467

 42. Zeedan M, Attiya G, El-Fishawy N (2023) Enhanced hybrid multi-objective workflow scheduling
approach based artificial bee colony in cloud computing. Computing 105(1):217–247

 43. Stavrinides GL, Karatza HD (2021) Dynamic scheduling of bags-of-tasks with sensitive input data
and end-to-end deadlines in a hybrid cloud. Multimed Tools Appl 80(11):16781–16803

 44. Stavrinides GL, Karatza HD (2019) A hybrid approach to scheduling real-time IoT workflows in
fog and cloud environments. Multimed Tools Appl 78(17):24639–24655

 45. Rajasekar P, Palanichamy Y (2021) Adaptive resource provisioning and scheduling algorithm for
scientific workflows on IaaS cloud. SN Comput Sci 2:1–16

 46. Rajasekar P, Palanichamy Y (2022) A flexible deadline-driven resource provisioning and schedul-
ing algorithm for multiple workflows with VM sharing protocol on WaaS-cloud. J Supercomput
78:8025–8055

 47. Rajasekar P, Palanichamy Y (2021) Scheduling multiple scientific workflows using containers on IaaS
cloud. J Ambient Intell Humaniz Comput 12:7621–7636

 48. Rodriguez MA, Buyya R (2018) Scheduling dynamic workloads in multi-tenant scientific workflow as
a service platforms. Futur Gener Comput Syst 79:739–750

 49. Chakravarthi KK, Shyamala L, Vaidehi V (2020) Budget aware scheduling algorithm for workflow
applications in IaaS clouds. Clust Comput 23(4):3405–3419

 50. Ghafouri R, Movaghar A, Mohsenzadeh M (2019) A budget constrained scheduling algorithm
for executing workflow application in infrastructure as a service clouds. Peer-to-Peer Netw Appl
12(1):241–268

 51. Bharathi S, Chervenak A, Deelman E, Mehta G, Su MH, Vahi K (2008) Characterization of scientific
workflows. In 2008 third workshop on workflows in support of large-scale science, pp. 1–10. IEEE

 52. Andonov R, Poirriez V, Rajopadhye S (2000) Unbounded knapsack problem: dynamic programming
revisited. Eur J Oper Res 123(2):394–407

 53. Andonov R, Rajopadhye S (1994) A sparse knapsack algo-tech-cuit and its synthesis. In Proceedings
of IEEE International Conference on Application Specific Array Processors (ASSAP’94), pp. 302–
313. IEEE

 54. Gilmore PC, Gomory RE (1963) A linear programming approach to the cutting stock problem—part
II. Oper Res 11(6):863–888

 55. Gilmore PC, Gomory RE (1966) The theory and computation of knapsack functions. Oper Res
14(6):1045–1074

 56. Rodriguez MA, Buyya R (2015) September. A responsive knapsack-based algorithm for resource pro-
visioning and scheduling of scientific workflows in clouds. In 2015 44th International Conference on
Parallel Processing, pp. 839–848. IEEE

 57. Chen W, Deelman E (2012) Workflowsim: A toolkit for simulating scientific workflows in distributed
environments. In 2012 IEEE 8th international conference on E-science, pp. 1–8. IEEE

 58. Stadill S (2013) By the numbers: How google compute engine stacks up to amazon ec2. Available: https://
gigaom. com/ 2013/ 03/ 15/ by- the- numbe rs- how- google- compu te- engine- stacks- up- to- amazon- ec2/

 59. Bertsekas DP, Gallager RG, Humblet P (1992) Data networks, vol 2. Prentice-Hall International,
Hoboken

 60. Jackson KR, Ramakrishnan L, Muriki K, Canon S, Cholia S, Shalf J, Wasserman HJ, Wright NJ
(2010) November. Performance analysis of high performance computing applications on the amazon
web services cloud. In 2010 IEEE second international conference on cloud computing technology and
science, pp. 159–168. IEEE

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing agreement and applicable law.

https://gigaom.com/2013/03/15/by-the-numbers-how-google-compute-engine-stacks-up-to-amazon-ec2/
https://gigaom.com/2013/03/15/by-the-numbers-how-google-compute-engine-stacks-up-to-amazon-ec2/

	Budget-based resource provisioning and scheduling algorithm for scientific workflows on IaaS cloud
	Abstract
	1 Introduction
	2 Related work
	3 Application and resource model
	3.1 Problem formulation

	4 BPS algorithm
	4.1 Overview
	4.2 Unbounded knapsack problem (UKP)
	4.3 Algorithm
	4.3.1 DAG pre-optimization
	4.3.2 Budget distribution
	4.3.3 Scheduling

	5 Experimental results
	5.1 Analysis and results
	5.2 Evaluating network usage
	5.3 Responsiveness to provisioning delay
	5.4 Responsiveness to performance variation

	6 Conclusion and future work
	References

