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Abstract
The continuous release of location statistics plays a significant role in various real-world
applications, such as traffic management and customization of public services. However,
existing literature primarily focuses on static scenarios or perturbing locations at a single
timestamp, disregarding the consideration of temporal correlation in mobile users. This over-
sight leaves the data susceptible to privacy attacks, including inference attacks, resulting in
extra privacy leakage. To address this challenge,we propose a LocalDifferential PrivacyBud-
get Distribution and Streaming Data Releasing (LPBD) mechanism for real-world location
datasets. Specifically, we investigate the problem of continuously releasing location statis-
tics for infinite streams while protecting user privacy and quantify the impact of temporal
correlation on privacy leakage. The LPBD is a novelw-event level privacy-preserving mech-
anism, which has the capability to provide an adequate privacy budget for each timestamp
and effectively mitigate the privacy leakage problem resulting from temporal correlation.
Experimental results demonstrate that LPBD enhances data availability with strong privacy
guarantees compared to state-of-the-art baseline methods.

Keywords Streaming data · Continuous observation · Location statistics · Temporal
correlation · Local differential privacy · w-event privacy

1 Introduction

Location statistics have been widely used in many data-driven applications, such as traffic
volume control and customized public services [1–4]. However, the continuous collection
and analysis of streaming data seriously violates each participant’s privacy. These streaming
data involve sensitive information about individuals, and privacy leakages will accumulate
over time [5–7], leading to detrimental consequences. Differential Privacy (DP) [8] is a strict
privacy architecture frequently applied in real-time surveillance systems to protect the privacy
of all users. Local Differential Privacy (LDP), a distributed variation of DP [9, 10], ensures
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each user’s privacy without requiring the original data to leave the client or the use of trusted
third-party servers. It is currently one of the most popular privacy-preserving paradigms and
finds widespread use in the industry [11].

Differential privacy research for evolving (streaming) data analysis can be roughly catego-
rized into three categories according to the level of privacy protection: event-level, user-level,
and w-event level privacy. In earlier research [8, 12, 13], most studies focused on event-level
privacy and user-level privacy. However, the former protects just one data point from the
user’s entire stream, whereas the latter is impractical for the majority of real-world scenarios
because it requires protecting the user’s presence throughout an infinite stream. To resolve
this dilemma, the concept of w-event level [14–17] privacy is introduced. The aim is to guar-
antee that every privacy event within a sliding time window, consisting ofw consecutive time
intervals or timestamps, achieves the protection of differential privacy.

However, in streaming data collection scenarios, traditional location protection methods
[4, 10, 18, 19] do not consider the temporal correlation of mobile users, making them vul-
nerable to various inference attacks and resulting in extra privacy leakages. The following
example [20, 21] illustrates how inference attacks can lead to extra privacy leakage.

1. Consider a user who rides from school to the restaurant, as shown in Fig. 1(a) (where
”star” is). The perturbed position is released by selecting a point in each of three randomly
selected circles. Although a single location appears to be protected at each timestamp,
an adversary could potentially be able to accurately infer that the user is in a restaurant
based on realistic road constraints or the user’s movements, resulting in privacy leakage.

2. Consider the user’s location "star" as depicted in Fig. 1(b). If the user can only be present
in the four places shown in the graph at the current timestamp based on previous location
estimates, then the perturbed location may reveal the true location. Thus, technically, the
temporal correlation should have an effect on the radius of the circle.

Main contributions
To mitigate the challenge of extra privacy leakage induced by the temporal correlation
between continuously generated stream data, we propose the LPBD mechanism, which
complies withw-event level privacy constraints. Themechanism incorporates a budget distri-
bution scheme capable of adapting to the presence or absence of temporal correlation between
timestamps. In brief, LPBD is a straightforward and effective LDP mechanism designed to

Fig. 1 Examples of privacy leakage caused by temporal correlations of user locations
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address privacy preservation challenges arising from temporal correlation within user data.
The main contributions of this paper are detailed below.

• Wedeveloped LPBD, a versatile LDPmechanism to assess dissimilarities between statis-
tics, determining whether to release current or most recent statistics. This mechanism
ensures adequate budget distribution for consecutive timestamps within each sliding
time window, which is used for releasing statistics. The proposed distribution scheme is
flexible and applicable to different datasets.

• We explored the challenge of releasing infinite streams ofmobile user data in a local envi-
ronment, comparing it with state-of-the-art baselinemethods. Furthermore, we quantified
the impact of temporal correlation on user data privacy leakage and provided theoretical
proof of LPBD’s ε-LDP compliance.

• We conducted a comprehensive series of experiments using real-world datasets to investi-
gate the influence of twokey parameters: thewindow lengthw and the total privacy budget
value within sliding windows. Concurrently, we calculated the average error between the
output value and the true value of each timestamp as an indicator to evaluate the usability
and privacy loss of differentmethods. Experiments show that LPBDoutperforms baseline
methods in terms of data availability.

The remainder of the paper is structured as follows. Section 2 discusses related work.
The preliminaries of this paper are given in Section 3. Section 4 quantifies the impact of
privacy leakage. Section 5 details the LPBD mechanism and provides a privacy analysis of
LPBD. Section 6 presents the experimental results. Finally, Section 7 draws the conclusions,
discussing our future work.

2 Related work

The processing of streaming data and privacy-preserving mechanisms under DP have been
extensively studied, initially focusing on two concepts: event-levelDP,which hides individual
events in streaming data, and user-level DP, which tries to hide all events of a single user
over the temporal stream.

For instance, Dwork et al. [8] initiated the research and proposed an event-level DP mech-
anism based on binary tree technology for finite streams. Chan et al. [22], inherited the binary
tree-based [8]method and extended themethod to handle infinite streams.Nonetheless, event-
level DP is usually not enough for privacy protection, while user-level DP is generally only
implemented on finite streams. For example, Fan et al. [23] proposed FAST, a sampling and
filtering framework that introduces noise for user-level DP over finite streams and adaptively
samples data elements using the Kalman filter and Proportional Integral Derivative (PID)
feedback error.

To resolve the dilemma, Kellaris et al. [14] proposed aw-event level privacy paradigm that
tries to guarantee each privacy event is contained within a w-length sliding time window,
protecting any sequence of events. Subsequently, they developed the Budget Distribution
(BD) mechanism and the Budget Absorption (BA) mechanism based on a sliding window
methodology. Furthermore, by integrating the w-event DP with FAST, Wang et al. [24]
propose RescueDP, a multidimensional stream release mechanism that includes dynamic
sampling, adaptive grouping, perturbation, and filtering to release multiple infinite streams
with considerable data utility.

However, these DPmechanisms cannot be used directly in an LDP environment due to the
assumption that untrusted servers cannot directly access raw data. The above mechanisms
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all protect user privacy under the assumption of a trusted server and cannot prevent internal
attacks from inferring user privacy [21].As for the streamingdata, inspired by the construction
of binary trees in [8], Erlingsson et al. [11] introduced a memory mechanism and proposed
RAPPOR for releasing binary attributes with LDP to provide long-term LDP guarantees.

Besides, Joseph et al. [25] propose THRESH, an LDP mechanism for streaming data
whose privacy budget is only consumed when users vote to decide whether a global update is
required. Moreover, Ren et al. [16] extended the BD and BA [14] mechanisms into the LDP
environment by proposing a mechanism for streaming data statistics under w-event LDP.
Nevertheless, LDP mechanisms for streaming data are still in their infancy.

At the same time, none of the above series of works considered the impact of user data
relevance on privacy protection. The subsequentwork involves this aspect of the research.Cao
et al. [5] investigated the potential privacy loss of traditional DP mechanisms under temporal
correlation. Xiao et al. [20] investigated an adversary who knew the temporal correlations
of specific users, and they developed the Planar Isotropic Mechanism (PIM) for continuous
location-sharing scenarios. On the basis of [20], Fang et al. [21] incorporated the innovative
Staircase mechanism into the location protection model. Hemkumar et al. [26] proposed the
Privacy Budget Allocation (PBA) mechanism to address the temporal correlation problem in
a centralized environment.

Building upon the aforementioned foundation, this paper explores the privacy protection
challenges associated with temporal correlation streaming data continuously generated by
users in the LDP scenario by adopting the w-event privacy paradigm. The goal is to address
the existing gap in the literature and extend the understanding of this crucial aspect of privacy
preservation.

3 Preliminaries

In this section, some definitions and related theorems will be briefly introduced.

3.1 Local differential privacy

LDP is a privacy paradigm built on the following neighborhood definitions:

Definition 1 (Neighborhood) Two datasets X and X ′ are neighbors if they differ in at most
one element. This means that one dataset is a subset of the other, and the larger dataset
contains exactly one extra row.

LDP guarantees that statistical query results for any neighboring datasets remain indis-
tinguishable to protect sensitive personal data. Consequently, it prevents strong adversaries
frommaking inferences about private information from search results. LDP proves especially
valuable in distributed environments and does not require data collectors to be trusted. By
perturbing their own data before sending it to the data collector, each user ensures that an
attacker cannot compromise their privacy. As a result, raw data remains solely stored with
the data generator (i.e., the user) and not shared with third parties. The formal definition is
as follows:

Definition 2 (ε-LDP) A randomized privacy mechanism M provides ε-LDP if for all pairs
X ,X ′ ∈ Domain(M) and every possible output O ∈ Range(M):

Pr [M(X ) ∈ O] ≤ eε × Pr [M(X ′) ∈ O]. (1)
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In the above definition, the constant ε is referred to as the privacy budget. It reflects the
indistinguishability between real statistics and private statistics. Stronger privacy protection
results from smaller ε, and vice versa.

The Random Response (RR) mechanism was introduced in [27], specifically, each user
gives a correct or opposite answer to a sensitive question based on the outcome of a coin toss.
As users gave random responses, the data collector was unable to determine the true answers
of individuals, but usage statistics could still be extracted. The use of the RR mechanism in
LDP mechanisms is widespread.

3.2 w-event privacy

For continuously releasing data streams, LDP has a variant termed w-event privacy [18, 19].
It provides provable privacy guarantees for any series of events occurring within any sliding
window of length w. The following is the definition:

Definition 3 (w-neighboring) Let St = {D1, D2, ..., Dt } be a prefix stream of sequential data
containing a dataset Di with an arbitrary number of rows, each corresponding to a distinct
user at each timestamp i. Two prefix streams, St and S′

t are considered to be w-neighboring
for any positive integer w if the following conditions are satisfied:

(1) for each Di and D
′
i , i ∈ [1, t] and Di �= D

′
i , it holds that Di and D

′
i are neighboring,

and;
(2) for each i1 ∈ [1, t], i2 ∈ [1, t], i1 < i2, and i1 �= i2, it holds that i2 − i1 + 1 ≤ w.

Definition 4 (w-event privacy) Let M represent a random mechanism, and O represent the
domain of all possibleM outputs. When St and St ′ arew-neighboring,M satisfiesw-event
ε-local differential privacy (or, simply, w-event privacy) if it holds that:

Pr [M(St ) ∈ D] ≤ eε × Pr [M(S ′
t ) ∈ D]. (2)

Definition 5 (Laplace mechanism) For any query function f , suppose that each user ui
records a numerical attribute value f (Dt ) and that there are a total of n users. To add noise
to f (Dt ), define the following random function:

M(Dt ) = f (Dt ) + Lap(� f /ε) (3)

Where f (Dt ) is the value after noise addition and Lap(λ) is a Laplace-distributed random
variable with scale λ = (� f /ε), i.e., noise. The difference between the maximum and
minimum values in f (Dt ) is represented by � f . The probability density function of the

Laplace distribution is Pr (x |λ) = 1
2λe

−|x |
λ .

Sequential composition is an essential element under w-event privacy, which can be
described as follows:

Theorem 1 (Sequential composition)ConsiderMi (v) is an εi -LDPmechanismwith an input
value of v, and M(v) is the sequential composition of M1(v),..., Mk(v). Then a sequence
of mechanism M(v) over a data stream S provides

∑k
i=1 εi -LDP.

4 Privacy leakage analysis under temporal correlation

In this section, the notation and prior knowledge are described in subsection 4.1. Subse-
quently, the mobility modeling process is introduced in subsection 4.2, which will be utilized
in the analysis of privacy leakage discussed in subsection 4.3.
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4.1 Prior knowledge

A collection of data containing n tuples, denoted by an index [n] = {1, 2, ..., n}, intends
to release the output of a certain query function s = f (x), where x = {x1, x2, ..., xn}. To
preserve the privacy of all private attributes, it will return noisy answers y = M( f (x)) by
adding random noise extracted from certain distribution. Therefore, all possible outputs �

construct the probability distribution Pr (M( f (x) ∈ �). A set of� is utilized to represent the
extent to which the adversary possesses knowledge about data correlations. It is not possible
to guarantee privacy against adversaries outside of � due to the lack of researchability under
arbitrary distributions.

The degree of privacy leakage in correlated user data is influenced by the quantity of prior
knowledge, as shown in various studies [28, 29].When the adversary possesses knowledge of
xk , the notation�i,k is used to represent the adversary’s attempt to infer information regarding
the tuple xi . The term "target" of the adversary is denoted as xi , while xk represents prior
knowledge, k ∈ [n]\{i}, where [n] = {1, 2, ..., n}. The more tuples in xk , the more prior
knowledge the adversary has and the greater the threat to user private data.

4.2 Mobility model

In the context of streaming data releasing, it can be assumed that the adversary�i,k possesses
knowledge of the transition probabilities between the user’s potential location. In this article’s
settings, the transition probability between the user’s potential locations is modeled using a
Markov Chain (MC) process , and they are referred to as θ ∈ �, where � represents the set
distribution of all transition probabilities. A stochastic process that transitions from one state
in the state space to another is called a MC process.

Definition 6 (Temporal correlations) The temporal correlations between the data lt−1
i and

lti of user u are described by transition matrices Pi , denoted as Pr (l
t−1
i |lti ).

The user’s mobility is modeled as a first-order MC with temporal correlation sections.
In this application, the first-order MC denotes a situation where the probability of a user
changing their location state at a certain time depends solely on their previous position.
The probability of transferring from one data point to another is described in MC by the
transition matrix Pi , where the sum of transition probabilities for each row is fixed at 1. As
an illustration, generate a transition matrix of dimension 2 as shown in Table 1. If a user
u is at loc1 (the current location), then the probability of coming from loc2 (the previous
location) is 0.3, expressed as Pr [lt−1

i = loc2|lti = loc1] = 0.3.
Considering the temporal aspects, access probability, and transfer probability, the Markov

model becomes a valuable tool for accurately predicting the movement of a user’s location
[5, 6].

Table 1 Example of a transition
matrix

loc1 loc2

loc1 0.7 0.3

loc2 0.1 0.9
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4.3 Quantifying temporal correlation privacy leakage

The maximum ratio of two distributions (e.g., Laplace distribution) for all distinct values of
lti , l

t ′
i , and all possible transition probability distributions is the Temporal Correlation Privacy

Leakage (TPL) of privacy mechanism Mt with respect to �θ
i .

The privacy leakage of Mt with respect to Ti is called privacy leakage. Inspired by [5,
26, 30], TPL is defined as follows:

T PL�θ
i
(Ti ,Mt )

de f���� sup
lti ,l

t ′
i ,θ

log
Pr (p|lti , St , θ)

Pr (p|lt ′i , St , θ)
(4)

T PL�θ
i
(Mt )

de f���� max∀Ti ,i∈[n] T PL�θ
i
(Ti ,Mt ) (5)

In w-event privacy, the TPL of Mt with respect to any �θ
i where i ∈ [n] is less than or

equal to the total privacy budget ε.

sup
∀Ti ,i∈[n]

T PL�θ
i
(Mt ) ≤ ε (6)

Next, the (4) is transformed and simplified using theBayesian theorem to obtain the impact
of temporal correlation on privacy leakage in the continuous data-releasing setting, i.e.,

T PL�θ
i
(Mt ) = sup

o1,lti ,l
t ′
i ,θ

log
Pr (p|lti , St , θ)

Pr (p|lt ′i , St , θ)

= sup
o1,...,ot−1,lti ,l

t ′
i ,θ

log

∑
lt−1
i

Pr (o1, ..., ot−1|lt−1
i , St−1)Pr (l

t−1
i |lti )

∑
lt−1
i

Pr (o1, ..., ot−1′ |lt−1′
i , S

′
t−1)︸ ︷︷ ︸

(i)T PL(Ti ,Mt−1)

Pr (l
t−1
i |lti )︸ ︷︷ ︸

(i i)Pi

+ sup
ot ,lti ,l

t ′
i ,θ

log
Pr (ot |lti , St )
Pr (ot |lt ′i , S

′
t )︸ ︷︷ ︸

(i i i)PL0(Ti ,Mt )

(7)

The three annotated items in the (7) are subsequently discussed. The first item represents
the privacy leakage at the previous timestamp t − 1, the second item represents the temporal
correlation as determined by the transition matrix Pi , and the last item is equal to the privacy
leakage at time t with no temporal correlation.

As a result, note that if t = 1, then T PL�θ
i
(Mt ) = PL0(M1); if t >1, then satisfy the

following equation:

T PL�θ
i
(Mt ) = T PL�θ

i
(Mt−1) + PL0(Mt ) (8)

Equation 8 also reveals that TPL is recursively computed and that privacy leakages may
accumulate over time.

5 Proposedmechanism

This section elaborates on the details of the LPBD mechanism and provides proof of its
satisfaction of ε-LDP.
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5.1 Motivation

In general,w-event privacymechanisms offer lower privacy guarantees compared to classical
ε-LDP, particularly when user data is not independent across consecutive timestamps (i.e.,
correlated in time) [5, 28]. This limitation arises due to the inadequate privacybudget allocated
at timestamps within a sliding window. Consequently, the existing state-of-the-art privacy
budget distribution methods in w-event privacy, such as BD and BA mechanisms [14], are
not suitable for scenarios with temporal correlation in data points.

In this paper, we accept the idea of sliding windows, improve the existing budget dis-
tribution scheme, and adapt it to the local environment. The proposed LPBD mechanism
employs a well-designed budget distribution strategy to effectively reduce or even eliminate
the impact of temporal correlation on privacy protection. Note that the total privacy budget
ε consumed must be less than or equal to the sum of all budgets within a sliding window of
length w. The length of the sliding window at any time i ranges from t − w + 1 to t .

5.2 Algorithm description

The generation of private statistics relies on real-world location statistics, while the LPBD
mechanism simplifies this process into two distinct steps: the decision phase and the release
phase. As shown in Fig. 2, location statistics for each entity are produced at each timestamp
i . Subsequently, the real statistics are locally compared with the last private release. If they
exhibit similarity, the most recent release version is returned according to the approximation
strategy. Conversely, if they exhibit dissimilarity, the privacy budget is distributed based on
the presence of temporal correlation, and this portion of the budget is utilized to perturb the
real statistics before their release.

Fig. 2 The overall process structure of LPBD
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Table 2 Notations summary

Notation Description

cri Real location statistics for the current timestamp i

opl Released private location statistics for the last timestamp l

l The last recent release timestamp l

ε Total budget available for distribution

εi Privacy budget assigned at timestamp i
∑

ε1i Privacy budget for decision phase
∑

ε2i Privacy budget for release phase

The LPBD mechanism M is comprised of a series of sub-mechanisms
{M1, M2, ..., Mi , ..., Mt }, where each Mi takes the dataset St [i] = Di as input and releases
private statistics oi using the assigned privacy budget εi . As a result, M released a series
of private statistical data, namely {o1, o2, ..., oi , ..., ot }. Mechanism M is divided into two
distinct components: M1

i and M2
i . These two phases, which operate sequentially, each take

half of the overall privacy budget, i.e., ε1 = ε2 = ε/2. Table 2 summarizes the notations
used in this section.

The overall process of the LPBD mechanism releasing private statistics is outlined in
Algorithm 1, which takes as input (i) total privacy budget ε, (ii) real location statistics cri , (iii)
last recent private release opl , (iiii) similarity threshold Th, where Th is a defined threshold
for deciding whether it is more beneficial to approximate the current statistics to the last
private release than to disturb the current statistics.

Algorithm 1 Pseudocode of the overall process of LPBD.

Input: cTi , opl , Th, ε

Output: private statistic oi
1: εdi ← ε/2

//** The decision step **//
2: Calculate the similari t y between cri and opl given the

using privacy budget εdi
3: if cri and opl are similar then

4: opi ← opl
5: else

//** The release step **//
6: Consider distinct cases of temporal correlation
7: oil ← Perturb wi th allocated budget
8: return oi = cri + noise
9: end if

5.2.1 The decision phase

The decision phase M1 is detailed in Algorithm 2. M1 uniformly distributes the privacy
budget from ε1 to each timestamp within the current sliding window. At timestamp i , the
sub-mechanism M1

i calculates the similarity result between the true statistic cri and the last
released private statistic opl . The decision algorithm takes as input: (i) the current location
statistic cri , (ii) the latest recent release o

p
l , and (iii) the comparison threshold Th.
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The user then uses the privacy budget εdi to apply RR mechanism [27] to the similarity
results, guaranteeing that the decision phase guarantees LDP.Unlike existingw-event privacy
mechanisms, the proposed mechanism conducts local similarity testing on each user. At each
timestamp, M1

i uses a budget of ε/2 ∗ w.
By comparing the statistical data of the current timestamp with the similarity of the

previous private release, the decision algorithm determines whether a new private release is
required. At each timestamp i , extract a dataset Di with rows corresponding to specific users
and columns corresponding to the total number of attributes for user u. The Mean Absolute
Error (MAE) is used to calculate the similarity.

MAE = 1

u

u∑

j=1

‖cri [ j] − cPl j]‖ (9)

where the vector cri represents the real data obtained from Di for timestamp i , and l is the
private data published at the last released timestamp cpl . To make the decision phase M1

i
satisfy differential privacy, noise needs to be added to the MAE.

Algorithm 2 The decision algorithm M1.

Input: cri , o
p
l , Th, ε1

Output: Similari t y result ξ
′
i

1: ε1i ← ε/2 ∗ w

2: Calculate the similari t y : Thi = cri − opl (use MAE)

3: ξ ← Thi > Th

4: ξ
′
i =

⎧
⎪⎨

⎪⎩

0, w.p. p(w.p.p = with probability p.)

1, w.p. p

ξi , w.p. 1 − 2p

5.2.2 The release phase

The release phase M2 is detailed in Algorithm 3. First, M2 separates the privacy budget
ε2 into the release privacy budget and the reserve privacy budget. Then, at timestamp i ,
M1

i transfers the similarity result to M2
i . In one scenario, if M2

i decides not to release any
new private statistics at the current timestamp i , the release privacy budget allotted at this
timestamp will be stored and available for upcoming releases if necessary.

On the contrary, if the similarity exceeds the threshold Th, the real location statistics cri
are perturbed using the allocated privacy budget ε p

i . Concurrently, the existence of temporal
correlation at the current timestamp is determined. If there is a correlation between the
current timestamp and the previous timestamp, M2

i will use part of the previously stored
reserve budget to add to the current release phase.

To illustrate the budget distribution process clearly, Fig. 3 presents the budget allocation of
the LPBDmechanism under continuous data release for 5 timestamps, with a sliding window
length of w = 3. Suppose M releases new private outputs at timestamps 1, 2, 4, 5, where
timestamp 3 releases an approximation of timestamp 2. In phase 1, M1 allocates a fixed
privacy budget at each timestamp. Then, in phase 2, M2 allocates half of the allocated total
privacy budget (i.e.,

∑
ε2i /2 = ε/4) in an exponentially decreasing manner within a sliding

window of a set length.

123



Multimedia Tools and Applications (2024) 83:50225–50243 50235

Fig. 3 The distribution process of privacy budget within a sliding window of size w=3

Algorithm 3 The release algorithm M2

Input: w, cri , ε
2, ξ

′
i

Output: Release Noisy output oi
1: Calculate remaining budget : ε2i = (ε/4 − [∑t−1

i=t−w+1 ε j ])/2
2: if Similari t y > T H then
3: while Correlation exists do
4: εA = (ε/4 − [∑t−1

i=t−w+1 εaj ])
5: Set εrei = ε2i (Reserve f rom εr e)

6: ε2i = εrei + ε2i
7: return oi = cri + Lap(λ2i )
8: end while
9: return oi = cri + Lap(λ2i )
10: else
11: return oi = ol
12: end if

To put it simply, at timestamp 1, it allocates ε21 = [(ε/4 − 0)]/2 = ε/8. At timestamp
2, ε22 = [ε/4 − (0 + ε/8)]/2 = ε/16. At timestamp 3, ε23 = 0 because there is no private
output at timestamp 3. Since there is no temporal correlation between the above timestamps,
no extra budget should be added. At timestamp 4, ε24 = [ε/4 − (0 + ε/16)]/2 = 3ε/32 and
add 3ε/32 part of the reserved budget to ε24 due to the correlation between timestamps 4 and
3. Similarly, at timestamp 5, ε25 = [ε/4 − (0 + 3ε/32)]/2 = 5ε/64 and adds extra budget
5ε/64. It should be noted that the cumulative privacy budgets in each of the sliding windows
above are less than the total privacy budget ε.
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5.3 Privacy analysis

In this subsection, we first prove that both the decision phase M1 and the release phase
M2 satisfy w-event privacy. Subsequently, it is shown that the LPBD mechanism satisfies
w-event privacy with the privacy budget ε.

Theorem 2 The decision algorithm M1 satisfies w-event privacy for
∑

ε1i = ε/2.

Proof At timestamp i , let ξi be the statistical similarity comparison result of the current
timestamp i with the previous release. Let ξ

′
represent any result of M1

i applied to ξi , then:

Pr (ξ
′
i = 0|ξi = 0)

Pr (ξ
′
i = 0|ξi = 1)

= −2 × p + 1 + p

p
= 1 − p

p
(10)

Likewise available,
Pr (ξ

′
i = 1|ξi = 1)

Pr (ξ
′
i = 1|ξi = 0)

= 1 − p

p
(11)

From the above formula, given the observed output ξ
′
i , the degree of indistinguishability

between two potential inputs "0" and "1" is ln(
1−p
p ). Therefore, M1

i satisfies ln(
1−p
p )-

differential privacy. According to Theorem 1, the privacy budget used by M1 within a sliding
window equals the total of the privacy budgets of M1

i such that i−w+1 ≤ j ≤ i . Therefore,
within the sliding window w, the privacy budget consumed by M1 is as follows:

ε/2 =
j=i∑

j=i−w+1

ln(
1 − p

p
) = w × ln(

1 − p

p
) (12)

where p is 1

1+ε
ε

2×w
. As a result, M1 satisfies w-event privacy with the privacy budget ε/2. ��

Theorem 3 The release algorithm M2 satisfies w-event privacy for
∑

ε2i = ε/2.

Proof The private output of q(Di ) is released by M2
i , or it outputs null. In the given setting,

the maximum change in the outcome of q(Di ) due to the addition or removal of a row from
Di is limited to 1. Consequently, the sensitivity of q is limited to 1.

The M2
i introduces laplace noise with a scale of λ2i = 2/(ε/4 − [∑k−1

j=i−w+1 ε j ]). If
there is a temporal correlation between the current and previous timestamps, M2

i borrows
the extra budget from the deliberately reserved ε/4. Therefore, M2

i is injected with noise of

scale λ2i = 2/(ε/4 − [∑i−1
j=i−w+1 ε j ]) + 2/(ε/4 − [∑i−1

j=i−w+1 ε j ]) if there is a correlation;
otherwise, the noise is λ2i = 2/(ε/4 − [∑i−1

j=i−w+1 ε j ]). It is assumed that mechanism M
consumes the entire extra budget (ε/4) within a sliding window of length w. According to
the definition of the Laplacian mechanism, M2

i is ε2i -local differentially private.
The next step is to demonstrate that LPBD holds within the sliding window for∑i−1
j=i−w+1 ε j ≤ ε. From composition property Theorem 1, LPBD holds at j th privacy bud-

get is ε j = ε1j + ε2j , then it equals to
∑i

j=i−w+1 ε j = ∑i
j=i−w+1 ε1j + ∑i

j=i−w+1 ε2j . The

total privacy budget for the sliding window is
∑i

j=i−w+1 ε j = ε/2+∑i
j=i−w+1 ε2j because

every ε1j is set to ε/2 · w. Now, it needs to be proven that
∑i

j=i−w+1 ε2j ≤ ε/2. In our

settings,
∑i

j=i−w+1 ε2j is
∑i

j=i−w+1(ε/4−[∑i−1
j=i−w+1 ε j ])/2+ε/4−[∑i−1

j=i−w+1 ε j ])/2.
These two terms can be demonstrated by induction from inequality. We demonstrate that one
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of the terms is smaller than or equal to ε/4 because both terms are equal. Consequently, it
can be concluded that another term is also less than or equal to ε/4. In the induction part
that follows, the term is first simplified using geometric progression techniques, and then
mathematical induction is used to prove that the term is less than or equal to ε/2. Given this,
the sub-mechanism M2

i always uses at most half of the privacy budget, or (ε/2). ��
Theorem 4 With a budget of ε, the LPBD mechanism satisfies w-event privacy.

Proof Given a data stream St . The LPBD (i.e., mechanism M) applied to St , with sequential
composition of M1 and M2. According to Theorem 1, the privacy budget consumed by M is
the sum of the privacy budget consumed by phase M1 and M2. As shown in Theorems 2 and
3, M1 and M2 both satisfy w-event privacy with budget ε/2 respectively. Therefore, LPBD
satisfies w-event privacy with a budget of ε. ��

6 Experiments

In this section, a series of experiments is designed to evaluate the performance of the LPBD
mechanism.

6.1 Experimental setup

The conducted experiments are all based on public benchmark real-world datasets. These
datasets are used to assess the performance of LPBD and different baseline methods under
various privacy parameters, including different total privacy budgets ε and sliding window
lengths w.

Real-world Datasets The performance evaluation of LPBD was conducted using the fol-
lowing real-world location datasets:

1. The T -Drive dataset [31, 32] contains real-time taxi trajectories in Beijing. It comprises
one-week trajectories of 10,357 taxis, with T = 672 timestamps (each at the 15-minute
level). We obtained N = 10,357 data streams for each taxi and extended the stream to
four weeks to facilitate experiments with larger sliding window lengths w.

2. The ShangHai dataset [33] is a commonly used public trajectory dataset of approxi-
mately 5,000 buses and taxis in Shanghai. It was collected by the Hong Kong University
of Science and Technology on February 20, 2007, with a data sample interval of approx-
imately 120 seconds.

The location datasets comprise various data sequences, each containing details such as
timestamps, vehicle numbers, location latitudes and longitudes, etc. The two datasets differ
in terms of data volume, data collection interval, data map area, and other attributes. Conse-
quently, these two datasets were selected to evaluate the efficiency and stability of the LPBD
mechanism across various scenarios.

Performance Metrics In our experimental setup, the LPBD mechanism aims to provide
privacy protection for each user data point at each timestamp within a sliding window of size
w. We evaluate the utility of LPBD and baseline methods using the MAE (as defined in (9)),
the Mean Relative Error (MRE), and the Root Mean Square Error (RMSE). These metrics

123



50238 Multimedia Tools and Applications (2024) 83:50225–50243

assess the discrepancy (or error) between a privacy statistic and its true value. Furthermore,
all these metrics exhibit good mathematical properties. MAE demonstrates better robustness
to outliers, while MRE is more sensitive to the raw value of the true position statistic. On the
other hand, RMSE is more sensitive to higher error values due to the squaring of errors. The
formal descriptions of MRE and RMSE are as follows:

MRE = 1

u

u∑

j=1

‖cri [ j] − cPl [ j]‖
max {cri [ j], cPl [ j]} (13)

RMSE =
√
√
√
√ 1

u

u∑

j=1

(‖cri [ j] − cPl [ j]‖)2 (14)

The experimental environment All experiments (including the main experimental LPBD
and baseline methods) are conducted on a Windows 10 machine with 16 GB RAM and
an AMD Core 8 CPU @3.2 GHz. Additionally, experimental plots are drawn using Origin
software. The system models for the experiments were developed using the Python and Java
programming languages.

6.2 Baselinew-event LDPmethods

To the best of our knowledge, existing LDP research lacks studies similar to LPBD that
specifically address the temporal correlation of user data in local environments. In order
to facilitate experimental comparison, we have designed two baseline methods, namely the
LDP Budget UniformMethod (LBU) and the LDP Sampling Method (LSM), to evaluate the
performance of LPBD.

One straightforward method, LBU, is to uniformly distribute the privacy budget ε across
all w timestamps in the sliding windows. At each timestamp, each user reports perturbed
values using a fixed budget of ε/w. Evidently, for any window of size w, the sum of εi
within it is equal to ε, thereby satisfying the conditions of Theorem 1 and ensuring w-event
privacy. However, a limitation of LBU is that for large values of w, the budget allocated at
each timestamp becomes very small, resulting in a large increase in noise scale.

In another baseline method named LSM, each user invests the entire budget ε in a sin-
gle (sampling) timestamp within a window while using an approximate strategy to reserve a
budget for the nextw - 1 timestamps. However, if the statistics deviate significantly from pre-
vious releases, the resulting estimates may be subject to considerable errors. Consequently,
for streams with minimal changes, LSMs can demonstrate effective performance by conserv-
ing the privacy budget. On the other hand, in streams with substantial changes, the error of
those skipped timestamps may become excessive.

6.3 Experiment design and results

Figures 4 to 7 depict the results of the four sets of experiments, along with MAE and MRE
results for the three mechanisms. The vertical axis represents the error values, while the hor-
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Fig. 4 MAE vs. ε while fixing w = 20 (a) T-Drive (b) ShangHai datasets

izontal axis represents the different query parameters. Tables 3 and 4 present the relationship
between RMSE results and privacy parameters.

Utility vs. Privacy budget Figures 4 and 5 illustrate the release accuracy of all compared
w-event LDP methods on various real-world datasets with different privacy budget ε. The
experiments involve varying the budget ε from 0.5 to 2.5 in increments of 0.5 while keeping
a constant sliding window length w of 20. These experiments were repeated 100 times, and
the mean value of the measure was calculated as the result.

From the experimental results, a noticeable trend is observed: as the privacy budget ε

increases, the data utility improves significantly (i.e., the error becomes smaller), aligning
with the principles of differential privacy and the privacy analysis of LPBD, which demon-
strates the trade-off between data utility and privacy. Compared to the LPBD mechanism,
the baseline method exhibits higher MAE and MRE values. This discrepancy arises due to
the fixed privacy budget utilized by the LBA and LSM at each timestamp, disregarding the
temporal correlation among location data points. In contrast, the LPBDmechanism allocates
an adequate privacy budget even when the location data points are temporally correlated
across consecutive timestamps. It is worth noting that MRE is highly responsive to the raw
values of the real location statistics, providing further confirmation that LPBD effectively
minimizes the disparity between real and private statistics, leading to improved utility.

Table 3 presents the RMSE values of different methods under varying budget values as
an auxiliary metric. Comparing Fig. 4, it can be seen that, under the same conditions, the

Table 3 Comparison of RMSE with different privacy budget ε

T -drive1 ShangHai2

Methods ε = 1 ε = 1.5 ε = 2 ε = 2.5 ε = 1 ε = 1.5 ε = 2 ε = 2.5

LBU 1.127 0.933 0.812 0.737 2.013 1.674 1.512 1.347

LSM 0.981 0.784 0.681 0.575 1.841 1.585 1.391 1.275

LPBD 0.465 0.419 0.368 0.297 1.533 1.342 1.146 0.989

Note: The RMSE value is expressed with four significant figures, using scientific notation (103).
1This represents the T -drive dataset.
2This represents the ShangHai dataset
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Table 4 Comparison of RMSE with different window length w

T -drive1 ShangHai2

Methods w = 10 w = 20 w = 30 w = 40 w = 10 w = 20 w = 30 w = 40

LBU 5.216 7.355 9.871 11.76 4.154 7.448 11.33 13.04

LSM 5.018 6.725 8.719 10.12 3.887 6.621 9.563 12.06

LPBD 2.741 3.573 4.218 5.210 3.421 5.664 8.049 9.560

Note: The RMSE value is expressed with four significant figures, using scientific notation (103).
1This represents the T -drive dataset.
2This represents the ShangHai dataset

RMSE value is slightly greater than the MAE value, respectively. This disparity is due to
RMSE first accumulating the squares of the errors and then extracting the square root, which
magnifies the influence of larger errors. In contrast, MAE reflects the real error without
squaring. Therefore, a smaller RMSE means improved performance because it represents a
relatively smaller maximum error.

Utility vs. Slidingwindow Figures 6 and 7 illustrate the release accuracy of all comparedw-
event LDP methods with different sliding window length w on all datasets. The experiments
involve varyingw from 10 to 50 in increments of 10 while keeping a constant privacy budget
ε set to 1.0. These experiments were also repeated 100 times, and the resulting metric values
were averaged.

The analysis of the experimental results reveals a general trend:MAE andRMSE results of
allmethods increasewithw. This effect is attributed to the fact that thewindow length directly
impacts the privacy budget allocated to each timestamp. However, with a continuous increase
in the window length w, the privacy utility may not exhibit a straightforward decrease and
can potentially remain stable or even improve. The occurrence of this phenomenon depends
on the intrinsic characteristics of datasets.

Moreover, LPBD consistently demonstrates lower errors compared to LBA and LSM.
This improvement can be attributed to LPBD’s capability to allocate a more appropriate and
adequate amount of privacy budget to temporal correlation timestamps within the sliding
window. In contrast, the baseline method tends to minimize the ratio of privacy budget

Fig. 5 MRE vs. ε while fixing w = 20 (a) T-Drive (b) ShangHai datasets
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Fig. 6 MAE vs. w while fixing ε = 1.0 (a) T-Drive (b) ShangHai datasets

allocation within the sliding window, which results in insufficient protection for temporal
correlation location data points.

Table 4 presents theMREvalues of differentmethodswith varyingw, providing additional
validation of the utility improvement achieved by LPBD.

7 Conclusion

This paper proposed a novel privacy-preserving mechanism named LPBD that preserves
the privacy of continuously generated streaming location data provided by various users in
a local environment. LPBD is allowed to process temporally correlated data through well-
designed privacy budget distribution strategies. The experiments have been conducted, and
results show that LPBD ensures high accuracy, strong stability, and low error improvement
over the baseline methods. The mechanism’s performance over the well-known datasets
and comparison with baseline methods showed that LPBD is more secure, efficient, and
optimal. The future aim of this work is to reduce the consumption of the privacy budget

Fig. 7 MRE vs. w while fixing ε = 1.0 (a) T-Drive (b) ShangHai datasets
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while ensuring privacy protection strength and to expand the scheme to other areas, such as
solving the privacy protection scenario of various entities accessing multimedia data.
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