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Abstract
In recent years, human activity recognition (HAR) has been widely used in medical reha-
bilitation, smart home and other fields. Currently, the recognition performance highly 
depends on feature extraction and effective algorithm. On the one hand, traditional manual 
feature extraction and classification algorithms hinder the improvement of HAR. On the 
other hand, the latest deep learning technology can automatically process data and extract 
features, but it faces the problems of poor feature quality and information loss. In order 
to solve this problem, this paper proposes a new recognition method using only wearable 
sensor data. In the feature extraction stage, the axis information of each sensor is extracted 
separately into one-dimensional data, and information of all axes is integrated into a two-
dimensional graph. Then, two deep convolutional neural network models are designed to 
train the features based on one-dimensional data and two-dimensional graph respectively. 
Finally, weighted voting method is used to get the classification results. Experiments have 
shown that the average recognition accuracy of the method in this paper is about 3% higher 
than that of other HAR deep neural network methods, which shown the advantage of the 
method in this paper in obtaining better recognition result with limited data.

Keywords Human activity recognition · Convolutional neural networks · Feature 
extraction · Two-dimensional graphs · Sensor data · Weighted voting

1 Introduction

Human activity recognition (HAR) has become an important part of many fields such 
as motion detection, medical services and smart home [1, 2]. In professional sport area, 
HAR can help athletes improve their daily training efficiency [3, 4]. In the field of medi-
cal service, HAR technology plays an important role in monitoring various chronic 
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diseases such as Parkinson’s disease. For special diseases, early identification of patients 
with certain behavior patterns can even prevent serious consequences [5].

In general, HAR uses two following recognition modes: Video-based recognition 
mode and sensor-based recognition mode. Video-based recognition mode usually uses 
camera to obtain images or dynamic video [6]. Its major defects are personal privacy 
issue and high requirements in terms of device and calculation.

In contrast, sensor-based recognition is the current mainstream. This method can also 
be divided into two sub types based on sensor placement: wearable sensors placed on 
users and ambient sensors placed in surroundings. Both of these two types use sen-
sors to obtain information about movement trajectory, body temperature, heart rate, etc. 
In addition, with the development of smart devices and mobile internet, a variety of 
sensors such as three-axis accelerometers and gyroscopes can be embedded in smart 
phones, smart watches and other devices, making the collection of human activity infor-
mation faster and more efficient [7].

A standard HAR process based on wearable sensors has four main steps: collection of 
human activity data and preprocessing; feature extraction; model training; applying the 
model to HAR classification. For most of the HAR methods with data from small smart 
devices, the most challenging problems exist in feature extraction and model training.

For feature extraction, the difficulty is that human activities are similar but different, 
activities may have confusing patterns in some dimensions. For example, for running 
and walking, the main difference that accelerometers and gyroscopes can detect is for-
ward speed, which makes it difficult to distinguish these two activities effectively. In 
addition, most feature extraction work requires manual feature design to extract effec-
tive information hidden in original signals [8]. Though manual methods work well in 
standard laboratory settings, lack of expertized experience which those methods highly 
rely on greatly restricts the quality of feature extraction. On the other hand, most stud-
ies directly use traditional machine learning algorithms to study the activity patterns in 
model training phase. This kind of approach usually requires structured data which is 
generated from massive manual work. Thus, the performance is limited by the quality of 
data processing and it’s difficult to take the advantage of high-performance computing.

Instead of manual construction of one-dimensional features, a more popular and 
effective method is to transform the original sensor data into two-dimensional images 
[9], then use a specific deep convolutional neural network (CNN) or deep recursive neu-
ral network (RNN) to learn two-dimensional image features. Compared with manual 
feature extraction technology, deep learning technology based on deep neural network 
does not rely on expertized manual experience to design features. Instead, it learns high-
dimensional features automatically. However, the original physical activities of human 
occur in three-dimensional space, this original information is reduced to one dimension 
after being recorded by wearable sensors, and then further transformed to high-dimen-
sional features in deep learning model, this can cause the problem of information loss 
during dimensional transformation.

In view of the possible loss of information caused by the deep learning method, this 
paper focuses on the research to develop a weighted voting method that can significantly 
reduce information loss when one-dimensional sensor data is mapped to higher dimen-
sion, as shown in Fig.  1. The method in this paper extracted information from each 
individual axis of the wearable sensor as well as two-dimensional image generated from 
the axis-combined data. DCNN will be used to these two types of information respec-
tively to train after information extraction. After training, the corresponding weight is 
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allocated according to the contribution of each model to the recognition effect, and the 
recognition result is finally obtained by weighted voting.

Our main contributions are summarized as follows:

1. A weighted voting method based on axis information from sensor is proposed. The fea-
tures generated by the method include the information of each axis and the correlated 

Fig. 1  Multi-model weighted voting framework
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information between different axes, enriching the information representation of original 
activities.

2. Two kinds of deep convolutional neural networks with different hyperparameters are 
designed to process single axis features and correlated axes features respectively, which 
can carry out high-precision human activity recognition based on wearable sensors and 
improve the efficiency of classification.

A lot of experiments and corresponding analysis were performed on the following pub-
lic data sets: USCHA [10], UCI [11] and UTD-MHAD [12]. The experiment results show 
that the method in this paper can improve the recognition accuracy by 3% on average com-
pared with other deep learning methods. At the same time, the recognition accuracy of 
each sub-category in multi-class recognition scenario is also improved in different degrees.

The rest of this paper is organized as follows: Sec.2 shows the literature review, Sec.3 intro-
duces the method proposed in this paper, Sec.4 introduces the experiment and the corresponding 
detail discussion, and Sec.5 is the conclusions.

2  Literature review

2.1  Sensing technology

The performance of HAR system depends on the sensor used. Sensors used in HAR mainly 
include ambient sensors and wearable sensors.

Common ambient sensor includes microphone, Binary sensor and Doppler radar. Ambi-
ent sensor shows the connection and interaction between human and the environment, and 
it can also capture changes of key factors in the environment. On the other hand, due to the 
disadvantages of high deployment cost, the scalable use of environmental sensors has been 
greatly affected [13]. Wearable sensor overcomes the disadvantages of expensive and bulky 
ambient sensor, and it is almost non-invasive to human. These advantages make wearable 
sensor widely used in HAR field. Among the numerous wearable sensors, three-axis accel-
erometer and gyroscope are the two that are most widely used and most influential.

Accelerometer The goal of the accelerometer is to measure the acceleration of the target. 
Such sensors are usually placed on body surface, such as arm [14] and waist [11]. The 
information collected by the accelerometer is divided into three axes: (X, Y and Z) cor-
responding to the three standard directions of the three-dimensional world. In an actual 
three-axis accelerometer data set, gravity components on each axis will be removed in data 
processing stage sometimes.

Gyroscope The goal of a gyroscope is to measure the angular velocity and direction of 
the target. Similar to three-axis accelerometer, the gyroscope is also placed on the surface 
of the subject’s body and is usually embedded in a small smart platform such as a smart 
phone. Similarly, gyroscopes collect information along the X, Y, and Z axis.

2.2  Traditional methods for HAR

The traditional HAR method directly uses or adjusts the traditional machine learning algo-
rithm to learn the extracted features. These methods rely on manual feature extraction to 
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ensure robustness. The commonly used feature extraction algorithms include Decision tree 
[15], Multilayer Perceptron [16], Support Vector Machines [11], Logistic regression [17] 
and Random forest [18].

In terms of specific work, Wang et al. [19] showed a new feature filtering mechanism 
for human activity recognition based on filtering and wrapper methods. They used this 
method to select the features with greater gain. Further, they combined this method with 
Naive Bayes and K-Nearest Neighbor classifiers to recognize human physical activities and 
achieved good results. In a similar way, Maurer et al. [15] also used the method of feature 
filtering to recognize human activities. Their practice is to make judgments based on the 
correlation between features. They assume that features should be independent from each 
other and highly related to specific activity categories. ProsseBgger and Bouchachia [20] 
use the improved decision tree to improve the recognition performance of residents’ activi-
ties in buildings. They expanded the leaf nodes of the decision tree and allow multiple 
marking of the expanded leaf nodes. Ronao and Cho [21] designed a more complex hybrid 
framework for recognizing human activities. The advantage of their method is to use ran-
dom forest algorithm to test the importance of each feature and then select the best fea-
ture set according to the importance. After obtaining the features, they use hidden Markov 
model to classify human activities twice in succession. The first classification separates 
dynamic activities and static activities, and the second classification identifies the final 
activity category.

On many public data sets, traditional method has achieved a good baseline effect. How-
ever, with more and more types of human activities and the increase of sample size, the 
traditional manual feature extraction methods have shown many shortcomings. First of all, 
manual feature extraction requires strong expertized knowledge in the field of signal pro-
cessing [22]. Obviously, with data expansion, feature extraction that completely relies on 
expertized knowledge cannot meet the efficiency requirements of HAR. Secondly, features 
extracted manually cannot avoid the massive loss of key information. Thirdly, features 
extracted contain a large amount of redundancy information, especially in the recognition 
of complex activities.

2.3  Deep learning method for HAR

Different from the traditional HAR methods which manually extracting features and apply-
ing machine learning methods, deep learning method shows its powerful scalability in the 
feature engineering stage. Because of the layer-by-layer structure, deep learning can extract 
both structured and non-structured features. Therefore, the technology can extract new fea-
tures with higher dimensions and breaks through the limitation of one-dimensional data. 
There are two commonly used technologies: convolutional neural network which captures 
the local connection of multimodal activity data [23] and performs well in the recogni-
tion of two-dimensional pictures, recurrent neural network which extracts time correlation 
and retrieve incremental information from time interval, and it is suitable for flow data in 
human activity recognition.

The use of convolutional neural networks by converting one-dimensional sensor data 
into two-dimensional images has attracted the attention of many researchers. Jiang and Yin 
[24] creatively proposed that the original signal can be mapped into pixels and used as part 
of the image after Fourier transform. They used the corresponding DCNN as the classifier 
and achieved good results on three data sets. Further, based on the core idea of Jiang and 
Yin’s method, all sensor axis data wave are arranged adjacent to each other at least once 
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to form a graph, Yang et  al. [25]. This research improved data arrangement and gener-
ated a new feature graph method, which can extract more correlation information from the 
original signal. Similarly, Ronao and Cho [21] also proposed a human activity recogni-
tion system using a deep convolutional neural network as a classifier. The difference is that 
they directly extract relevant features from the original data, and use temporary fast Fourier 
transform technology to process the original data to obtain additional incremental informa-
tion, which improves the performance of the classifier.

In addition to the convolutional neural network that can process picture format data, 
LSTM network which is good at processing time series data, also plays an important role 
in the field of HAR. Tao et al. [26] converted the original data of the sensor into horizontal 
and vertical components and improved the LSTM neural network, which they called bidi-
rectional long-term and short-term memory (BLSTM). This method is applied to different 
signal data sequences, and finally significantly improves the performance of the classifica-
tion algorithm. Moreover, it is also a hot research direction to combine recursive networks 
with other neural networks to obtain higher performance. For example, in order to rec-
ognize human gesture activities, Ordóñez and Roggen [27] used a combination of deep 
convolution neural network and recursive neural network to jointly extract features which 
are time dependent. Similarly, Xu et al. [28] also combined recurrent neural network and 
inception neural network as a hybrid recognition framework. They experimented with dif-
ferent sizes of kernels in the process of feature extraction and achieved remarkable results 
on public data sets.

In the field of HAR, the method based on deep learning performs well in most labora-
tory scenarios, but due to the high computing power required by deep learning, it performs 
poorly in real-time computing scenarios. High latency and high resource consumption are 
significant disadvantages of this kind of technology [29].

3  Methodology of this paper

3.1  Overview of the method

The core idea of the method in this paper is based on the assumption that each axis of 
human activity recorded by sensor has unique information, and these axes also have corre-
lated information with each other. We have studied the information on each axis as well as 
the correlated information between different axes and input these two types of information 
into deep learning models. Then corresponding weights were assigned to each model, and 
finally the classification results were given by voting. This method can include more infor-
mation of original human activities and reduce the loss of information.

As shown in Fig. 1, the steps of the method in this paper are as follows: (1) raw data 
is collected and preprocessed by sensors (accelerometers and gyroscopes) integrated into 
smart platform; (2) all axes will be processed into one-dimensional structured data which 
can be directly used as features of DCNN model. Meanwhile, all axis information will be 
aggregated to generate a special activity graph which can be used as features of DCNN as 
well. The algorithm from Yang et al. [25] is used here as the method to generating feature 
graph; (3) each model after trained will get the prediction accuracy on training data as 
the weight of the model; (4) the activity classification result on test data is obtained by 
weighted voting on the prediction of each model.
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The rest of this section is organized as follows: Sec.3.2 shows the detail of construc-
tion of Single-axis model, Sec.3.3 shows the detail of construction of Multi-axis model, 
Sec.3.4 introduces the weighted voting model, and Sec3.5 is the evaluation metrics of 
the method in this paper.

3.2  Construction of Single‑axis model

After the preprocessing of the original data obtained by accelerometers and gyroscopes, most 
of the current deep learning methods only focus on transforming the information from the 
sensor into various special structured features. For example, Jiang and Yin [24] directly con-
vert the original data into pixel feature maps to express the correlation between adjacent axes. 
The method from Yang et al. [25] transform the original data into waveform activity graphs 
by making axes adjacent horizontally and vertically to obtain more correlated information. 
However, the above methods ignore that while learning more correlations between different 
axes, the information of each single axis also needs to be learned separately, that is because 
the correlation learned from axes may causes the loss of information of a single axis.

Therefore, the method in this paper performs feature processing and model training on each 
individual axis of the sensor, the goal of which is to obtain unique information of each axis 
through a separate model. As shown in Fig. 2, take the x-axis on the three-axis accelerometer 
as an example. First, different kinds of activities recorded by the three-axis accelerometer will 
be converted into one dimensional data by axis, and all data of x-axis data will be separated to 
form a structured feature table. Then the feature table will be input into the designed DCNN 
structure for learning. After learning, the model will be obtained, which is called single-axis 
model. Since each axis has a model, the names of these models are decided by sensor name 
and axis name. The example is ‘model-acce-x’, ‘model’, ‘acce’, ‘X’ represents the trained 
model, sensor name and axis name respectively. By analogy, applying this method to all other 
axes of all sensors to obtain the corresponding models.

Fig. 2  Generating Single-axis model
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3.3  Construction of multi‑axis model

In addition to extracting human activity information from individual axis of each sensor, 
extracting the correlated information of all axes on sensors is also an important research 
field of HAR deep learning technology. Theoretically, all human physical activities occur 
in three-dimensional space, and the transformation from the collected information from 
three-dimensional space into features will inevitably cause the loss of information, so vari-
ous ways to construct correlation features from all axes of a sensor mainly target to use 
features with stronger correlation information to reduce information loss.

This paper focuses on two methods to extract the correlation information between dif-
ferent axis. First, Jiang and Yin [24] constructed an activity image method that maps the 
original sensor data to pixel values, each axis is adjacent to all other axes at least once 
in the image. This method can greatly enhance the axis-related information hidden in the 
feature picture. Further, the method from Yang et al. [25] reconstructed and improved the 
ideas of Jiang and yin [24]. They converted the original sensor data into waveform graphs 
instead of pixel values, and expanded the order of axes so that different axes could be adja-
cent at least once, both horizontally and vertically. Both methods ultimately work well.

Considering the performance on public datasets, the method from Yang et al. [25] are 
used for extracting information about the correlation between sensor axes, which is called 
the Multi-axis model. As shown in Fig. 3, first, the data of each axis from the sensor is 
output as a waveform graph, then all waveform graphs are stacked together according to 
a specific order. The specific order needs to satisfies that in both horizontal direction and 
vertical direction, all axes are adjacent at least once, the algorithm for generating specific 
permutation order and activity graph is shown in Algorithm 1. The final activity graph is 
generated and is input as features directly into a DCNN of a specific structure for learning. 
Finally, a model called multi-axis model are gotten, which learns the correlated informa-
tion between different axes.

Fig. 3  Generating Multi-axis model
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Algorithm 1(a) Axis sorting
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Algorithm 1(b) Generating activity graph

3.4  Weighted voting model

When all single-axis models and multi-axis model are obtained, it comes to the core steps 
of the method in this paper, weighted voting. The significance of weighting is that different 
models essentially represent the summary of some part of the information of the origi-
nal activity, single-axis models represent the activity information from the correspond-
ing single axis, and multi axis model represents the correlation information of all axes. 
Each model makes different contributions in recognizing the final correct activity, which 
means that each model needs to be given different weights to represent the level of contri-
bution. In this method, the classification accuracy of different models on the same training 
data are made as the weights, which can be obtained completely automatically and avoid 
the interference of human knowledge. After the weighting stage, the weighted voting of 
multiple models are carried out to get the classification results. The voting algorithm is 
shown in Algorithm 2. After the weighted voting, the final classification result of human 
physical activities can be obtained. The complete workflow of the weighted voting model 
is shown in Fig. 4 as an example. In the sample workflow, let’s assume that we need to 
recognize four activities: run, badminton, sleep, and dunk. In the stage 1, we use the train-
ing data for these four activities to train corresponding models. The single-axis features 
are one-dimensional arrays that have undergone windowing and segmentation processing. 
Each axis corresponds to a single-axis model. Since we use both accelerometer and gyro-
scope sensors, each sensor has three axes (x, y, z). Therefore, we have a total of six single-
axis features and their corresponding six single-axis models. The multi-axis feature is a 
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two-dimensional image generated by the activity graph algorithm, which aggregates the six 
single-axis features into one image. The multi-axis feature corresponds to one multi-axis 
model. So, we have a total of seven models. After training all the models, each model can 
calculate its accuracy on the training set, which indicates the recognition capability of each 
model. We use the accuracy of each model as the weight for the subsequent process. The 
weights for the six single-axis models are 0.7, 0.5, 0.8, 0.9, 0.4, and 0.7, and the weight for 
the multi-axis model is 0.8. In the stage 2, we need to perform weighted voting on the test 
dataset (or prediction dataset) to determine the final activity category. Specifically, we use 

Fig. 4  The workflow of the weighted voting model
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the models trained in the stage 1 to make predictions on the test features. Each model will 
output its predicted activity category. The recognition results of the six single-axis models 
are run, sleep, run, dunk, sleep, sleep, and the recognition result of the multi-axis model 
is run. We assign the weights obtained in the stage 1 to the recognition results of each 
model in the stage 2. For each activity, run is recognized by two single-axis models and the 
multi-axis model. Its weighted score is 2.3 (0.7 + 0.8 + 0.8). Sleep is recognized by three 
single-axis models. Its weighted score is 1.6 (0.5 + 0.4 + 0.7). Dunk is recognized by one 
single-axis model. Its weighted score is 0.9. Badminton is not recognized by any model, so 
its final score is 0. Among the four activities, run has the highest score. Therefore, the final 
result of the weighted voting recognition is run.

Algorithm 2 Weighted voting model

3.5  Evaluation metrics

The goal of HAR field is to recognize the categories of human activity, which is a typi-
cal classification problem. As for the evaluation of classification problems, a series of 
indicators derived from the confusion matrix is the best choice. The confusion matrix 
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consists of four key elements, TP, FP, FN and TN, which represent the following meanings 
respectively:

TP (true positive): The number of positive samples is predicted when the real label is 
positive.
FP (false positive): The number of positive samples is predicted when the real label is 
negative.
FN (false negative): The number of negative samples is predicted when the real label is 
positive.
TN (true negative): The number of negative samples is predicted when the real label is 
negative.

Based on TP, FP, TN, and FN, commonly used classification evaluation metrics such as 
accuracy, precision, recall, and F1 score can be calculated. In the field of HAR, accuracy 
is widely used as a general performance evaluation metric, so we also use this metric to 
compare with other state-of-the-art methods. In addition, in the section where we present 
the design details of the proposed method, we also use F1 score and AUC as supplemen-
tary metrics to better compare the performance with other methods. It is worth noting that 
the calculation method of accuracy is basically same on binary classification problem and 
multi classification problem, so there is no need to carry out metric transformation for the 
HAR multi classification problem. The calculation method of accuracy is shown in Eq. (1). 
The calculation method of F1 score is shown in Eq. (2).

4  Experiments and discussions

4.1  Experimental environment

The experiment was run on a Linux environment with computer hardware using an Intel 
Core (TM) I7 CPU @ 2.3 GHz and an NVIDIA Tesla P100 GPU with 16GB memory. The 
experimental software environment was Python 3.7.13, CUDA 11.2, and PyTorch 1.11.0.

4.2  Datasets and pre‑processing

There are many kinds of public data sets in the field of HAR. Because the research 
direction of this paper focuses on using accelerometers and gyroscopes as sensors to 
collect information, UCI and USCHAD data sets were used to conduct the experiments. 
These two data sets use accelerometers and gyroscopes to collect data. In addition, the 
UTD-MHAD data set uses not only accelerometers and gyroscopes but also Kinect 
camera to collect video data. Since this data set collects more kinds of activities and the 

(1)Accuracy =
TP + TN

TP + FP + FN + TN

(2)F1 score =
2 ×

TP

TP+FP
×

TP

TP+FN

TP

TP+FP
+

TP

TP+FN
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activities themselves are complex, the methods in the HAR field on this data set usually 
have a significant drop in terms of performance. Therefore, this UTD-MHAD data set 
can test the performance of the method in this paper in a nearly extreme state,so this 
data set were also experimented.

In the USCHAD data set, 14 human volunteers aged between 21-49 were arranged to 
carry out 12 different activities. A MotioNode sensor platform embedded with a three-
axis accelerometer and a gyroscope is placed on the buttocks of the subjects to collect 
activity information. The original sampling frequency of the sensor is 100Hz. In addi-
tion, a three-axis magnetometer is also embedded in the platform to collect relevant 
data. In the experiment, because this type of special data is not within the scope of 
the study, we eliminate this part of magnetometer data. In the UCI data set, 30 human 
volunteers aged between 19-48 years old carried out six different activities. A Samsung 
Galaxy S II smart phone embedded with a three-axis accelerometer and a gyroscope is 
placed on the waist of the subject to collect activity information. The original sampling 
frequency of the sensor is 50Hz. In particular, the data recorded from the three-axis 
accelerometer includes the original version and the version that filters out the gravita-
tional acceleration. For the most complex data set UTD-MHAD, more processing has 
been done. In the original data set, eight human volunteers completed 27 different types 
of activities using inertial sensor platforms (integrated with a triaxial accelerometer and 
a gyroscope) placed on different body parts and a camera placed in the environment. 
When the inertial sensor platform was placed on the wrist of the experimental object, 21 
activities were tested, When the inertial sensor platform was placed on the thigh of the 
experimental object, 6 kinds of activities were tested. We selected part of the data corre-
sponding to 21 kinds of activities for the experiment and removed the part related to the 
camera data. This part of the UTD-MHAD data set is called UTD-MHAD 1.

In addition to collecting data and eliminating unnecessary sensor data from the origi-
nal data set, it is also necessary to perform relevant sliding window segmentation on 
each data set to generate data samples with the same length of time for subsequent fea-
ture construction. And the data selected by the sliding window needs to be divided into 
two parts: the training data set and the test data set, based on randomly assigned experi-
mental subject IDs. We uniformly set the data ratio of the training set and the test set 
to the commonly used 7:3. The basic information of datasets and information of data 
preprocessing is summarized in Table 1, the subjects represents the number of people 
receiving the experiment, the categories represents the number of activities set by the 
experiment, the position is the position of the sensor placed in these subjects, the sam-
pling time is the length of the sliding time window at different sensor frequencies, the 
number of training samples and the number of testing samples shows the number of data 
samples.

Table 1  Datasets and pre-processing

Dataset Subjects Categories Position Sampling time Training samples Test samples

UACHAD [10] 15 12 Hip 2s 18557 7954
UCI [11] 30 6 Waist 2.5s 7352 2947
UTD-MHAD1 [12] 8 21 Wrist 1s 3014 1293
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4.3  Structure of deep neural network

In the method of this paper, the algorithm to learn the hidden information in the feature is 
DCNN. Typical CNN is composed of convolution layer, pooling layer and full connection 
layer. The convolution layer performs convolution operation by moving the convolution 
kernel on the characteristic value. Through convolution operation, it can usually extract the 
local important features of the data, effectively reduce the dimension of the original data, 
thus make the neural network learn more important features. The pooling layer has two 
different strategies. One kernel is used to perform the maximum pooling operation or the 
average pooling operation to further compress the learned information. The maximum or 
average usually needs to be selected based on experiments. The method in this paper can 
get the best effect by using the maximum pooling operation. The full connection layer is 
usually the last layer in a CNN structure. It receives the neuron output of the previous layer, 
provides the corresponding number of neurons for matrix operation, and finally applies the 
activation function to get a result. According to the different characteristics of single axis 
information and multi axis information, different DCNN structures are used. The DCNN 
structure corresponding to single-axis model and multi-axis model is shown in Table 2, the 
DCNN parameters shows the structural parameters of neural networks and the hyperpa-
rameters used in training step.

4.4  The performance of weighted voting method

One of the core assumptions of the method in this paper is that the joint weighted voting 
of multiple models that learn more unique information of different axes can achieve better 
results than a single model. UCI data set is used to conduct relevant experiments to test the 
above hypothesis. The information of 9 axes of UCI data set is trained to 9 models, then the 
UCI test data is predicted to get the classification accuracy of these models. Next, accord-
ing to the weighted voting method proposed in section 3, the classification accuracy of the 
weighted voting algorithm is obtained. In the process of the experiment, we found that the 
models of the three axes that excluded the gravitational acceleration contributed poorly, 
because most of the information of these three axes are included in the information of 
those three axes before excluding the gravitational acceleration, thus these three axes after 

Table 2  DCNN structure

DCNN Parameters Single-axis DCNN Multi-axis DCNN

Convolutional-layer 1 kernel size 1x10 10x10
Convolutional-layer 2 kernel size 1x7 7x7
Convolutional-layer 1 output maps 20 20
Convolutional-layer 2 output maps 30 30
The type of subsampling layer Max-pooling Max-pooling
Subsampling-layer 1 kernel size 1x5 5x5
Subsampling-layer 2 kernel size 1x3 3x3
Learning rate 0.0001 0.0001
Batch size 128 256
The number of epochs 1500 1000
The dropout rate 0.1 0.1
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excluding the gravitational acceleration would have a negative effect on weighted voting. 
Therefore, the standard 6 axes information were finally used for weighted voting. The com-
parison of the results is shown in Fig. 5. It can be seen that the classification accuracy of the 
single model with the best performance is 83.66%, while after weighted voting, the classifica-
tion accuracy can reach 88.70%, which proves the correctness of the core view in this paper. 
The effect of correct weighted voting of multiple models is better than that of single model.

4.5  The ablation experiment based on single‑axis models

In Section 4.4, we confirmed that weighted voting of multiple single-axis models can effec-
tively improve recognition performance. Furthermore, we need to explore the individual 
impact of each single-axis model on the overall performance under the weighted voting 
scheme. Therefore, we designed ablation experiments by sequentially removing one sin-
gle-axis model at a time and observing the overall weighted voting results. We selected six 
single-axis data from two sensors (accelerometer and gyroscope) in the UCI dataset for the 
experiments. Additionally, we can also incorporate cross-modality in the ablation experi-
ments to explore the role of different single-axis models in recognizing different activities. 
Specifically, we observe the recognition accuracy of each activity in the ablation experiments.

The results of the ablation experiments for the single-axis models are shown in Fig. 6. 
We can observe that using all single-axis models for weighted voting results in an overall 
accuracy of around 88.7%. When we sequentially remove the three single-axis models of 
the accelerometer, the weighted voting results are 86.8%, 85.5%, and 86.4% respectively. 
When we sequentially remove the three single-axis models of the gyroscope, the weighted 
voting results are 85.9%, 87.8%, and 88.2% respectively. After removing the relevant axes 

Fig. 5  Performance comparison between different models
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of the accelerometer, the average recognition accuracy is 86.2%, which is a decrease of 
2.5% compared to using all axes. After removing the relevant axes of the gyroscope, the 
average recognition accuracy is 87.3%, which is a decrease of 1.4% compared to using all 
axes. This indicates that the accelerometer contains more information for activity recogni-
tion compared to the gyroscope. This is because the accelerometer measures the accelera-
tion of an object in multiple directions, while the gyroscope measures the angular velocity 
generated during turning or rotation. Common human activities such as running and jump-
ing usually involve stretching, moving forward and backward in various directions, while 
large-scale rotations are relatively less common.

The performance of each activity in the ablation experiments is shown in Fig.  7. It 
can be observed that in the cross-modality case, the single-axis information has different 
degrees of impact on different activities. For example, after removing the relevant axes 
of the accelerometer, the average recognition accuracy for walking, standing, and laying 
decreases by 3%, 4%, and 4% respectively, while the average recognition accuracy for 
walking upstairs and sitting does not decrease. This indicates that different activities have 
different patterns and the distribution of information on different axes is uneven. Therefore, 
aggregating all single-axis information is valuable and necessary to obtain a high-perfor-
mance recognition model.

4.6  Comparison between weighted voting method and other methods

After confirming that the weighted voting method can integrate multiple different mod-
els and effectively improve classification performance, we also need to test other methods 
that integrate multiple models. These methods include averaging or maximizing the predic-
tions of each class from multiple models, or performing complex stacking operations on 
multiple models to obtain the final classification result. Specifically, for multi-classification 

Fig. 6  The results of the ablation experiments for the single-axis models
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problems, the execution process of the averaging method is to calculate the average prob-
ability values for each class predicted by the single-axis model and the multi-axis model, 
finally, the class with the highest average probability is determined as the predicted class. 
The execution process of the maximizing method is as follows: the probability values pre-
dicted by the single-axis model and the multi-axis model for each class are compared, the 
maximum probability value for each class is selected as the probability value for that class, 
finally, the class with the highest probability value is determined as the predicted class. The 
averaging and maximizing methods are simple operations on the predictions of multiple 
models. We can also use more complex methods at the model level to integrate the predic-
tion results. Stacking is a typical framework for this. Specifically, we use multiple single-
axis models and one multi-axis model as weak learners, at the same time, we construct a 
new neural network that takes the outputs of these weak learners as inputs and returns the 
final classification result.

Fig. 7  The recognition accuracy of each activity in the ablation experiments.

Table 3  Comparison between weighted voting method and other methods

USCHAD UCI UTD-MHAD 1

Accuracy F1 AUC Accuracy F1 AUC Accuracy F1 AUC 

Weighted voting method 90.01% 0.88 0.88 92.62% 0.89 0.87 62.57% 0.61 0.83
Averaging method 85.06% 0.82 0.86 89.14% 0.87 0.85 59.52% 0.56 0.79
Maximizing method 86.51% 0.84 0.86 88.30% 0.86 0.84 60.36% 0.57 0.79
Stacking method 87.90% 0.85 0.88 91.07% 0.88 0.85 60.95% 0.59 0.81
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Weighted voting, averaging, maximizing, and stacking methods were tested on three 
public datasets, and the final classification performance is shown in Table  3. It can be 
observed that among all the methods, the averaging and maximizing methods performed 
the worst, while the stacking method had slightly lower accuracy than the weighted vot-
ing method. This is because the averaging and maximizing methods simply treat all model 
predictions equally and ignore the differences in classification performance between differ-
ent models. For example, if two single-axis models have significantly different prediction 
performances but both predict the probability of the same class as 0.7, theoretically, the 
output of the better-performing model should be given a higher weight. However, the aver-
aging and maximizing methods cannot achieve this. As for the stacking method, it can be 
said that weighted voting explicitly utilizes the outputs of multiple models, while stacking 
implicitly learns this information. However, the overly complex structure and the constraint 
of input information volume hinder its further improvement in classification ability. The 
experimental results above demonstrate the effectiveness of the weighted voting method.

4.7  Comparison with the baseline method

The method in this paper includes three main parts: single-axis model, multi-axis model 
and weighted voting, among them, the method of Yang et al. [25] is selected as the multi-
axis model. Therefore, the method of Yang et al. [25] can be used as the baseline method 
of the method in this paper. In order to verify the hypothesis of our method, the weighted 
voting method combining single-axis model and multi-axis model can obtain more infor-
mation than the multi-axis model that only focuses on axes correlated information. We 
need to test the performance comparison between the method in this paper and the baseline 
method on three public data. The experimental results are shown in the Table 4. Through 
experiments, it can be seen that the classification performance of the method in this paper 
on USCHAD and UCI datasets exceeds that of the baseline method (90.01% >87.70%, 
92.62% >90.17%). And it is close to the performance of the baseline method on the most 
complex data set UTD-MHAD 1 (62.57%<64.12%), which is because there are too many 
types of activities in the UTD-MHAD 1 dataset, and it caused too many categories that 
need to participate in voting, thus weakens the advantage of voting to a certain extent. 
Above experiment results prove the effectiveness of the method in this paper, that is, by 
learning additional single axis information and fusing this part of information with multi 
axis information, it can achieve better results. In addition to comparing the overall effect on 
the data set, we also compared the recognition accuracy of the method in this paper with 
the baseline method on each activity category, as shown in the Fig. 8, it can be seen that 
the model in this paper can improve the performance of the baseline method in most of the 
activity categories by weighted voting.

Table 4  Comparison of the baseline method

USCHAD UCI UTD-MHAD 1

Accuracy F1 AUC Accuracy F1 AUC Accuracy F1 AUC 

Proposed method 90.01% 0.88 0.88 92.62% 0.89 0.87 62.57% 0.61 0.83
Baseline method 87.70% 0.85 0.86 90.17% 0.88 0.85 64.12% 0.62 0.85
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4.8  Comparison with other state‑of‑the‑art methods

We also compared the performance of our proposed method with other state-of-the-
art methods on three datasets: USCHAD, UCI, and UTD-MHAD 1. Currently, there are 
three main approaches in the HAR field. The first approach relies on expert knowledge 
to manually design and extract features, which are then combined with machine learning 
algorithms for recognition. For example, in the UCI dataset, the original dataset builders 
manually designed up to 561 features, which include rich time and frequency domain fea-
tures, providing a good foundation for subsequent researchers to use manual feature con-
struction. The second approach does not involve manual feature design and instead uti-
lizes various deep neural networks to directly extract underlying activity information. The 
third approach combines the above two methods. Most of these methods construct a hybrid 
framework to separately handle features and models, and then integrate the advantages of 
each component to make the final recognition. Our proposed method belongs to this third 
category.

As shown in Table 5, the method in this paper has also achieved certain advantages over 
other state-of-art manual methods. On the UACHAD dataset, the special CNN method [30] 

Fig. 8  The performance of sub-categories
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with three convolutional layers achieved an accuracy of 86.78%, the DCNN method [31] 
that processes image information using Fourier Transform achieved an accuracy of 82.55%. 
The manual method based on J48 Decision Tree [31] obtained the best result (91.37%) and 
the performance of the method in this paper is close to it (90.01%). On the UCI dataset, the 
method based on multi class SVM classifier [32] obtained the best result (96.40%) and the 
performance of the method in this paper ranked second (92.62%), which was much higher 
than the accuracy of the hybrid approach with SVM and KNN [33] and SVM with PCA 
method [34]. On the UTD-MHAD 1 dataset, it can be seen that the accuracy of the method 
in this paper (62.57%) is far better than other algorithms, the methods that came closest 
to the highest accuracy both used the LSTM-CNN architecture [35, 36], but their accura-
cies of 56.41% and 57.10% were both below 60%. The above experiments indicate that our 
proposed method has performance advantages over most state-of-the-art methods based on 
deep neural networks.

4.9  Discussion on experimental results

Based on all experiments, the HAR method in this paper has achieved better results than 
the baseline method on USCHAD and UCI datasets (an average increase of about 3%), and 
it is close to the performance of the baseline method on the most complex data set UTD-
MHAD 1. At the same time, the method in this paper has advantages over most state-of-art 
methods based on deep neural networks. On the basis of this paper, we also need to explore 
some details of the experiment and ideas for future research.

According to our summary of relevant research, the method in this paper is the first to 
study single axis information and multi axis correlation information at the same time, and 
use weighted voting to classify. The advantage of the method in this paper is that it can 
learn the activity information contained in the limited sensor axis more comprehensively 
and reduce the loss of information in the process of feature extraction. Also, it realizes a 
fully automated operation. At the same time, the multi-axis model part of the method in 
this paper uses the method of Yang et al. [25] as the baseline. The method in this paper 
integrates single axis information on the basis of the method of Yang et al. [25] and enforce 
the attention to single axis information. The lack of attention to single axis information 
may lead to the misrecognition of very similar activities on some specific axes, while the 
method in this paper theoretically focuses on both local information (single axis) and the 
whole (multi axis correlation). A potential problem worth further exploration is that we 
find it unrealistic to only increase the number of corresponding models by increasing the 
number of single axes of sensors to expect better recognition results. This phenomenon is 

Table 5  Comparison with other state-of-the-art methods

MLP Multilayer Perceptron, J48 J48 Decision Tree, RF Random Forest, ALR Additive Logistic Regression

USCHAD UCI UTD-MHAD 1

 Method in this paper 90.01% 92.62% 62.57%
Other state-of-art methods 76.08% [37] (MLP) 91.31% [38] (RF) 48.57% [17] (ALR)

91.37% [31] (J48) 96.40% [32] (SVM) 51.42% [39] (Boosting)
86.78% [30] (CNN) 87% [33] (SVM+KNN) 56.41% [35] (LSTM+CNN)
82.55% [31] (CNN) 85.4% [34] (SVM+PCA) 57.10% [36] (LSTM+CNN)
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confirmed in the experiment of UCI data set. The experiment shows that the final recogni-
tion effect of adding 9 single axes information is weaker than that of adding 6 single axes 
information. In the 9 single axes, 3 single axes with negative effects are highly similar 
to another 3 axes, which means that simply increasing the sensor axis information cannot 
guarantee the increase of recognition performance. On the contrary, the addition of redun-
dant information will make redundant models enter the voting system, resulting in ’noise’ 
in the weighted voting process and interfering with the final judgment. This suggests that 
redundancy must be controlled when choosing to use single axis information of the sensor, 
rather than simply increase the number.

5  Conclusions

Based on wearable sensor data and deep learning technology, this paper designs a HAR 
method that extracts single axis information and multi-axes correlation information of 
sensors at the same time, and recognizes activities by weighted voting. The result shows 
that the classification performance of the method in this paper improves the recognition 
accuracy by about 3% on average compared with other deep learning methods that only 
consider the multi-axes correlation information. Further, it has a significant performance 
improvement compared with other state-of-art methods based on traditional manual 
designed features, which shows the advantages of the recognition method in this paper in 
extracting more sensor information to features and reducing information loss.
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