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Abstract
Apple Scab and Apple Rust are the major classes of apple leaf diseases that gravely affect
the apple yield. Seeking an automatic, less expensive, fast yet precise method to detect plant
diseases is crucial. Traditional approaches to detect plant diseases using computer vision
involve complex and labor-intensivemethodologies that rely on image enhancementmethods
and hand-engineered features. The deep convolutional neural network models are highly
favourable in performing image classification with many target classes without involving the
arduous phase of feature engineering. In this paper, we utilized the Capsule Neural Network
(CapsNet) architecture and modified the network structure by adding additional convolution
layers to enhance the model’s learning capacity to classify the apple diseases into apple rust,
apple scab, healthy, and multiple diseases on the same leaf. Model training was performed
on a dataset of images that reflected complex growing conditions observed in the real world.
The ability of the model to learn was improved by enhancing the images. Experimentation
was conducted on the Kaggle Plant Pathology 2020 - FGVC7 dataset. Experimental study
demonstrated a recognition accuracy of 91.37%on the test set,with an overall improvement of
3.67% in accuracywhen compared to the researchwork utilizing the samedataset in literature.
Therefore, the proposed method effectively achieves Apple foliar leaf disease detection and
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surpasses existing state-of-the-art techniques applied to the same dataset. “(Dataset Link:
https://www.kaggle.com/c/plant-pathology-2020-fgvc7/data)"

Keywords Apple leaf disease · Deep learning · Capsule Network · Convolutional neural
network

1 Introduction

Apples are highly sought-after fruits worldwide due to their exceptional medicinal and nutri-
tional value [17]. Apples support a healthy immune system, promote gut health and are known
as diabetes-friendly fruit. The apple production worldwide is estimated to be around 63.9
million tonnes in 2020. However, foliar fungal diseases may pose severe threats to the apple
production rate. Apple Scab and Apple Rust are the main categories of diseases that severely
affect apple yield. Sometimes, the apple leaves may also be affected by multiple diseases.
In apple rust, large yellow spots appear on the leaves’ upper surface turning yellow-orange
to gray-brown as the spores mature. Small velvety brown to olive-green spots appear on the
leaves that enlarge and darken to become more or less circular in the case of apple scab.
When infections are numerous, young leaves become curled and distorted. These diseases
can have catastrophic effect on the quantity and quality of apple production. In the worst
case, it can even result in a complete loss of harvest. Therefore, it is crucial to employ various
techniques that can swiftly identify leaf diseases in their early stages to avoid any adverse
impact on agricultural production.

Traditional methods of disease detection are labor-intensive and lack accuracy. The man-
ual diagnosis becomes even more challenging when multiple diseases are present on the
same leaf. To address these challenges, artificial intelligence, particularly deep learning, has
emerged as a viable method for automating plant disease detection and classification. Deep
learning algorithms aim to create automated systems capable of accurately and efficiently
detecting and categorizing different types of apple leaf diseases. Deep learning models are
trained using extensive datasets of annotated images that include both healthy and diseased
apple leaves. Through this training process, the models acquire the ability to extract essen-
tial features and patterns from the images, enabling them to effectively distinguish between
healthy and infected leaves. Once trained, these models can be used to analyze new images
and provide rapid and reliable detection of apple leaf diseases. Deep learning offers numer-
ous advantages when applied to apple leaf disease detection. It allows for early and accurate
disease identification, facilitating timely interventions to prevent further spread and damage.
Additionally, it reduces the reliance on manual labor and expertise, making disease detection
more accessible and cost-effective for farmers.

In this paper, an enhanced Capsule Network model is introduced for the identification
of apple leaf diseases. Most of the existing works in literature use leaf images with homo-
geneous background under identical lighting conditions which makes the disease detection
slightly easier. However, only a few works have discussed techniques to handle leaf images
under complex conditions. This provided the impetus for the present study. The Kaggle Plant
Pathology 2020 - FGVC7 dataset [36] is utilized in this paper, which consists of images
taken under actual field conditions. The findings from the experiments confirm the effec-
tiveness of the enhanced Capsule Network model in promptly detecting apple leaf diseases.
Early identification of leaf diseases helps minimize the unnecessary or excessive application
of chemicals, leading to reduced production costs. Moreover, the proposed model exhibits
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superior real-time detection capabilities for apple leaf diseases, surpassing existing methods
in terms of recognition accuracy. The paper is structures as follows: Section 2 presents a
comprehensive review of previous studies focusing on detecting different plant diseases and
highlights the limitations of existing methods. In Section 3, the dataset and model employed
for apple leaf disease detection are described. The findings obtained from the experiments
are reported in Section 4. Lastly, Section 5 summarizes the key findings and conclusions
derived from this study.

2 Literature review

In the field of plant disease detection, extensive application of machine learning algo-
rithms has been observed to analyze features extracted from the region of interest, which
is obtained through image processing methods. Machine Learning algorithms have been
widely employed in this context, especially when the available dataset is limited in size. Liu
et al. [22] extracted the diseased part of the unhealthy leaves by using the HSI color space.
The images were processed to extract color and texture features and the classification task
was performed using the Support Vector Machine (SVM) algorithm. The experimentation
was done on cucumber, walnut, and grape leaves and average accuracy obtained was 90%.
Dubey et al. [8] employed K-means clustering and Multi-class Support Vector Machine
(SVM) to classify apple leaves into healthy and infected categories in a binary classification
task. Li et al. [20] employed Artificial Neural Networks to detect diseases in orchid leaves to
obtain an accuracy of 92%. N. Petrellis [28] created a mobile application that utilizes shape
and color analysis of spots, along with historical weather data, for plant disease detection.
Wozniak et al. [39] detected defects in fruit peels by employing an Adaptive Artificial Neural
Network achieving an accuracy of about 80%. The traditional machine learning algorithms
exhibit satisfactory performance.Nevertheless, these approaches necessitate manual feature
engineering, which is a time-consuming task and demands domain expertise. As a result, the
emergence of deep learning algorithms has opened new avenues for plant disease detection.

Deep learning has gained significant traction in the agricultural sector due to its superior
accuracy and its ability to surpass conventional image processing techniques. It is being
employed to assist farmers in predicting harvest yields, evaluating crop quality, detecting
crop diseases or weed infestations, and identifying plant species. Several works have been
proposed to detect and classify the disease in plants by employingDeepLearningAlgorithms.
Park et al. [25] automated the identification of diseased strawberry crops by using a CNN
model which yielded an accuracy of 89.7%. In their study, Sardogan et al. [31] achieved
an overall accuracy of 86% in the automatic detection and classification of tomato leaf
diseases by utilizing a Convolutional Neural Network (CNN) combined with the Learning
Vector Quantization algorithm. By employing the AlexNet and GoogleNet architectures,
Mohanty et al. [23] achieved an overall accuracy of 85.53% and 99.34% respectively in
their smartphone-based plant disease diagnosis study. Hu et al. [12] employed Improved
GoogleNet architecture to classify the corn leaf diseases. With this approach, an overall
accuracy of 97.6% and a per-class accuracy of 95% were achieved. Jearanaiwongkul et
al. [16] presented a two-layer ontology-based model for modeling plant diseases. Jakjoud
et al. [15] developed four different models using various Neural Network optimizers to
achieve plant disease detection. Li et al. conducted a study [20] where they investigated the
utilization of Deep Learning Artificial Neural Networks to detect diseases in orchid leaves
by analyzing the patterns present on the leaves. This model yielded a test accuracy of 90%.
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Wan et al. [38] used various pretrained models to diagnose agricultural diseases. Among the
various models evaluated, the Inception-V3 based model exhibited comparatively superior
performance and achieved an accuracy rate of 87.9%. A novel approach was presented by
Ays et al. [2] utilizing the MobileNetV2 model for the classification of Cassava leaf disease,
distinguishing it into five distinct classes. Patil et al. [27] employed CNN in conjunction
with an IoT-based platform to capture images of cotton leaf diseases and collect relevant
external factors such as weather conditions. The proposed model achieved an impressive
accuracy of 98%. Jaiswal et al. [14] focused on the detection of diseases in fruit and vegetable
leaves using the Plant Village Dataset. They employed GoogLeNet and Sequential Model for
this task, achieving remarkable recognition accuracies of 98.48% and 97.47%, respectively.
Trivedi et al. [37] presented a CNN model for classifying leaf diseases. The model achieved
an impressive accuracy of 95.81%. Bhatia et al. [4] proposed a hybrid solution combining
deep learning and cloud-based technology for plant disease detection. The ResNet50 model
yielded the best results, achieving a test accuracy of 92.52%. Patidar et al. [26] developed a
solution for rice crop disease classification by implementing the Residual Neural Network.
The approach achieved an accuracy of 95.83%. Sladojevic et al. [33] introduced a model
based on the CaffeNet architecture to identify 13 distinct categories of plant diseases. The
model achieved an average precision of 96.3%. Brahimi et al. [6] employed the GoogLeNet
and AlexNet architectures to detect 9 types of diseases in tomato leaves. The GoogleNet
model outperformed AlexNet, achieving an impressive accuracy of 99.185%. Oyewala et al.
[24] developed a deep CNN Model for Cassava Mosaic Disease detection with an overall
accuracy of 96.75%.

Many researchers have worked on apple leaf disease detection using various datasets
available online [3, 24, 29] or using self-made datasets [5, 17, 33, 39]. In their research,
Baranwal et al. [3] employed a LeNet-5 inspired architecture for apple leaf disease recog-
nition. The model achieved a commendable test accuracy of 98.54%. Bi et al. [5] presented
a system that could identify apple leaf diseases using MobileNet architecture. The system
performed disease identification with an accuracy of 73.65%. Jiang et al. [17] proposed an
improvised model using the characteristics of VGG and Inception models to detect diseases
in apple leaves. This model performed well, yielding an accuracy of 97.14%. Yu et al. [41]
introduced a deep learning model designed to identify apple leaf disease using region of
interest analysis. The proposed architecture demonstrated an accuracy of 84.3%. Liu et al.
[21] employed pathological images for the identification of Apple Leaf diseases utilizing a
Convolutional Neural Network Architecture based on AlexNet. The proposed architecture
achieved a test accuracy of 97.62%. Rehman et al. [29] employed a regional Convolutional
Neural Network (CNN) with a Mask-based approach, utilizing a parallel processing frame-
work for the detection of apple leaf diseases. The suggested method achieved an impressive
accuracy of 99.1%. Subetha et al. [34] trained ResNet50 and VGG19 model to achieve the
apple plant disease classification. Bothmodels exhibited improved performance in predicting
apple leaf diseases, achieving an accuracy of 87.7%.

However, the approaches suggested in literature have a few downsides associated with
them. [3, 17, 21, 28, 29, 39] used images with a homogeneous background that did not depict
actual field situations. Specific to the apple leaf disease detection, [17, 33, 41] did not take into
consideration the images of leaves infected with multiple diseases. Identifying leaves that
havemultiple diseases allows for a more comprehensive and accurate diagnosis. By detecting
and identifying multiple diseases present on a single leaf, it provides valuable information to
farmers or plant pathologists to take appropriate actions in managing the diseases effectively.
Additionally, monitoring and managing multiple diseases on leaves can significantly impact
crop health and overall yield. Detecting multiple diseases allows for early intervention and
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proactive management practices, which can help prevent severe damage and optimize crop
production. This served as the motivation for the proposed work. This study focuses on a
dataset consisting of images with intricate backgrounds, encompassing four classes: Healthy,
Apple Scab, Apple Rust, and a combination of Rust and Scab. The original Capsule Net-
work architecture, when applied directly to apple leaf disease detection, exhibits suboptimal
performance. This research focuses on enhancing the model architecture by incorporating
additional convolutional layers into the base Capsule Network architecture, thereby enhanc-
ing its recognition accuracy. Numerous experiments were conducted to identify the optimal
combination of hyperparameters for developing amodel capable of effectively distinguishing
between the four disease categories. This novel contribution significantly contributes to the
field of apple leaf disease detection.

2.1 Contributions of the proposed work

– This work deals with the images taken under real-life variable conditions regardless of
light, angle, shade and physiological age of the leaf.

– The dataset is augmented by applying operations such as image rotation, image shift,
and image zoom to address the limited number of images in the training set and improve
the model’s resilience. Additionally, to handle the class imbalance, images belonging to
the ’Multiple’ class are subjected to additional augmentation techniques separately. The
unsharp masking method and contrast adjustment is employed to sharpen the images and
enhance the images respectively.

– The CapsNet model is enhanced by incorporating supplementary convolutional layers
to effectively detect various types of apple diseases. The model demonstrates favorable
training accuracy when applied to a diverse dataset comprising images captured with
varying focus settings, at different time intervals, and depicting multiple diseases in
plants at different maturity stages. The model performs well, with test accuracy greater
than the accuracy achieved by the related works that utilized the same dataset.

3 Materials andmethods

3.1 Dataset

The dataset utilized in this research is derived from the Plant Pathology 2020 challenge
dataset, which comprises a total of 3,651 RGB images. Among these images, there are
1,200 samples depicting apple scab, 1,399 samples illustrating cedar apple rust, 187 samples
representing complex disease symptoms, and 865 samples portraying healthy leaves. Seven
duplicate images found were taken out from the image dataset to obtain final set of images
consisting of 3,642 high-quality RGB images with annotations. The images were captured
under various angles, illumination, surface, and noise conditions.

3.2 Data pre-processing and augmentation

Initially, the images are sharpened using the unsharp masking method [9]. The contrast of the
images is then adjusted (enhanced) using the imadjust function in Matlab [10]. The contrast
range for the input and output image are set as [0.3,0.7] and [0,1] respectively. Fig. 1 shows
the images from the training set after being subjected to pre-processing. Since the size of
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Fig. 1 Training Set Images after Pre-processing. Row 1: Healthy. Row 2: Multiple Diseases. Row 3: Apple
Rust. Row 4 :Apple Scab

the dataset, which comprises 3,642 images distributed among four classes, is insufficient
for training a deep learning model effectively, data augmentation techniques are employed.
Random rotations are applied within the range of 0◦ to 360◦, random horizontal and vertical
shifts within the range of [-0.2, +0.2), and random zoom within the range of [0.8, 1.2]. These
augmentations help to expand the dataset and enhance the model’s generalization capability.
Furthermore, to address the issue of class imbalance, additional data augmentation techniques
were employed specifically to the ’multiple’ class images. Random brightness adjustments,
horizontal flips, and vertical flips were performed on these samples. The augmented training
set, which includes the augmented ’multiple’ class images, is visually represented in Fig. 2.

3.3 Deep neural network architecture

3.3.1 Capsule neural network

CapsNet is an equivariant network containing detailed information on every pixel in the
image contrary to the Convolutional Neural Networks. Pooling operations in CNNs can
introduce a limitation by potentially causing information loss in the images. This loss of
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Fig. 2 Training samples from augmented dataset

information necessitates huge amount of training data to compensate for it. In contrast,
CapsNet overcomes this limitation by preserving spatial information and retaining important
features, thus minimizing information loss [40].

In a capsule network, each capsule comprises multiple neurons, and each neuron’s output
represents a distinct aspect of the same feature. This allows for recognition of the entire
entity through a process of recognizing its individual parts. The input to a capsule consists of
features extracted from a CNN, and the output of the capsule is always in the form of a vector.
A Capsule Network is constructed with Convolutional Layers, which are then followed by a
PrimaryCapsule Layer and aClassCapsule Layer. TheConvolutional Layer is responsible for
extracting fundamental features from the input images. The Primary Capsule Layer takes the
basic features extracted by the Convolutional Layer and identifies complex patterns among
them. The number of capsules utilized in both the Primary Capsule Layer and Class Capsule
Layer varies depending on the dataset employed. The dynamic routing algorithm determines
the mapping between capsules in the Primary Capsule Layer and the Class Capsule Layer by
considering the weights of the lower-level capsules (Primary Capsules) and the higher-level
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capsule (Class Capsule). When there is a high agreement between the weights of higher and
lower-level capsules, the coupling coefficient is increased, and vice versa. The weighted sum
of all the lower-level capsules mapping to higher-level capsules is computed. Since the output
vector’s length represents probabilities, the squashing function is employed to compress the
value within the range of 0 and 1. Equations (1), (2), and (3) provide the mathematical
expressions for capsule transformation, weighted sum, and squashing function, respectively.
Figure 3 illustrates the functionality of a capsule in the Capsule Network.

û j |i = Wi jui (1)

where, ui represents the activity vector of capsule i in the Primary Capsule Layer,Wij denotes
the weight matrix of capsule i in the Primary Capsule Layer corresponding to capsule j in
the Class Capsule Layer, and û j |i refers to the capsule i’s vote for capsule j.

s j =
∑

i

ci j û j |i (2)

where cij represents the coupling coefficient, while sj denotes the weighted sum of the pre-
dictions for capsule j.

v j = ||s j ||2
1 + ||s j ||2

s j
||s j || (3)

where vj refers to the output of capsule j in the Class Capsule Layer.

3.3.2 Improved CapsNet architecture

In this work, the Capsule Network Architecture proposed for MNIST Digit Classification
is improved by adding additional convolutional layers. The architecture contains 3 convolu-
tional Layers in addition to the basic CapsNet architecture.The mentioned layers have been
incorporated to enhance the feature extraction process, leading to the generation of high-level
characteristics that highly contribute to themodel’s performance. Topreserve the spatial infor-
mation contained in the input images and avoid potential information loss, pooling layers
have been excluded from the architecture. The enhanced CapsNet structure is depicted in
Fig. 4. The proposed architecture comprises an Input Layer, four convolutional Layers, a

Fig. 3 Working of a Capsule
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Fig. 4 Improved CapsNet
Architecture
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Table 1 Parameters for
convolutional Layers of CapsNet
Architecture

Layer Kernel Size Stride No.of Filters

Conv_ReLU_1 2 2 64

Conv_ReLU_2 3 2 128

Conv_ReLU_3 3 2 256

Conv_ReLU_4 2 2 512

Primary Capsule Layer (PrimaryCaps), and a Class Capsule Layer. Various combinations of
convolutional layers and parameter values were experimented with to ensure that the model
does not overfit and achieves optimal performance. The input Layer is fed with the images
of size 130 x 130. Initially, the images are of variable sizes. The images are resized to 130 x
130 to reduce the computational cost. Convolutional layers with a varying number of filters
and stride are used to reduce the features’ dimensionality.

The parameters for the convolutional layers are outlined in Table 1. These filters play a
crucial role in determining which pixels the model focuses on. After passing through the
pixel values of an input image, the filters generate feature maps. These feature maps depict
what the convolutional layer detects or retains from the input. The objective of visualization
is to comprehend the detected or preserved features in the feature maps. Fig. 5 displays the

Fig. 5 Feature map obtained from different convolution layers. Row 1: Healthy leaf, Row 2: Apple leaf with
multiple diseases, Row 3:Apple Rust, Row 4:Apple Scab. a. Apple leaves. b. FeatureMap for first Convolution
Layer. c. FeatureMap from secondConvolution Layer. d. FeatureMap from thirdConvolution Layer. e. Feature
Map from forth Convolution Layer
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feature maps corresponding to images from different classes. In the case of apple rust, the
feature map obtained from the final convolutional layer reveals that large yellow spots on the
upper surface of the leaves are a prominent characteristic.

The features obtained from the final convolutional layer are fed as input to the Primary
Capsule Layer, and the model is trained iteratively utilizing the dynamic routing algorithm.
The Adam optimizer was employed with various learning rates (0.001, 0.01, and 0.1), and
the most favorable outcome was achieved with 0.1 as learning rate. The training process
consisted of 200 epochs, with a batch size of 10. The loss for each class was computed using
the margin loss function, as defined by (4).

Lossi = Ti max(0, x+ − ||vi ||)2 + λ(1 − Ti ) max(0, ||vi || − x−)2 (4)

where the first term Ti max(0, x+ − ||vi||)2 stands for class present and the second term
λ(1 − Ti) max(0, ||vi|| − x−)2 stands for class not present.

The parameters x+ and x− are used with the values 0.9 and 0.1 respectively and λ is set
to a value of 0.5.

The proposed model’s overall structure is illustrated in Fig. 6. The initial step involves
preprocessing the images in the dataset, which includes applying the unsharpmaskingmethod
and contrast enhancement to enhance their suitability for model generation. Next, the dataset
is randomly split into training and test sets, with an 80:20 ratio. The training dataset undergoes
image augmentation to increase its size and address any class imbalance concerns. These

Fig. 6 Architecture diagram for the proposed model
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Fig. 7 Images in the Test Set

augmented training images are then used as input for the architecture depicted in Fig. 4,
resulting in a model trained to classify different classes. Finally, the generated model is
evaluated on the test image set to assess its performance in detecting apple leaf diseases.

4 Results and discussion

Image pre-processing was performed using Matlab 2018a for the experiments. The data aug-
mentation and implementation of the CapsNet architecture were performed usingAnaconda3
(Python 3.6), along with the OpenCV-python3 and Keras-GPU libraries. Training of deep
CNNwas accelerated by GPUwith Intel(R) CoreTM i7-2600 CPU at 3.40 GHz and NVIDIA
GTX470 Card as the experimental hardware environment.

The ultimate dataset was divided into an 80% training set and a 20% test set. The model
described in Section 3 was trained using the training set. Subsequently, the trained model
was utilized to classify the type of disease based on the leaf images in the test set. Two
experiments were conducted. One was including the leaves with multiple diseases, and the
other was by excluding the leaves with multiple diseases. Fig. 7 represents the sample images
in the test set. Figures 8 and 9 illustrate the accuracy and loss of the model during the training
process, considering both the inclusion and exclusion of leaves with multiple diseases. The
classification procedure was repeated five times to account for the variability in the selection
of training, validation, and test sets. This approach helps prevent overfitting and ensures
robustness inmodel performance. Themodel’s evaluationwas based onPrecision, Specificity,
Recall, and F1-Score, which are represented by (5), (7), (6), and (8) respectively. Dalianis [7]
where FP - False Positive, TP - True Positive, FN - False Negative and TN - True Negative.

Fig. 8 (A) Model training accuracy by including the category of leaves with multiple diseases. (B) Model
training accuracy without including the category of leaves with multiple diseases
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Fig. 9 (A) Model training loss by including the category of leaves with multiple diseases. (B) Model training
loss without including the category of leaves with multiple diseases

Fig. 10 (A) Confusion matrix of identified results by including the category of leaves with multiple diseases.
(B) Confusion matrix of identified results by excluding the category of leaves with multiple diseases

Fig. 11 (A) ROC Curve for model generated including multiple disease class (B) ROC Curve for model
generated without multiple disease class
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Figures 10 and 11 depicts the confusion matrices of the identification results and ROC curves
for the model with and without the ’multiple’ class respectively.

Precision(Pr) = T P

FP + T P
(5)

Speci f ici t y = T N

FP + T N
(6)

Recall(Rl) = T P

FN + T P
(7)

F1 − Score = 2 × Pr × Rl

Pr + Rl
(8)

The confusion matrix reveals that the model demonstrates strong performance when the
category of leaves with multiple diseases is excluded from consideration. Table 2 represents
the performance parameter values recorded over 5-folds cross-validation. The recorded values
in the table correspond to two instances: one where the class of leaves with multiple diseases
is considered, and the other where this class is excluded. The zero values in the table indicate
the latter instance. The performance of the model is compared to diverse CNN models such
as VGGNet [32], DenseNet [13], ResNet [11], Inception V3 [35], LeNet [19], MobileNet-V2
[30] and AlexNet [18]. Transfer learning is utilized with the aforementioned models, which
are pre-trained using the ImageNet dataset. A fully-connected Softmax layer is then added
to the models to classify the target classes for apple disease identification.

The training accuracy and test accuracy of various models are presented in Table 3. The
models were trained for 200 epochs, considering all categories of leaves. The results in
Table 3 clearly demonstrate that the proposed model outperforms other pre-trained models
on the same dataset. The comparative analysis between training accuracy, validation accu-
racy, and test accuracy achieved by different models is depicted in Fig. 12 demonstrating

Table 2 Performance of the
Improved CapsNet Model with
the test set with multiple class
and without multiple class

Parameters Healthy Multiple Rust Scab

Performance with Multiple Class

Correct Samples 122 37 323 248

Identified Samples 110 18 308 233

Precision 90.24% 49.23% 95.82% 94.17%

Recall 90.56% 49.74% 97.44% 91.75%

Specificity 98.22% 97.38% 97.65% 95.63%

F1-Score 90.40% 49.48% 96.62% 92.94%

AUC 0.97 0.87 1.00 0.98

Performance without Multiple Class

Correct Samples 122 0 323 248

Identified Samples 117 0 314 240

Precision 93.45% 0 97.79% 96.82%

Recall 92.88% 0 98.93% 96.51%

Specificity 98.71% 0 98.86% 97.72%

F1-Score 93.16% 0 98.35% 96.66%

AUC 0.98 0 0.99 0.99

123



Multimedia Tools and Applications (2024) 83:48585–48605 48599

Table 3 Accuracy and loss values of different models attained using the dataset considering 4 classes

Pre-Trained
Model

Training
Accuracy %

Training
Loss

Validation
Accuracy %

Validation
Loss

Test Accuracy
%

ResNet-50 96.8 0.1020 88.5 0.4066 88.54

Inception V3 96.84 0.0542 86.11 0.3113 82.12

AlexNet 93.07 0.0933 88.34 0.2255 86.90

DenseNet-121 94.79 0.1492 86.79 0.4423 85.98

VGGNet-19 36.6 0.5125 38.25 0.5158 44.54

MobileNet-V2 99.6 0.0101 90.74 0.6825 89.31

VGGNet-16 91.61 0.3516 88.16 0.3516 89.65

LeNet 75.28 0.6748 73.07 0.7466 76.22

Proposed Method 92.78 0.0602 88.70 0.0909 91.37

the superior performance of the enhanced CapsNet model. Table 4 presents a comparative
analysis between the enhanced Capsule Network and the original Capsule Network to show-
case the superior performance of the enhanced model. The experimental results underscore
the importance of enhancing the CapsNet architecture by incorporating convolutional layers.
From Table 4 it can be seen that training CapsNet model without enhancement is around 6
times slower than the CapsNet model with enhancement. Also, accuracy has seen a whopping
40% increase for the latter compared to the former. It can be concluded that the modification
in CapsNet architecture not only decreases the training time but also results in a substantial
improvement in the model’s accuracy. The experimental results underscore the importance
of enhancing the CapsNet architecture by incorporating convolutional layers. The proposed
model is contrasted with state-of-the-art methods from the literature in terms of plant dis-
ease classification, as presented in Table 5. This comparative study aims to highlight the
improved performance of the proposed model and provide insights into the datasets used in
previous studies. This work proposes a model for performing apple leaf disease detection

Fig. 12 Performance Comparison
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Table 4 Comparative Analysis of Results with and without enhancement to Capsule Network architecture

Metric Model without CapsNet
Enhancement

Model with CapsNet
Enhancement

Performance without Multiple Class

Training Accuracy (%) 54.01 93.91

Training Loss 0.3101 0.0505

Validation Accuracy (%) 55.38 93.35

Validation Loss 0.3052 0.0546

Training time (in hours) 5.67 1.04

Performance with Multiple Class

Training Accuracy (%) 53.81 92.78

Training Loss 0.3263 0.0602

Validation Accuracy (%) 50.77 88.70

Validation Loss 0.3460 0.0909

Training time (in hours) 7.21 1.07

under real-life conditions considering, complex backgroundswith uneven lighting conditions
and outperforms the work discussed in [34] with an increase in the recognition accuracy by
3.67%, hence demonstrating the efficiency of the proposed model.

5 Conclusion & future work

Accurate identification and classification of plant leaf diseases using images depicting the real
life conditions is of great importance in ensuring the health and enhancing the plant production
quality. It is of great significance as it enables proactive disease management, optimizes crop
yield, reduces costs, and promotes sustainable agricultural practices. It empowers farmers
with the knowledge and tools to protect their apple orchards and ensure the long-term health
and productivity of their crops.

This work introduced an enhanced CapsNet architecture that incorporates multiple convo-
lutional layers for the purpose of identifying apple foliar leaf disease. The input images were
pre-processed using enhancement techniques before feeding it to the model, to improve the
model generalization capabilities. Adam Optimizer with different learning rates was used to
train the model, and a learning rate of 0.1 was chosen as it generated the best results. Exper-
imental findings demonstrated that the proposed model outperformed the other pre-trained
models with a recognition rate of 91.37% and 96.67% with inclusion and exclusion of mul-
tiple class from the dataset respectively. The decreased accuracy observed on considering
’Multiple’ class is majorly due to fewer samples in the ’Multiple’ class and the dominance
of Apple Rust or Apple Scab characteristics in the leaf images belonging to ‘Multiple’ class.
The experimental results highlight the significance of enhancing the CapsNet architecture
through the inclusion of convolutional layers. This modification not only reduces the training
time but also leads to a noteworthy improvement in the model’s accuracy.
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As part of futurework, to tackle the dataset imbalance caused by samples from themultiple
class, we can leverageGenerativeAdversarialNetworks (GANs) to generate synthetic images
that depict leaves with multiple diseases. This technique helps in addressing the scarcity of
data in the multiple class and enhances the model’s ability to handle such cases. Additionally,
we anticipate that incorporating an attention mechanism into the proposed model would
enhance its ability to diagnose and differentiate leaves with multiple diseases. Furthermore,
developing a normalization-free network can enhance the performance of the model with
larger batch sizes and improved learning rates.
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24. Oyewola DO, Dada EG, Misra S, Damaševičius R (2021) Detecting cassava mosaic disease using a deep
residual convolutional neural network with distinct block processing. PeerJ Comput Sci 7:e352

25. Park H, Eun JS, Kim SH (2017) Image-based disease diagnosing and predicting of the crops through
the deep learning mechanism. In: 2017 international conference on information and communication
technology convergence (ICTC), pp 129–131. IEEE

26. Patidar S, Pandey A, Shirish BA, Sriram A (2020) Rice plant disease detection and classification using
deep residual learning. In: International conference on machine learning, image processing, network
security and data sciences, pp 278–293. Springer

27. Patil BV, Patil PS (2021) Computational method for cotton plant disease detection of crop management
using deep learning and internet of things platforms. In: Evolutionary computing and mobile sustainable
networks, pp. 875–885. Springer

28. Petrellis N (2017) Mobile application for plant disease classification based on symptom signatures. In:
Proceedings of the 21st pan-hellenic conference on informatics, pp 1–6
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