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Abstract
Deep learning-based methods have recently achieved satisfying results in image dehazing.
However, we observe that various researchers devote themselves to learning haze-free images
directly, while often paying no attention to the physical features of the hazy image formation
process. For single image dehazing, a suitable transmission map and global atmospheric light
guidance proved effective. Meanwhile, for many dehazing networks, deep and non-adjacent
feature information is not utilized which can likewise affect the effectiveness of image recov-
ery. Therefore,we develop an effective feature aggregation andmodulation network for image
dehazing called FAM-Net. Specifically, the proposed FAM-Net first uses CNN to estimate the
transmission map and global atmospheric light, and then embeds the output features into the
overall network for joint dehazing. A feature aggregation andmodulationmodule is proposed
to fuse the extracted features of atmospheric light and transmission map into the network.
Moreover, the attention guidance aggregation module is designed as a replacement for the
skip connection. Furthermore, a novel edge-preserving loss function is proposed for train-
ing the network, preserving more details of the reconstructed images. Experimental results
indicate that FAM-Net outperforms existing dehazing methods in quantitative and qualitative
aspects.
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1 Introduction

Haze is a common atmospheric phenomenon, usually caused by tiny suspended particles
in the atmosphere. Images captured in hazy scenes have significant quality degradation, as
the visibility of objects is reduced after tiny suspended particles absorb and scatter light.
With these images as input, many subsequent tasks are susceptible to dramatic performance
degradation with pre-trained models, such as computer vision tasks like detection, tracking,
classification, and segmentation. Therefore, several dehazing approaches [1–3] are proposed
to improve the visibility of hazy images for these issues. According to the atmospheric
scattering model [4, 5], the formation of a hazy image can be expressed as:

I (x) = J (x) t (x) + A (1 − t (x)) (1)

where I (x) is the hazy input image, J (x) is the recovered haze-free image, A denotes global
atmospheric light, and t (x) denotes the transmission map defined by t (x) = e−βd(x). Here,
β is the atmospheric scattering coefficient, and t (x) is the scene depth. x is the position of
the pixel in the image. The purpose of single image dehazing is to restore a haze-free image
J (x) from a given hazy image I (x), which is a highly ill-posed problem.

Previous prior-basedmethods [1, 6, 7] used different hand-crafted image priors to estimate
transmission maps. For example, in DCP [1], the atmospheric light is estimated from the dark
channel prior. Nevertheless, it is worth noting that these conventional techniques tend to be
associated with a significant time overhead in the inference phase. In recent years, learning-
basedmethods for single image dehazing have emerged as a promising alternative and verified
excellent performance. Someof thesemethods [8–10] learn by embedding (1) directly into the
network, while estimating transmissionmaps, global atmospheric light and haze-free images.
However, some studies fail to fully leverage the physical information available, resulting in
features that are not sufficiently independent when aggregated for each physical quantity. As
a result, these features can be easily impacted and confounded by one another. In addition,
the self-attention models have also shown promising results, but their network structure is
huge and the edges are less retained. Therefore, additional research is necessary to develop
attention guidance without increasing the network parameters and retain more edges.

This study presents a novel deep learning-based framework for addressing the afore-
mentioned problems related to haze removal. The proposed framework, called the feature
aggregation and modulation network (FAM-Net), is shown in Fig. 1. In particular, we
introduce the feature aggregation and modulation module (FAMM), which aggregates and
modulates the transmission map, atmospheric light and hazy image features by unfolding
the (1). Furthermore, multiple modules are combined and designed to work progressively
to facilitate the preservation of image details and further restore visibility. As such, features
from transmission map and atmospheric light can better guide the network to generate higher
definition images, and play a crucial role in guiding various image regions and preserving
details. Moreover, the attention guidance aggregationmodule (AGAM) is designed to replace
the original skip connection. Additionally, this study proposes a novel edge-preserving loss
function to maintain the sharp edge of the estimated haze-free images without halo-shaped
artifacts. The proposed loss function is combined with several existing loss functions to
jointly train our network.
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Fig. 1 Illustration of our method. the transmission map estimation branch and the atmospheric light estimation
branch are embedded in the encoder by the progressive FAMMs for joint training

The contributions are recapitulated as follows:

• We develop an efficient single image dehazing network, called FAM-Net, which is a
framework for simultaneously estimating the transmission map, atmospheric light, and
haze-free images.

• The proposed feature aggregation and modulation module (FAMM) extracts deep level
information and facilitates the interaction and fusion between features from different
levels. Additionally, the attention guided aggregation module (AGAM) adaptively fuses
the weights of different feature channels to improve the dehazing effect.

• A novel edge-preserving loss function is proposed to retain more details and edge infor-
mation of the estimated haze-free images.

The outline of this paper is as follows. We summarize the research progress on single
image dehazing in Section 2. And Section 3 details the proposed FAM-Net architecture and
loss function. In Section 4, experiments are conducted on challenging datasets with different
scenarios to illustrate the effectiveness of our proposed network. In addition, ablation studies
are reported in this section. Finally, some conclusions are drawn in Section 5.

2 Related work

The related work is divided into three categories. These include physical model-based
approaches, feature aggregation-based approaches and attentionmechanism-based approaches.
The physicalmodel-based approaches [1, 8, 10] require priors orCNNs to obtain the transmis-
sion map and global atmospheric light. These approaches then use the atmospheric scattering
model to recover the mathematical inversion process for the haze-free image. On the other
hand, physical model-free approaches are to learn the mapping from hazy image to haze-
free image directly. Common approaches for this include feature aggregation [11–13] and
attention mechanisms [3, 14, 15].

2.1 Physical model-based dehazing

Methods that rely on the atmospheric scattering model are divided into prior-based method
and learning-based method. The prior-based method obtains prior knowledge based on
hand-crafted statistics regarding the differences between the haze-free and hazy images.
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In DCP [1], the auther considers that, for outdoor images, there is at least one color channel
with intensity close to zero in the local area of the haze-free image. Additionally, some meth-
ods [6, 7] analyze the linear relationship of the haze-free channels in RGB color space from
different perspectives to estimate the transmissionmap. Traditional prior-basedmethods usu-
ally have a good dehazing ability. However, the dehazed images are prone to distortion and
artifacts in the regions that do not satisfy the priors, and the image realism is low. With the
development of deep learning, learning-based methods have become the primary methods
for image dehazing in recent years. For example, MSCNN-HE [16] obtained a sharp-edged
transmission map using CNN and estimated the global atmospheric light using traditional
methods. However, estimating both separately does not guarantee that the final solution is
jointly optimal. In contrast, DCPDN [8] fully embed the atmospheric scattering model into
the end-to-end physical dehazing model of the overall optimization framework. This net-
work jointly learns the dehazed image, transmission map, and atmospheric light to obtain a
jointly optimal solution. Similarly, HRGAN [17] proposed a unified network for joint esti-
mation of transport maps, atmospheric light, and haze-free images as a generator network.
By reformulating the atmospheric scattering model, AOD-Net [18] predicted only a sin-
gle output K (x) that has no physical significance. Similar ideas are also found in several
approaches [19, 20]. PFDN [10] embeds the proposed feature dehazing units into an encoder
structure with residual learning for end-to-end training. Based on the physical model, the
formation process of hazy images can be described, which facilitates the achievement of a
dehazing effect. However, existing methods encounter limitations in effectively aggregating
and modulating the physical features, and they struggle to seamlessly embed the features
into the main dehazing path. Consequently, the restored images may still retain some hazy
residuals. As a result, there remains ample room for improvement in physical model-based
methods.

2.2 Feature aggregation-based dehazing

Feature fusion and aggregation have been widely used in network design, improving the
performance by exploring different levels of features. The fusion and aggregation strategy
provides a new idea of using features with hazy inputs. Riaz et al [21] implemented a depth
graph estimation technique based on guided fusion, effectively reducing the possibility of
failure ofDCP [1] and recovery artifacts. InGFN [11], the auther proposed amulti-scale gated
fusion network to generate dehazed images using an encoder-decoder architecture. MSBDN-
DFF [22] utilized enhancement strategies and back-projection techniques to enhance feature
fusion. GCANet [12] efficiently aggregated contextual information by dividing the feature
map into branches and introducing gating mechanisms between the branches. RefineDNet
[13] proposed an effective perceptual fusion strategy to fuse different dehazing outputs.
However, these methods do not explicitly exploit the features and properties of non-adjacent
layers and deep layers, and are not easily applied to other architectures. Furthermore, several
networks [8, 17, 18] referenced in Section 2.1 conducted the results-oriented aggregation at
the end of the network using the physical model. Conversely, Wang et al [23] have exper-
imentally substantiated that the process-oriented aggregation is effective in circumventing
suboptimal dehazing outcomes.

2.3 Attentionmechanisms-based dehazing

Attention mechanisms have been increasingly applied in image dehazing due to their reliable
ability in feature extraction and image recovery processes [24, 25]. GridDehazeNet [14]
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employed a three stages attention-based grid network to restore haze-free images. In FFA-
Net [3], the author proposed a new feature attention module that fuses channel attention
with pixel attention to obtain enhance the effectiveness of haze removal. LapDehazeNet [26]
used attention sharing weights K to approximate higher order Taylor terms, thus avoiding the
overhead associatedwith direct convolution ofUHD images. In recent years, the Transformer,
an encoder-decoder architecture based on the self-attentive mechanism, has beenwidely used
in image restoration [15, 27, 28]. Although transformer has achieved better results, certain
limitations still persist. Among these limitations, computationally complex and high data
requirements are prominent issues. Moreover, it is difficult to handle spatial information
effectively, which is critical for image-based tasks. Additionally, an excessive focus on global
information may result in neglecting image details, such as textures and edges.

3 Proposedmethod

In this section, we first present the designed haze removal framework. Figure 1 illustrates the
general architecture of the proposed FAM-Net. In addition,we employmultiple loss functions
to further constrain our network to achieve better single image dehazing. The network consists
of five main components: the encoder-decoder based dehazing main path, FAMM, AGAM,
TEB, and AEB. Specifically, the main path acquires the primary content information of
the hazy objects, and our proposed FAMM is used for feature aggregation and modulation.
AGAM is an effective way to connect the encoder and the decoder. Moreover, TEB and AEB
are used to obtain corresponding transmission map and global atmospheric light from the
hazy image, respectively. We will describe the algorithm’s details in the following.

3.1 The overall network structure

As shown in Fig. 1, FAM-Net is designed based on an encoder-decoder structure, integrating
the transmission map and the global atmospheric light from TEB and AEB into the image
dehazing process. This method encodes the hazy images first and then decodes them to
obtain haze-free images. In this process, the features of the modulated transmission maps
and atmospheric lights are combined with the features of the main path using the proposed
FAMM. Simultaneously, the multi-level feature residuals from the encoder are fused with
the features in the decoder using AGAM.

3.2 Feature aggregation andmodulationmodule (FAMM)

The process of fusing features extracted at different levels is a critical step. However, due to
the differences in scales and dimensions of the features, traditional fusion methods such as
summation, multiplication, or concatenation are often less effective. Therefore, we develop
the feature aggregation and modulation module (FAMM) shown in Fig. 2 to fuse the features
from TEB, AEB, and the main path of the encoder. We rewrite (1) as follows:

J (x) = 1

t (x)
(I (x) − A) + A (2)

In the process of refining the transmission map, we use the features from TEB as a guide and
modulate them using FAMM. We apply sequentially stacked convolutional layers, each of
which is followed by aReLUnonlinearity.Amax-pooling layer follows the five convolutional
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Fig. 2 structure of FAMM. This module extracts deep level information, and facilitates the interaction and
fusion between features from transmission maps, atmospheric light, and hazy images at different levels

layers to reduce them to the same size as the main path. This provides us with the modulation
parameter γ for the feature map 1

t . Additionally, since the number of features at the output
of the atmospheric light branch is small, only two convolutional layers with ReLU and a
max-pooling layer are needed to complete the feature modulation, giving the modulation
parameter β from the feature map A. The hazy image feature Î of the main path has already
undergone feature extraction by the encoder so that can be directly input to FAMM without
feature modulation. Consequently, we can express the output Ĵ of FAMM as:

Ĵ (x) = γ ⊗
(
Î (x) � β

)
⊕ β (3)

Where ⊗ denotes element-wise multiplication, � denotes element-wise subtraction, and ⊕
denotes element-wise addition. The above equation is used to perform an element-wise sub-
traction of the input feature I with the modulation parameter β, it performs the multiplication
operation with the modulation parameter γ and sum with β. FAMM plays a crucial role in
the extract and aggregate deep level features from the input data to guide the image dehaz-
ing process. The resulting feature maps are used to compute the modulation parameters γ

and sum with β, which are used to modulate the image features. FAMM can dynamically
adjust the weighting of different features, allowing the network to focus on the most relevant
information for the dehazing task.

Meanwhile, although the Ĵ generated by a single FAMM aggregates part of the haze-free
information of the image, it also contains some hazy residuals, so a single FAMM cannot
effectively explore the useful image dehazing features. To better recover haze-free image, we
construct FAMMas a progressive aggregation. As shown in Fig. 3, we construct a progressive
aggregation structure containing 2 FAMMs. First, we define the output Fi

f amm (x) of the i-th
FAMM as:

Fi
f amm (x) = FAMM

(
Fi
main (x) , t (x) , A

)
(4)

where Fi
main is the input to the i-th FAMM from the encoder main path, t (x) is the trans-

mission map estimated by TEB, and A denotes the the global atmospheric light estimated by
AEB. Here, x is the position of the pixel in the image. After inputting Fi

f amm (x) feedback to

123



Multimedia Tools and Applications (2024) 83:50269–50287 50275

Fig. 3 Network architecture of the proposed progressive FAMMs at the i-th and i + 1-th level of the encoder.
The i-th FAMM is used to aggregate and modulate the features of the encoder main path Fi

main , T (x), A to

obtain Fi
f amm , which is fed back to the encoder main path

the encoder main path, it passes through a max-pooling layer and a Convolution layer with
ReLU. Features after downsampling by this series of operations, become the input Fi+1

main (x)
to the (i + 1)-th FAMM.

3.3 Attention guidance aggregationmodule (AGAM)

The proposed AGAM enhances feature representation by aggregating the residuals from the
encoder and features from the decoder using a Squeeze-and-Excitation (SE) mechanism,
inspired by several networks [28–30] that utilize attention mechanisms. This allows the
model to learn the interdependencies between feature channels and adaptively emphasizen
clear channels while suppressing hazy ones, resulting in improved dehazing performance.

As shown in Fig. 4, AGAM takes the residuals x1 from the encoder and the feature x2 from
the decoder as inputs. Firstly, x1 is transformed by the Ftr operation, which involves a 1×1
convolution with a ReLU activation function, to extract more useful features and obtain x̂1.

Fig. 4 Network architecture of attention guidance aggregation module. AGAM adaptively emphasizen clear
channels while suppressing hazy ones
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Then, x̂1 is concatenated with the high-level feature information feature x2 along the channel
dimension, to create a richer feature X . The formulas are as follows:

X = cat ([δ (Conv (x1)) , x2]) (5)

Where δ is ReLU activation function. Next, the feature X is squeezed using Fsq (·), which
applies global average pooling over the spatial dimensions of the feature map H × W and
compresses the feature map to 1 × 1. The outcome of this process is the squeeze of global
spatial information into the channel descriptor, effectively expanding the receptive field. The
resulting feature map passes through the Fex (·) excitation, which includes a 1×1 convo-
lution with a Sigmoid activation function, to obtain the channel attention weights W . The
Sigmoid activation function enables the learning of nonlinear interactions between channels
and facilitates the emphasis of multiple channels simultaneously [29].The weight W can be
denoted as:

W = Sigmoid (Conv (GAP (X))) (6)

At the same time, Ftr operation transforms feature X again to obtain a richer representation
X̂ . The channel attention weights W is multiplied by X̂ to obtain the re-weighted feature
representation, thereby enhancing the overall quality of the features. Finally, the output Y is
derived by adding the residuals x2 of the decoder to the re-weighted feature representation:

Y = W ⊗ δ
(
Conv

(
X̂

))
+ x2 (7)

Where ⊗ denotes element-wise multiplication. This output Y is then fed back to the decoder
as input for the next level of AGAM.

3.4 TEB and AEB

The transmission map provides valuable information about the haze density, which helps to
perform proper image dehazing. The densely connected encoder-decoder network inDCPDN
[8] is used as the transmission map estimation branch (TEB). The dense blocks used in the
branch maximize the flow of information along these features and ensure better convergence
by connecting all layers.

The atmospheric light is also a factor affecting the network dehazing output. We choose
the network structure in IPUDN [9] as the atmospheric light estimation branch (AEB). This
branch calculates three atmospheric light values corresponding to each color channel. Inspired
by the idea of emphasizing high-intensity pixel estimation of atmospheric light in DCP [1],
the branch uses a global max-pooling layer to better estimate atmospheric light.

3.5 Loss function

The network output of the end-to-end model may contain artifacts such as over-smoothing,
lack of contrast, or traces of convolutional operations. To obtain more realistic dehazed
images, we propose a combined loss function consisting of the following:

Edge-preserving loss The loss function of the existing dehazing network constructs to treat
all pixels in the output image equally, which may lose edge details. Some image dehazing
counts use the gradient of the image to characterize the edge information with satisfying
results. For example, Bai et al. [31] presents the gradient information with the conventional
Sobel operator.However, the classical Sobel operator can only detect a limited number of edge
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directions and has a low noise immunity. For this purpose, we construct the edge retention
loss as the sum of gradients in eight directions 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and
315◦, which can detect edges in multiple directions, defined as :

Ledge = 1

N

N∑
i=1

‖� f (Ii ) − �Ji‖1 (8)

� is the image gradient operator.

Reconstruction loss To ensure that the output image of the network is close to the ground
truth, we use the L1 loss as the reconstruction loss. Given an input hazy image Ii , the network
output is f (Ii ), and the ground truth is Ji . Then the L1 loss for N samples can be expressed
as:

Lres =
N∑
i=1

‖ f (Ii ) − Ji‖1 (9)

It measures the distortion between the dehazed image and the ground truth in the image pixel
space.

SSIM loss Tomake the network produce visually pleasing results, we use structural similarity
loss. The structural similarity between the two images can be as follows:

ssim ( f (I ) , J ) = 2μ f (I )μJ + C1

μ2
f (I ) + μ2

J + C1
· 2σ f (I )J + C2

σ 2
f (I ) + σ 2

J + C2
(10)

where μ f (I ) and σ 2
f (I ) are the mean and variance of f (I ), respectively. σ f (I )J is the covari-

ance of f (I ) and J . C1 and C2 are constants used to maintain stability. SSIM takes values
from 0 to 1. SSIM loss is given by:

LSSI M = 1 − ssim ( f (I ) , J ) (11)

Total loss Based on the above considerations, we combine the edge-preserving loss, recon-
struction loss and SSIM loss to regularize the dehazing network, and the total loss defines
as:

L = λ1Ledge + λ2Lres + λ3LSSI M (12)

where λ1, λ2, and λ3 are the weight parameters for balancing the different losses.

4 Experimens

This section presents the experimental setting, including the datasets, evaluation metrics, and
implementation details. We evaluate the haze removal effectiveness of the method qualita-
tively and quantitatively, then compare it with other state-of-the-art methods. In addition, the
proposed method for the ablation studies gives in this section for a more in-depth analysis.
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4.1 Experimental setting

We will introduce the selected dataset, evaluation metrics, and implementation details in this
part separately.

4.1.1 Dataset

It is difficult to obtain simultaneously hazy scene images with their ground truth counterparts
in the real world. Therefore, we usually need to train the network in a supervised method by
mainly synthetic hazy datasets. We train our FAM-Net on the large synthetic dataset, Haze4k
[33], and test on the Haze4k test set. The train set of Haze4k contains 3000 hazy images with
ground truth images, and the test set contains 1000 hazy images with ground truth images. In
addition, to further verify the dehazing effect of our method on real-world hazy images, we
select the real outdoor benchmark dataset BeDDE [35]. This dataset collected 208 images
from 23 cities in China under different weather conditions.

4.1.2 Evaluation metrics

To evaluate the performance of our network, we used three reference metrics, peak signal to
noise ratio (PSNR), structural similarity index (SSIM), and learned perceptual image patch
similarity (LPIPS) [36]. And two non-reference metrics, the visibility index (VI) and the
realness index (VI) [35], respectively. These metrics are usually used in haze removal tasks
to evaluate image quality criteria.

4.1.3 Implementation details

For the training of our FAM-Net, the Adam optimizer implements an initial learning rate
α = 10−4 . The ADAM algorithm [37] with default parameter settings uses as the optimizer.
In addition, the Cosine Annealing strategy used in [38] uses to adjust the learning rate of
FAM-Net training. We set the epoch to 100 and the initial learning rate to e−4. In particular,
for clear and hazy images, each image was cropped to a size of 512×512. In addition, the
loss function parameters in (12) set to λ1=0.1, λ2=1, λ3=0.5, respectively. In addition, the
network was trained and tested on Ubuntu 18.0.3 LTS using Pytorch 0.4.1 with one NVIDIA
Tesla P40 GPU and batch size set to 10.

4.2 Comparisons with state-of-the-art methods

We test the proposedmethod on synthetic hazy images and real-world hazy images, compared
it qualitatively and quantitatively with several state-of-the-art image dehazing methods. We
also show in Table 1 the number of parameters, computation, and runtime of the network,
using data obtained from 512×512 input RGB images.

Results on synthetic datasets In this section, we compared FAM-Net with other state-
of-the-art methods on the Haze4k test set. We selected three evaluation metrics: PSNR,
SSIM, and LPIPS, and the quantitative evaluation results are presented in Table 1. The
comparison shows that ourmethod achieves the best performance on allmetrics,which proves
the effectiveness of our feature aggregation and modulation network for haze removal. For a
better visual comparison of different models, we present the dehazed images in Figs. 5 and 6,

123



Multimedia Tools and Applications (2024) 83:50269–50287 50279

Ta
bl
e
1

Q
ua
nt
ita
tiv

e
co
m
pa
ri
so
n
w
ith

th
e
st
at
e-
of
-t
he
-a
rt
m
et
ho
ds

on
H
az
e4
k
da
ta
se
t

M
et
ho
d

Pu
bl
ic
at
io
n

PS
N
R

↑
SS

IM
↑

L
PI
PS

↓
Pa
ra
m
s(
M
)

Fl
op
s(
G
M
ac
)

R
un
tim

e(
m
s)

D
C
P
[1
]

T
PA

M
I’
11

16
.9
3

0.
85

3
0.
12

6
−

−
−

A
O
D
-N

et
[1
8]

IC
C
V
’1
7

17
.2
1

0.
83

1
0.
10

7
0.
00

17
0.
47

1.
00

G
C
A
N
et
[1
2]

W
A
C
V
’1
9

24
.1
0

0.
92

5
0.
05

9
0.
69

60
.8
9

68
.1
5

D
M

2
F-
N
et
[3
2]

IC
C
V
’1
9

24
.5
7

0.
94

3
0.
03

2
92

.1
4

18
7.
57

36
.3
2

M
SB

D
N
-D

FF
[2
2]

C
V
PR

’2
0

22
.9
9

0.
85

0
−

31
.3
5

78
.5
6

−
FF

A
-N

et
[3
]

A
A
A
I’
20

26
.9
7

0.
95

0
−

4.
46

11
53

.3
4

20
0.
64

D
M
T-
N
et
[3
3]

A
C
M
M
M
’2
1

28
.5
3

0.
96

0
−

51
.7
9

−
−

Y
u
et
al
.[
34
]

C
V
PR

’2
1

28
.7
0

0.
97

1
0.
02

5
49

.3
5

78
.3
7

11
5.
07

SG
ID

-P
FF

[3
1]

T
IP
’2
2

25
.9
0

0.
96

5
0.
03

3
13

.8
7

61
1.
91

18
3.
59

D
eH

am
er

[1
5]

C
V
PR

’2
2

28
.3
0

0.
96

3
0.
03

1
13

2.
40

−
30

.8
3

Y
e
et
al
.[
30

]
E
C
C
V
’2
2

29
.8
8

0.
97

8
0.
01

6
−

−
−

FA
M
-N

et
O
ur
s

31
.2
7

0.
98

1
0.
01

4
45

.1
8

32
8.
48

16
.6
7

FA
M
-N

et
pe
rf
or
m
s
fa
vo
ra
bl
y
ag
ai
ns
ta
ll
ot
he
r
m
et
ho
ds

in
al
lm

et
ri
cs
,w

he
re

↑m
ea
ns

th
e
hi
gh

er
th
e
be
tte

r,
an
d

↓m
ea
ns

th
e
lo
w
er

th
e
be
tte
r

123



50280 Multimedia Tools and Applications (2024) 83:50269–50287

Fig. 5 Visual comparison of the dehazing effect of various methods on synthetic outdoor-hazy images, these
images from the Haze4k test dataset. Zooming in on the image area, will show the effectiveness of our method

corresponding to outdoor and indoor scenes, respectively. Comparing the different methods
in Fig. 5, it is evident that our method produces the least amount of haze. It also exhibits
good haze removal ability while maintaining rich details and color information. Notably, for
the sky area of each outdoor image, existing methods fail to deliver ideal results and cause
varying degrees of color distortion, as evidenced in the images in the first and second rows.
In contrast, our method generates output that is closest to the true value of the ground truth.
In addition, for the indoor hazy images in Fig. 6, most of the existing methods achieve good
results due to the scene’s homogeneity compared to outdoor images. However, our method is
capable of recovering the most realistic image possible, even in such scenarios. For example,
for the recovery of the wall in the third row, many methods generate images with artifacts
except for ours. Additionally, in the first row, our method retrieves the texture details of the
desktop that are closest to the ground truth. We attribute this to the proposed edge-preserving
loss. Overall, for the recovery of synthetic hazy images, both outdoor and indoor, our method
achieves the best visual results.

Fig. 6 Visual comparison of the dehazing effect of various methods on synthetic indoor-hazy images, these
images from the Haze4k test dataset. Zooming in on the image area, such as the cropped area in the box, will
show the effectiveness of our method
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Results on the real-world datasets To further verify the dehazing effect of different meth-
ods on real-world hazy images, we used VI and RI for the quantitative evaluation of the
dehazing effect of 167 images fromBeDDE, as shown in Table 2. Our FAM-Net achieved the
second best result after DCP in VI and the best result in RI. Meanwhile, we selected four rep-
resentative real hazy images as samples. Figure 7 depicts the comparison with state-of-the-art
methods for realistic image dehazing. Similar to synthetic image dehazing, other methods
have more residual haze in the dehazing output and different degrees of artifacts. From the
visual comparisons, DCP [1] shows constant color distortion in color haze images due to
inappropriate priors. MSCNN [39], DehazeNet [2], AOD-Net [18], and DeHamer [15] retain
some dehazing capability but still show slight color distortion that darkens the scene. The
results of DCPDN [8], Yu et al. [34], and Ye et al. [30] are relatively good visually, but there
are some haze residue, and the recovery ability for object edge details is not as good as that
of our method. Overall, the results of our proposed method are of the highest fidelity, which
is perceptually closer to the real-world. Although our method is trained on synthetic dataset
only, it still obtains desirable dehazing results on real-world hazy images, proving that our
model is robust.

In Figs. 5, 6 and 7, we find that the images generated by FAM-Net have great dehazing
effects, in which few local artifacts are observed. We believe that this may be a result of
physical feature guidance.

4.3 Ablation study

This subsection introduces some ablation experiments to illustrate the utility of different
constructions and loss function. These experiments are all conducted on the Haze4k dataset
used previously. The detailed experiments that will be discussed can be found as follows.

Table 2 Quantitative comparison
with the state-of-the-art methods
on BeDDE dataset

Method Publication VI↑ RI↑
DCP [1] TPAMI’11 0.90466 0.96294

Nishino et al. [40] ICCV’12 0.82582 0.93419

CAP [6] TIP’15 0.84971 0.94812

NLD [41] CVPR’16 0.82188 0.95520

MSCNN [39] ECCV’16 0.88190 0.96667

DehazeNet [2] TIP’16 0.87938 0.96910

AOD-Net [18] ICCV’17 0.88785 0.96780

GFN [11] CVPR’18 0.85380 0.96188

DCPDN [8] CVPR’18 0.88445 0.96891

Yu et al. [34] CVPR’21 0.89145 0.96918

SGID-PFF [31] TIP’22 0.87838 0.96845

Ye et al. [30] ECCV’22 0.83771 0.96465

DeHamer [15] CVPR’22 0.87825 0.96787

FAM-Net Ours 0.89507 0.97044

↑ means the higher the better. Bold and underlined indicate the best and
the second best results, respectively
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Fig. 7 Visual comparison of the dehazing effect of various methods on real-world hazy images from the
BeDDE [35] dataset

4.3.1 Contribution of each core part

In this section, we conducted an extensive ablation study.We employed three different model
variations to validate the effectiveness of each component of the proposed FAM-Net. The
experiments that discussed in detail are shown in Table 3, which reports quantitative results,
including PSNR ,SSIM, and LPIPS performance.

Baseline The designed Baseline is a joint dehazing network based on an atmospheric scat-
tering model. It comprises an encoder-decoder main path to learn the haze-free features,
as well as TEB and AEB to estimate the transmission map and global atmospheric light,
respectively. At the end of the network, the dehazed image is obtained using (2). As shown in
Table 3, the dehazing effect of Baseline has surpassed many existing methods. This suggests
that the end-to-end deep network joint estimation of the dehazed image, along with a suitable
physical feature guidance mechanism, is beneficial for haze removal. As shown in Fig. 8, the
hazy image processed by Baseline has more haze left.

Baseline + FAMM According to [23], a process-oriented aggregation approach can prevent
suboptimal dehazing. Therefore, unlike the Baseline, our proposed network does not employ
a result-oriented concatenation at the end of the network. Instead, we introduced the proposed
FAMM by integrating it into the encoder network to aggregate and modulate the outputs of
themain path, TEB andAEB to obtain the final dehazing results. As shown in Table 3, FAMM
plays a crucial role in improving the output results. The three evaluation metrics improved
by 1.61, 0.005, and 0.0092.

Baseline + FAMM + AGAM To evaluate the effectiveness of the AGAM method, we com-
pared it to the commonly used concatenationmethod. The results demonstrate that theAGAM
method outperforms the concatenation method in terms of network performance, with PSNR

Table 3 Ablation study of each core part and mechanism used in our proposed networks

Ablation study variant Settings Haze4k
Baseline FAMM AGAM PSNR SSIM LPIPS

1 � 29.02 0.976 0.0228

2 � � 30.63 0.981 0.0136

3 � � � 31.27 0.981 0.0135
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Fig. 8 Visual of each core part and mechanism used in our proposed networks. We have enlarged the selected
area and placed it in the top left corner

improvement of 0.64. These results suggest that theAGAMmethod can be a useful alternative
to the concatenationmethod for improving the performance of encoder-decoder architectures.
As shown in Fig. 8, the dehazed image has the least haze residue and is closest to the ground
truth.

4.3.2 Impact of the progressive FAMMs

We conducted a comprehensive ablation study of the progressive aggregation modulation
design process. The study comprises two parts: a comparison between result-oriented and
process-oriented concatenation of FAMMs, and a comparison between a single FAMM and
multiple progressive FAMMs.

The result-oriented concatenation requires embedding the FAMM at the end of the net-
work and inputting the output of TEB, AEB, and encoder-decoder together into the FAMM to
obtain the output dehazed image. On the other hand, process-oriented concatenation involves
embedding the FAMM into the encoder, as illustrated in Fig. 1, to aggregate and modulate
the physical features. As can be seen from the first two rows of Table 4, process-oriented con-
catenation achieved better results than result-oriented concatenation when only one FAMM
was used.

Furthermore, utilizing process-oriented concatenation, we conducted a detailed ablation
study on the progressive aggregationmodulation design process.We used three combinations
of FAMMdesigns to analyze themodels performance relative to aggregation andmodulation.
The performance evaluation with the different numbers of FAMM combinations is presented
in Table 4. The quantitative experimental results show that the progressive feature aggregation
and modulation of multiple FAMMs yield better results than single FAMM. Among the
various progressive FAMMs designed in this section, the combination of two FAMMs is
most suitable for our network.

Table 4 Impact of progressive FAMMs on FAM-Net based image dehazing

Number of progressive FAMM Concatenation Haze4k
PSNR SSIM LPIPS

One Result-oriented 28.66 0.970 0.0249

One Process-oriented 31.09 0.980 0.0138

Two Process-oriented 31.27 0.981 0.0135

Three Process-oriented 31.08 0.981 0.0137
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Table 5 Impact of loss function on FAM-Net based image dehazing

Different combinations loss function Haze4k
Lres LSSI M Ledge(V 1) Ledge(V 2) Ledge(V 3) PSNR SSIM

1 � 30.53 0.973

2 � � 30.96 0.979

3 � � � 31.05 0.980

4 � � � 31.06 0.980

5 � � � 31.27 0.981

4.3.3 Impact of loss function

In this subsection, we conduct an extensive ablation study to validate the effectiveness of the
proposed loss function.

Loss function Inspired by the edge feature information to improve the performance of the
dehazing network, FAM-Net adds a third loss term, Ledge, to (12) compared to the con-
ventional loss function based on MSE and SSIM. The quantitative experimental results in
Table 5 show that FAM-Net obtains the highest PSNR and SSIM values for the loss function
L=Lres+0.5LSSI M+0.1Ledge, indicating the improvement of the image dehazing effect in
using Ledge with a suitable λ. Figure 9 shows the dehazed results, which indicate that the
method without Ledge is less effective than the proposed method and that its result suffers
from some residual haze and poor preservation of objects’ edges.

Edge-preserving loss As discussed in Section 3.5, we apply a novel edge-preserving loss
function for haze removal. We perform an ablation study using FAM-Net. Table 5 shows
the experimental results without the edge-preserving loss function and with three different
designs of the edge-preserving loss function.

• Version 1 uses traditional vertical and horizontal edge detection.

Fig. 9 We have enlarged the selected area and placed it in the lower left corner. The method without Ledge is
less effective than the proposed method
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Table 6 Average PSNR and
SSIM values of FAM-Net on
validation set under different
hyperparameter settings in (12)

λ1 λ2 λ3 PSNR SSIM

0.1 1 0.5 33.26 0.985

0.1 1 1 33.12 0.985

1 1 0.5 33.24 0.984

• Version 2 adds two other edge detection in the diagonal direction to version 1.
• Version 3 goes a step further and uses Sobel operators in eight directions of 0◦, 45◦, 90◦,
135◦, 180◦, 225◦, 270◦, and 315◦ for edge detection.

Based on the experimental results, it was found that using the edge-preserving loss func-
tion can improve the network’s performance. Among the three proposed designs, the one
that yielded the best results was constructing the edge-preserving loss function using eight
directions of the Sobel operators to calculate the gradient. Alternatively, using two or four
directional Sobel operators resulted in decreased performance.

Hyperparameter To explore the impact of hyperparameters in (12) on the network’s perfor-
mance, we calculated the average PSNR and SSIM for different loss weights on FAM-Net,
as presented in Table 6. For this analysis, FAM-Net underwent parameter optimization on
the validation set, where approximately 1/10th of the data from the train set was randomly
selected for validation. It is essential to note that we chose the L1 loss as the primary criterion
for image reconstruction, and following the guidance from existing methods [17, 31], we did
not require additional hyperparameter balancing for the reconstruction loss. Thus, we set λ2
to a fixed value of 1 and proceeded to explore various combinations of λ1 and λ3 to weigh
the respective loss functions. Subsequently, we performed three sets of comparison tests.

The results presented in Table 6 indicate that the hyperparameter combinations of 0.1, 1,
and 0.5 yielded themost favorable outcomes in terms of both PSNR and SSIM.Consequently,
we adopted these specific parameter combinations to achieve a balanced approach to losses
in each part during this experiment.

5 Conclusion

This study proposes an effective feature aggregation and modulation network (FAM-Net)
method for haze removal. Our method can preserve texture and edges of the image better and
significantly improve the overall image quality. In FAM-Net, FAMMs, AGAM, TEB, and
AEB are introduced to the network to effectively suppress image content loss. Our proposed
progressive FAMMs exploit deep and non-adjacent layers of physical features generated by
hazy images and modulate them, which are aggregated with clear regions to obtain complete
dehazed images. AGAM replaces the original skip connection to improve the dehazing effect.
Extensive experiments on standard datasets demonstrate the superiority of our method over
some representative haze removal methods.
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