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Abstract
Situation awareness provides crucial yet instant information to maritime traffic participants, 
and significant attentions are paid to implement traffic situation awareness task via various 
maritime data source (e.g., automatic identification system, maritime surveillance video, 
radar, etc.). The study aims to analyze traffic situation with the support of ship imaging 
trajectory. First, we employ the dark channel prior model to remove fog in maritime videos 
to obtain high-resolution ship images (i.e., fog-free maritime images). Second, we track 
ships in each maritime image with the scale adaptive kernel correlation filter (SAMF), and 
thus obtain raw ship imaging trajectories. Third, we cleanse abnormal ship trajectory sam-
ples via curve-fitting and down sampling method, and thus further maritime traffic situa-
tion analysis is implemented. We analyze maritime traffic situation in three typical videos 
(i.e., three typical maritime traffic scenarios), and experimental results suggested that the 
proposed framework can extract high-resolution ship imaging trajectory for fulfilling the 
task of accurate maritime traffic situation awareness.
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1  Introduction

Maritime traffic situation awareness intends to provide both static and dynamic navigation 
information (e.g., traffic density, speed, trajectory) to enhance maritime safety, especially in the 
autonomous ship era. Significant attentions are paid to obtain high-fidelity maritime traffic situa-
tion awareness (MTSA) information under typical yet complicated traffic scenarios [1, 2]. Many 
studies implement the MTSA task via the support of automatic identification system (AIS) data. 
Indeed, ship crew and maritime traffic regulators can determine real-time traffic situations via 
instant AIS data. The radar data is employed to further enhance maritime traffic situation aware-
ness information with the help of identifying ship echoes, which is particularly useful in ship 
berthing and unberthing procedure. However, the AIS data may be contaminated by various 
duplicated samples, whilst radar may fail to detect wooden ships sailing in the channels [3, 4].

The rapid development in computer vision techniques shows their potential in implement-
ing traffic situation awareness task due to the advantages of easy understandability, low cost, 
easy deployment, etc. Previous studies focus on extracting traffic spatial-temporal information 
from maritime surveillance videos via the logic of ship detection, tracking, etc. [5, 6]. Note 
that the MTSA can be easily fulfilled with consecutive trajectory based on visual ship tracking 
results, which involves trajectory clustering, navigation decision-making, collision avoidance 
analysis [7, 8].

It was found that many MTSA related studies have been conducted via the support of var-
ied maritime data sources (e.g., AIS, RADAR). Overall, previous studies were mainly imple-
mented with the support of high-fidelity maritime data (i.e., we do not need to cleanse the 
input maritime data). But, it can be inferred that the raw maritime data sources may contain 
unexpected outliers during data collection procedure. In addition, many imaging interferences 
can be obviously observed in the MTSA tasks. For instance, maritime images under difference 
visibilities (strong lighting condition, low visibility, etc.) may significantly degrade MTSA 
model performance. To address the above-mentioned disadvantages, we propose a MTSA-
oriented framework consisted of fog interference removal, ship tracking, ship trajectory outlier 
rectification, and traffic situation analysis.

Our contributions can be ascribed into the following aspects: (1) we propose a systematic 
framework to explore ship trajectories from maritime images and analyze maritime traffic situ-
ations; (2)we introduce dark channel prior model to remove fog in maritime videos, and thus 
provide fog-free images for the purpose of accurate ship trajectory extraction; (3) we extract 
ship imaging trajectory from the fog-free images via steps of ship tracking and trajectory rec-
tification, and then we implement the maritime traffic situational awareness from pixel-wise 
perspective; (4) we verify the proposed framework performance on three typical yet com-
mon maritime traffic scenarios. The remaining of this study is organized as follow. Section 2 
provides literature review focusing on the MTSA via varied maritime data sources. Section 3 
illustrates the methodology details for image defogging and ship trajectory extraction. Sec-
tion 4 provides the experimental results, and Section 5 briefly concludes the study.

2 � Literature review

2.1 � Ship trajectory data extraction and outlier removal

High-resolution ship trajectory is vital for maritime traffic control and management, 
and thus many research focuses are paid to obtain accurate ship trajectories from varied 
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maritime data sources (e.g., AIS data, radar, maritime surveillance videos) [9, 10]. Pre-
vious studies suggest that raw AIS data may contain unexpected outliers due to limited 
data transmission capacity, fake ship maritime mobile service identity, deliberately shut-
down AIS facility, etc. [11, 12]. Guo et al., introduced an improved kinematic interpola-
tion framework to reconstruct ship trajectory via the help of AIS data with steps of AIS 
data preprocessing, time interval distribution equalization, outlier removal and kinematic 
interpolation operation [13]. Chen et al., proposed an alternative method to detect ships in 
coastal channels with high-frequency coastal array radar, aiming to help maritime traffic 
regulations obtain accurate real-world ship trajectory information when ship AIS data is 
missing [14]. Maritime surveillance videos provide on-site ship trajectories in an easy yet 
informative manner considering that images principle is quite close to human being visual 
perception mechanism [15–17].

2.2 � Maritime traffic situation awareness

Maritime traffic situation awareness attracts significant attentions in the maritime traffic 
community due to the increasing waterway activities (e.g., traffic volume significantly 
surge in inland waters). Sui et  al., introduced complex network theory to map the ship 
relationships (under varied typical traffic scenarios) into complex network with the help 
of establishing macro index [18]. Szlapczynski et al., proposed a novel framework to rec-
ognize and visualize ship collision avoidance warning information via the collision threat 
parameters area technique, which aims to enhance maritime traffic safety under adverse 
weather conditions [19]. Sharma et  al., proposed a goal-directed task analysis model to 
implement the maritime traffic situation via maritime domain information and pilotage 
operations with the help of ship AIS data [20]. Du et al., estimated the give-way ship inten-
tion to establish basic framework for the stand-on ship as second line of defense consider-
ing that few attentions were paid to enhance such maritime traffic situation [21]. Similar 
studies can be found in [22–24]. The MTSA is an active topic in the maritime community 
which is implemented by exploring varied data sources to obtain both kinematic and static 
maritime traffic information.

2.3 � Visual analysis under complex scene

Many studies are conducted to fulfill maritime traffic situation awareness task with the 
help of cutting-edge computer vision related techniques. Yang et  al., proposed varied 
detectors to highlight features of small, cluttered and rotated objects for the purpose of 
robust object detection [25–27]. Hong et al., allocated four anchor boxes to each detec-
tion scale in their Gaussian-YOLO layer to tackle the multi-scale problem in detection 
[28]. Shi et  al., proposed a metric-based few-shot method to mitigate insufficient ship 
training samples disadvantages in the object detection task [29]. Zhang et al., believed 
that the volume and diversity of the dataset can be expanded by including both origi-
nal images and enhanced images. Moreover, a hybrid training method was proposed to 
synthetically train degraded images to enhance the adaptability of the proposed model 
in tackling the small target detection challenge [30]. In comparison, we addressed the 
maritime traffic situation awareness problem through the dark channel prior fog removal 
model and the SAMF tracking model.
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3 � Methodology

The proposed framework aims to achieve the MTSA task and autonomous navigation 
for smart ships. To that aim, the proposed framework is implemented consisting steps of 
fog removal, ship tracking, abnormal ship imaging trajectory correction. More specifi-
cally, the first step is to obtain the fog-free maritime images, which aims to fulfill the 
lighting radiance recovery task. After that, we can obtain raw ship positions from the 
fog-free images via scale adaptive kernel correlation filter (SAMF) tracking model. The 
curve fitting model is further introduced to remove abnormal ship positions, and thus 
MTSA is analyzed via the support of pixel-wise ship imaging trajectory data. The sche-
matic overview for the proposed framework is shown in Fig. 1.

3.1 � Fog removal with dark channel prior model

It is observed that adverse weather conditions may introduce imaging interference, which 
will further degrade MTSA performance and accuracy. For the foggy condition, the clas-
sic dark channel prior model presents satisfied performance in the fog removal task, which 
removes fog through the atmospheric degradation model that formulated as Eq.  (1). We 

Fig. 1   Overview for the proposed maritime traffic situation awareness framework
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obtain the output fog-free image O(m) based on estimation of t(m) and G through formulat-
ing Eq. (1) into Eq. (2).

 where R(m) is the foggy image, O(m) is the output fog-free image, G is the atmosphere 
light and t(m) is the transmission rate. The symbol m is a pixel coordinate.

3.1.1 � Estimation of G and t(m)

First, we estimate the atmospheric light G . The assumption for implementing the dark 
channel prior model is that fog-free block intensity for certain channel is obviously lower 
than those of the counterparts. More specifically, the fog-free block intensity is quite close 
to zero, which can be approximately as Eq. (3).

 where Oc(n) is the color channel for the ship image O at pixel n , the symbol Ψ(m) is a 
local image patch for the dark channel centering at pixel m . The Od(m) is the dark channel 
of output figure at pixel m , and the value is quite close to zero when ship image O is taken 
at good visibility condition. The parameter n is an iterated pixel variable from Ψ(m) . The 
symbol c is color channel (i.e., r (red), g (green) and b (blue) channel).

Based on the above assumption, we formulize the Eq. (1) into Eq. (4) by applying dark 
channel method.

The t(m) decreases along with distance become larger, and thus we can use Rd(m) to 
estimate G . Note that fog-free zone intensity is obviously lower than its counterparts, 
which indicates that intensity for the image block taken under fog condition will signifi-
cantly higher than those under normal weather condition (e.g., sunshine). In another word, 
we select pixels with intensity values ranges top 1‰ from the dark channel image (due to 
that the fog density for the pixels is usually significantly larger those of the counterparts). 
The pixels with maximum intensity are further selected as the estimation value of atmos-
pheric light G for the input maritime image.

After that, we estimate transmission rate t(m) with the support of Eq. (5). Previous 
study suggested that the transmission coefficient t(m) for each local patch in the mari-
time ship image is constant, and thus the t(m) is replaced with 

∼

t (m) . We can obtain 
the Eq. (6) with the support of Eq. (3). The fog-interfered maritime images help ship 
officials better aware on-site traffic situations (e.g., distance between our ship and its 
neighbors). To that aim, we retain partial fog during the fog-removal procedure by 
introducing a convergence factor β , and the Eq. (6) is formulated as Eq. (7). Note that 
larger β may distort the raw foggy maritime image, and smaller β may degrade the 
model fog-removal performance.

(1)R(m) = O(m)t(m) + G(1 − t(m))

(2)O(m) =
R(m) − G

t(m)
+ G

(3)Od(m) = min
c∈{r,g,b}

( min
n∈Ψ(m)

(Oc(n)) ≈ 0

(4)Rd(m) = (1 − t(m))G
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3.1.2 � Obtain output fog‑free image

Now we have obtained the estimation value of G and t(m) and come to the last step of fog 
removal. The raw fog-removal image (i.e., output from previous step) may contain unexpected 
noisy pixels, and tt is introduced as a threshold to suppress the noise pixels. The fog-removal 
maritime image is obtained with Eq.  (8) which formulated from Eq.  (2). The fog-removal 
maritime image is obtained with Eq. (8).

3.2 � Ship imaging trajectory determination with SAMF tracking model

Ship trajectory extraction accuracy heavily depends on ship tracking model performance. In 
our study, we introduce a SAMF tracking model (which is a type of an improved kernel cor-
relation filter) to obtain ship imaging trajectories from fog-free maritime images. We initialize 
the SAMF tracker with ship position in the first frame (which is manually labeled). The raw 
input fog-free maritime image is transformed into a one-dimensional data b =

[

b1, b2,⋯ , bn
]

 
for the purpose of fulfilling ship tracking task. Moreover, we obtain cyclic shifting ship train-
ing samples based on basic ship sample which is labeled as Db =

[

bn, b1,⋯ , bn−1
]

.
The goal of the tracking model is to obtain the ship candidate samples. In fact, the problem 

can be regarded as a linear ridge regression model, and the objective function is formulated as 
Eq. (9). The closed solution is for Eq. (9) is formulated as Eq. (10).

 where α determines regularization level for the ship tracking model, symbol f
(

bj
)

 is the jth 
ship base sample, the yj is the jth ship candidate and symbol u is the closed solution. The 
symbol f (b) = uTb is a linear combination of the input ship base samples. Note that û ( ̂b ) 
is the discrete Fourier transformation for the u(b) , B is the circulant matrix, I is an identity 
matrix.

We employ the property of circulant matrix B to simplify the Eq. (10), which is further 
formulated into Eq. (12).

(5)Rd(m) = min
c

(

min
n∈Ψ(m)

(

Rc(n)

Gc

))

=
∼

t (m)min
c

(

min
n∈Ψ(m)

(

Oc(n)

Gc

))

+ 1−
∼

t (m)

(6)
∼

t (m) = 1 − min
c

(

min
n∈Ψ(m)

(

Rc(n)

Gc

))

(7)
∼

t (m) = 1 − �min
c

(

min
n∈Ψ(m)

(

Rc(n)

Gc

))

(8)O(m) =
R(m) − G

max
(

t(m), tt
) + G

(9)min
u

∑v

j=1
(f
(

bj
)

− yj)
2
+ α ∥ u ∥2

(10)u = (BTB + αI)
−1
BTy
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 where F is a discrete Fourier transform matrix, which transforms ship sample data from 
spatial-temporal domain into frequency domain (i.e., Fourier domain). FH is the Hermitian 
transpose for the F . The diagonal matrix for the Fb (the Fourier transformation for the b ) is 
presented as diag(Fb).

The symbol ∗ is the complex conjugate, and ⊙ is the element-wise product. The symbol 
F−1 is the inverse transformation operation for the F.

To find accurate ship positions in maritime images, we employ bilinear interpolation 
method to exploit ship features in varied scales. Given a ship template TDT =

(

TDx,TDy

)

 
in the first maritime image, we define a scale pool SP =

{

sp1, sp2,⋯ , spr
}

 for obtaining 
ship training samples at different scales, and the symbol Tw is the window size for identify-
ing ship visual features in the maritime image. We exploit ship sample at different cosine 
window sizes for the purpose of identifying potential ship candidates from current image. 
The target ship sample size is adjusted to same scale, and the maximum response between 
the input training sample and ship candidates is obtained with Eq. (13).

The spr is the rth ship sampling scale, and f̂ (zspr ) is the maximum response in between 
the input ship sample and ship candidates in Fourier domain. The final ship candidate is the 
result of the following formula (13):

3.3 � Ship trajectory outlier removal

We carefully check the raw ship imaging trajectories (i.e., the output ship positions in each 
frame obtained by the previous step), and found that many trivial yet abnormal oscillations 
are found in the ship trajectory dataset. The main reason is that target ship is temporary 
occluded by neighboring ship in maritime ships, and thus the SAMF tracking model may 
fail to obtain distinguished ship visual feature from the fog-free maritime images (i.e., the 
SAMF tracking model extracts features from the occluded ships). To address the issue, 
we employ the curve fitting model to correct out ship trajectory data outliers considering 
that ship movement in short period is constant. More specifically, significant ship displace-
ment is considered as the trajectory outliers (see Eq. (14)), and the curve fitting model and 
down-sampling mechanism are employed to suppress the ship imaging trajectory outliers. 
The curve fitting model used for correcting out x and y axis outliers are shown in Eqs. (15) 
and (16), respectively. Moreover, we note that ship trajectory positions (i.e., x and y axis) 
in neighboring frames show abnormal back and forth variation tendency (e.g., ship in real-
world move forward while the ship imaging trajectory in neighboring frames present back-
ward movement status). We suppress the data outliers by down-sampling the ship trajec-
tory data at given frame interval (see Eq. (17)).

(11)B = FHdiag(Fb)F

(12)�u =
(

�b∗ ⊙ �y
)

∕
(

�b∗ ⊙�b + α
)

(13)arg maxF−1 f̂ (zspr )

(14)

{

|

|

|

xi − xi+p
|

|

|

> T1
|

|

|

yi − yi+p
|

|

|

> T2
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 where ship position at the x-axis (y-axis) for the ith frame is xi ( yi ). The ship position for 
the (i + p) th frame for x and y-axis are denoted as xi+p and yi+p , respectively. The param-
eters T1 and T2 are the thresholds for identifying ship position outliers in x and y axis, 
respectively. The parameter e is the curve-fitting order for the x axis, and symbol E is the 
maximum order. The ge and ve are the curve-fitting coefficients for the x and y-axis, respec-
tively. The symbol De

x
 ( De

y
 ) is the ship position at x-axis (y-axis) for the Dth frame, and the 

CFx ( CFy ) is the outlier-removal counterpart with the help of curve-fitting model. The CF 
is the final trajectory data which involves ship x (i.e., CFi

x
 ) and y-axis (i.e., CFi

y
 ) data. The 

conditioni%p = 0 aims to select ship position data at given frame interval p, and we set 
default value for the p as 5 in our study.

4 � Experiment

4.1 � Data description and experimental platform

We collected three ship video clips to evaluate the proposed framework efficiency, which 
involved three typical maritime traffic situations. The video #1 originated from public-
accessible maritime website which is shown as follows: https://​sites.​google.​com/​site/​dilip​
prasad/​home/​singa​pore-​marit​ime-​datas​et [5], [31]. The video #2 and the video #3 are col-
lected by our colleague when they served as ship crew on the Yuming ship (i.e., intern-
ship training ship). The frame rate for the video #1 was 30 frame per second (fps), and 
the image resolution was 1920 × 1080. Note that the video length was 9s. The frame rate, 
resolution and length for the video #2 were same to those of the counterparts of video #1. 
The frame rate for the video #3 was 24 fps, and the image resolution (video length) was 
640 × 368 (22s). The maritime traffic environment for the video #1 was in mist weather 
condition, while the target ship was fully-sheltered by neighboring ships in the collected 
maritime video in short period. Video #2 was shot under heavy mist condition, and the tar-
get ship was partially sheltered by the obstacles in the maritime image sequences. Video #3 
was collected involving with ship encountering traffic scenario.

We set the filter kernel size of the fog-removal module into 7, and the brightest spot por-
tion for estimating atmospheric light is fine-tuned into 0.0001. Moreover, the proposed ship 
tracking SAMF model employed the Gaussian function as the kernel module. The padding 
value and regularization parameter were set into 1.5 and 0.0001, respectively. Besides, the 
default spatial bandwidth (interpolation factor) was set to 0.1 (0.01) in the study. Detailed 
information for the collected videos were shown in Table 1. The proposed framework was 
implemented on windows 10 OS with Intel (R) Core (TM) i7-7500U CPU @ 2.70 GHz 
processor, and the RAM was12G. The GPU version is NVIDIA GeForce GTX 940MX 
with 2G memory. The experimental platform for the study is Python version 3.6 and Mat-
lab version 2020a.

(15)CFx =
∑E

e=0
geD

e
x

(16)CFy =
∑E

e=0
veD

e
y

(17)CF =
[

CFi
x
,CFi

y

]

, s.t.i%p = 0

https://sites.google.com/site/dilipprasad/home/singapore-maritime-dataset
https://sites.google.com/site/dilipprasad/home/singapore-maritime-dataset


48915Multimedia Tools and Applications (2024) 83:48907–48923	

1 3

4.2 � Results

To evaluate the proposed model performance, we firstly removed fogs in the above-men-
tioned three maritime videos with the help of the dark channel prior module in the pro-
posed framework. For the purpose of obtaining optimal fog-removal results, we set the 
convergence factor β and threshold tt into 0.91 and 0.1, respectively. Note that we did not 
provide parameter fine-tuning procedure in our study considering the page limitations. Fig-
ure 2 provided typical images for both before and after fog-removal procedure for video #1, 
and the region of interests (ROIs) were labeled out in each image with red rectangle. It is 
noted that fogs in Fig. 2a for frame #1, #191 and #265 were successfully suppressed, which 
can be clearly observed in the counterparts of Fig.  2b. The ship and sky relevant pixels 
in Fig. 2a were slightly contaminated by fogs (see the top one-third image pixels for each 
subplot of Fig. 2a), and the corresponding pixels in Fig. 2b showed that fog interference 
was successfully removed by the proposed fog-removal model. Note that the contours for 
the two ships involving with ship occlusion situation (see the embedded red rectangle in 
Fig. 2) were better identified in the Fig. 2b (i.e., fog-removal images).

We presented imaging trajectory extraction and outlier removal results for ship #1 in 
video #1 to evaluate the proposed framework performance. Figure 3 showed typical ship 
tracking results for video #1. It is noted that ships were successfully tracked under ship 
occlusion challenge (see the ship tracking results of frame #35, frame #111 and frame #260 

Table 1   Details for the collected three maritime videos

frame rate resolution length maritime traffic environment

video #1 30 fps 1920 × 1080 9 s mist condition while a target 
ship was sheltered by 
obstacle in short period

video #2 30 fps 1920 × 1080 9 s heavy mist while a target 
ship was partially shel-
tered by obstacles

video #3 24 fps 640 × 368 22 s ship encountering scenario

Fig. 2   Typical ship images for video #1 before and after fog removal
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in Fig. 3). More specifically, the target ship #1 was successfully tracked for both before and 
after ship occlusion scenarios. The main reason was that the proposed SAMF ship tracking 
model retained the raw ship template (i.e., initial ship training sample), which was further 
employed to track the ship #1 in the later video #1 sequences. Moreover, the target ship #2 
and #3 were successfully tracked without obvious tracking outliers, which indicated that 
proposed ship tracking module can obtain satisfied ship tracking performance.

Figure 4 provided raw ship tracking positions and the curve-fitting data for ship #1 (in 
video #1). Anomaly raw ship position in x axis (see Fig. 4a) was clearly found approxi-
mately from frame #115 to frame #250. Note that the raw x (and y) position data indicated 
the ship tracking positions obtained by the SAMF tracking module in our proposed frame-
work. The ship positions in x axis obtained by the curve-fitting model (see the red curve 
in the Fig. 4a) showed smooth yet consistent variation tendency compared to those of the 
raw x data series. Figure 4b showed both raw and curve-fitted ship positions in y axis. It is 
found that ship movement in the y-axis was much smoother compared to that of the x axis, 
whilst the difference between the raw and curve-fitting data in y-axis was smaller in com-
parison with the x-axis data. Moreover, the maximum data variation in the y axis was less 
five pixels which suggested that ship movement in y axis direction was quite trivial.

For the purpose of further removing trivial ship trajectory data, we provided both 2D 
and 3D imaging trajectory for ship #1 in video #1 as shown in Fig. 5. More specifically, the 
Fig. 5a provided raw ship imaging trajectory (i.e., ship movement in x and y axis) in each 
maritime frame, which was denser compared to the down-sampling ship imaging trajectory 
(see Fig. 5c). In that manner, the abnormal yet trivial ship imaging trajectory oscillations 
can be successfully removed. The 2D ship imaging trajectory distributions for both before 
and after down sampling procedure (see Fig. 5b and 6d) confirmed the above-mentioned 
analysis.

The ship #1, #2 and #3 showed obvious movement in ROI of video #1, while other ships 
showed anchoring state in the video (i.e., ships moved at a quite slow speed). In that way, 
we implemented the maritime traffic situation awareness task by exploring spatial-temporal 

Fig. 3   Typical ship tracking results for video #1
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relationship via trajectory of ship #1, #2 and #3. We focused on analyzing ship trajectory 
relationship in the x-axis considering that ship movement in the y-axis was quite trivial. 
The traffic situation was obtained by exploiting ship spatial-temporal relationship in the 
x-axis, which was applicable to video #1. More specifically, the ship #1and #2 involved 
with traffic overtaking situation, and the distance between the two ships showed an increase 
tendency (which can be inferred from the vertical distance between the red and blue curves 
in Fig. 6). The traffic situation for ship #2 and #3 was same to that of the ship #1 and #2 
(i.e., overtaking situation). It can be inferred that the ship #3 may overtake ship #2 in near 

Fig. 4   Position distributions for 
both x and y axis of ship #1 in 
video #1

Fig. 5   The 2D and 3D imaging trajectory distribution for ship #1 in video #1
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future considering that the distance between the ship #2 and #3 showed obvious decrease 
variation tendency. To sum up, on-site traffic participants (e.g., ship crew, maritime traffic 
officials) need to pay more attentions to the traffic situation between ship #2 and #3 (i.e., 
ship spatial temporal relationship).

The proposed framework was implemented to video #2 for the purpose of further model 
performance evaluation and traffic situation analysis. Figure 7 demonstrated fog-removal 
results for the video #2, which suggested that target ship contours in ROI were clearer (see 
each subplot in Fig. 7a and b, respectively). In that way, we can draw a conclusion that 
our proposed model can successfully remove fog interference in both mist and strong fog 
conditions. The ship tracking positions were shown in Fig.  8, which indicated that each 
target ship can be successfully tracked by our proposed model. More specifically, the pro-
posed framework tackled the partial ship-occlusion challenge, and obtained high-fidelity 
ship imaging trajectory dataset (see the ship tracking results in frame #68, #135 and #270 
in Fig. 8). To further explore maritime traffic situation in video #2, we provided the imag-
ing trajectories for the two ships (in terms of x axis distributions considering ship move-
ment in the y axis was negligible) in Fig. 9. We observed that the two ships experienced 
same traffic situation as that of video #1 (i.e., overtaking), and the displacement between 
the two ships become smaller in the later image sequences. In other words, the ship #2 was 
overtaking ship #1 in the video #2.

Fig. 6   Trajectory distributions 
for the three ships of video #1

Fig. 7   Typical ship images for video #2 before and after fog removal
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We also verified model performance on a typical traffic scenario (i.e., ship encounter-
ing situation). The fog removal results for the video #3 were shown in Fig. 10, which 
demonstrated that ship contours in the de-fogged images were more obviously than those 
in the fog-polluted maritime images. Moreover, ship tracking results in Fig. 11 demon-
strated that our proposed framework can accurately track ships, and consecutive ship tra-
jectories can be found in Fig. 12. The obtained ship trajectories indicated the two ships 
can safely travel in the channel without taking additional maneuvering operations. In that 
manner, it can be safely concluded that the on-board ship crew has performed appropri-
ate ship operations.

Fig. 8   Typical ship tracking results for video #2

Fig. 9   Trajectory distributions for the two ships of video #2
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Fig. 10   Typical ship images for video #3 before and after fog removal

Fig. 11   Typical ship tracking results for video #3

Fig. 12   Trajectory distributions 
for the two ships of video #3
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5 � Conclusion

Accurate maritime traffic situation awareness provides early-warning useful information to 
varied maritime traffic participants (e.g., ship crew, ship company, ship owner). However, 
complex maritime traffic environment may significantly challenge MTSA model perfor-
mance due to disadvantages of low visibility, ship imaging occlusions. The study aimed 
to develop a novel framework for maritime traffic situation awareness via the support of 
maritime surveillance videos. First, our proposed framework removed the fog interference 
via the dark channel prior model. Second, raw ship positions in each maritime image were 
obtained via the SAMF ship tracking module. Finally, we removed the ship imaging trajec-
tory outliers with the help of curve-fitting and down sampling model. We implemented 
the proposed framework to extract high-resolution ship imaging trajectory in three typical 
maritime videos, and thus further analyze maritime traffic situation variation tendency to 
help traffic participants obtain early-warning information.

Though the proposed framework achieved satisfied performance for the MTSA task, 
the remaining work can be explored to further enhance model performance. First, we can 
exploit additional adverse navigation environment to verify model robustness (e.g., raining 
days, snow weather condition). Second, maritime videos were shot at relative stable condi-
tions (i.e., camera shooting angle was constant). We can evaluate the proposed framework 
performance under camera shooting angle vibration constraints. Third, the proposed frame-
work was implemented in an off-line manner, and we will further explore real-time ship 
trajectory extraction modules along with additional maritime situation challenges (e.g., 
wave imaging challenge, blurring maritime images).

Acknowledgements  This work was jointly supported by National Key R&D Program of China 
(2021YFC2801002), National Natural Science Foundation of China (52102397, 52071200, 62176150), 
China Postdoctoral Science Foundation (2022M712027), Fund of National Engineering Research Center for 
Water Transport Safety (A2022003).

Data availability  Data sharing not applicable to this article as no datasets were generated or analysed during 
the current study.

Declarations 

Conflict of interest  There was no conflict of interests for the manuscript submission, and the manuscript is 
approved by all authors for the publication.

References

	 1. 	 Yu Y, Chen L, Shu Y, Zhu W (2021) Evaluation model and management strategy for reducing pollu-
tion caused by ship collision in coastal waters. Ocean Coast Manag 203:105446. https://​doi.​org/​10.​
1016/j.​oceco​aman.​2020.​105446

	 2. 	 Liu RW, Yuan W, Chen X, Lu Y (2021) An enhanced CNN-enabled learning method for promoting 
ship detection in maritime surveillance system. Ocean Eng 235:109435. https://​doi.​org/​10.​1016/j.​
ocean​eng.​2021.​109435

	 3. 	 Chen X, Wang Z, Hua Q, Shang W, Luo Q, Yu K (2022) AI-Empowered speed extraction via Port-like 
videos for vehicular trajectory analysis. IEEE Trans Intell Transp Syst vol Preprint 1–12. https://​doi.​
org/​10.​1109/​TITS.​2022.​31676​50

	 4. 	 Chen X et al (2020) Sensing data supported traffic flow prediction via denoising schemes and ANN: A 
Comparison. IEEE Sens J 20:14317–14328. https://​doi.​org/​10.​1109/​JSEN.​2020.​30078​09

https://doi.org/10.1016/j.ocecoaman.2020.105446
https://doi.org/10.1016/j.ocecoaman.2020.105446
https://doi.org/10.1016/j.oceaneng.2021.109435
https://doi.org/10.1016/j.oceaneng.2021.109435
https://doi.org/10.1109/TITS.2022.3167650
https://doi.org/10.1109/TITS.2022.3167650
https://doi.org/10.1109/JSEN.2020.3007809


48922	 Multimedia Tools and Applications (2024) 83:48907–48923

1 3

	 5. 	 Prasad DK, Rajan D, Rachmawati L, Rajabally E, Quek C (2017) Video processing from electro-opti-
cal sensors for object detection and tracking in a maritime environment: a survey. IEEE Trans Intell 
Transp Syst 18(8):1993–2016. https://​doi.​org/​10.​1109/​TITS.​2016.​26345​80

	 6. 	 Li M, Mou J, Chen L, He Y, Huang Y (2021) A rule-aware time-varying conflict risk measure for 
mass considering maritime practice. Reliab Eng Syst Saf 107816. https://​doi.​org/​10.​1016/j.​ress.​2021.​
107816

	 7. 	 Murray B, Perera LP (2021) Ship behavior prediction via trajectory extraction-based clustering for 
maritime situation awareness. J Ocean Eng Sci. https://​doi.​org/​10.​1016/j.​joes.​2021.​03.​001

	 8. 	 Murray B, Perera LP (2020) A dual linear autoencoder approach for vessel trajectory prediction using 
historical AIS data. Ocean Eng 209:107478. https://​doi.​org/​10.​1016/j.​ocean​eng.​2020.​107478

	 9. 	 Shu Y, Daamen W, Ligteringen H, Wang M, Hoogendoorn S (2018) Calibration and validation for 
the vessel maneuvering prediction (VMP) model using AIS data of vessel encounters. Ocean Eng 
169:529–538. https://​doi.​org/​10.​1016/j.​ocean​eng.​2018.​09.​022

	10. 	 Shu Y, Daamen W, Ligteringen H, Hoogendoorn SP (2017) Influence of external conditions and ves-
sel encounters on vessel behavior in ports and waterways using automatic identification system data. 
Ocean Eng 131:1–14. https://​doi.​org/​10.​1016/j.​ocean​eng.​2016.​12.​027

	11. 	 Chen X et al (2020) Ship trajectory reconstruction from AIS sensory data via data quality control and 
prediction. Math Problems Eng 2020:1–9. https://​doi.​org/​10.​1155/​2020/​71912​96

	12. 	 Chen X, Liu S, Liu RW, Wu H, Han B, Zhao J (2022) Quantifying Arctic oil spilling event risk by inte-
grating an analytic network process and a fuzzy comprehensive evaluation model. Ocean Coast Manag 
228:106326. https://​doi.​org/​10.​1016/j.​oceco​aman.​2022.​106326

	13. 	 Guo S, Mou J, Chen L, Chen P (2021) Improved kinematic interpolation for AIS trajectory reconstruc-
tion. Ocean Eng 234:109256. https://​doi.​org/​10.​1016/j.​ocean​eng.​2021.​109256

	14. 	 Chen JS, Dao DT, Chien H (2021) Ship echo identification based on norm-constrained adaptive beam-
forming for an arrayed high-frequency coastal radar. IEEE Trans Geosci Remote Sens 59(2):1143–
1153. https://​doi.​org/​10.​1109/​TGRS.​2020.​30009​03

	15. 	 Shan Y, Zhou X, Liu S, Zhang Y, Huang K (2021) SiamFPN: a deep learning method for accurate and 
real-time maritime ship tracking. IEEE Trans Circuits Syst Video Technol 31(1):315–325. https://​doi.​
org/​10.​1109/​TCSVT.​2020.​29781​94

	16. 	 Shao S, Zhang L, Liu H (2019) An optimal imaging time interval selection technique for marine tar-
gets ISAR imaging based on sea dynamic prior information. IEEE Sens J 19(13):4940–4953. https://​
doi.​org/​10.​1109/​JSEN.​2019.​29033​99

	17. 	 Zhang W et al (2021) A robust deep affinity network for multiple ship tracking. IEEE Trans Instrum 
Meas 70:1–20. https://​doi.​org/​10.​1109/​TIM.​2021.​30776​79

	18. 	 Sui Z, Wen Y, Huang Y, Zhou C, Xiao C, Chen H (2020) Empirical analysis of complex network for 
marine traffic situation. Ocean Eng 214:107848. https://​doi.​org/​10.​1016/j.​ocean​eng.​2020.​107848

	19. 	 Szlapczynski R, Krata P (2018) Determining and visualizing safe motion parameters of a ship navigating 
in severe weather conditions. Ocean Eng 158:263–274. https://​doi.​org/​10.​1016/j.​ocean​eng.​2018.​03.​092

	20. 	 Sharma A, Nazir S, Ernstsen J (2019) Situation awareness information requirements for maritime navi-
gation: a goal directed task analysis. Saf Sci 120:745–752. https://​doi.​org/​10.​1016/j.​ssci.​2019.​08.​016

	21. 	 Du L, Goerlandt F, Valdez Banda OA, Huang Y, Wen Y, Kujala P (2020) Improving stand-on ship’s 
situational awareness by estimating the intention of the give-way ship. Ocean Eng 201:107110. https://​
doi.​org/​10.​1016/j.​ocean​eng.​2020.​107110

	22. 	 Wu B, Zhang J, Yip TL, Guedes Soares C (2020) A quantitative decision-making model for emergency 
response to oil spill from ships. Marit Policy Manag 48(3):299–315. https://​doi.​org/​10.​1080/​03088​
839.​2020.​17919​94

	23. 	 Wu B, Tang Y, Yan X, Guedes Soares C (2021) Bayesian Network modelling for safety management 
of electric vehicles transported in RoPax ships. Reliab Eng Syst Saf 209:107466. https://​doi.​org/​10.​
1016/j.​ress.​2021.​107466

	24. 	 Xiao Z, Fu X, Zhang L, Goh RSM (2020) Traffic pattern mining and forecasting technologies in mar-
itime traffic service networks: a comprehensive survey. IEEE Trans Intell Transp Syst 21(5):1796–
1825. https://​doi.​org/​10.​1109/​TITS.​2019.​29081​91

	25. 	 Yang X et al. SCRDet: towards more robust detection for small, cluttered and rotated objects. In: Inter-
national Conference on Computer Vision

	26. 	 Yang X, Yan J, Yang X, Tang J, Liao W, He T (2020) SCRDet++: detecting small, cluttered and 
rotated objects via instance-level feature denoising and rotation loss smoothing, IEEE Transactions on 
Pattern Analysis and Machine Intelligence. 45(2):2384–2399

https://doi.org/10.1109/TITS.2016.2634580
https://doi.org/10.1016/j.ress.2021.107816
https://doi.org/10.1016/j.ress.2021.107816
https://doi.org/10.1016/j.joes.2021.03.001
https://doi.org/10.1016/j.oceaneng.2020.107478
https://doi.org/10.1016/j.oceaneng.2018.09.022
https://doi.org/10.1016/j.oceaneng.2016.12.027
https://doi.org/10.1155/2020/7191296
https://doi.org/10.1016/j.ocecoaman.2022.106326
https://doi.org/10.1016/j.oceaneng.2021.109256
https://doi.org/10.1109/TGRS.2020.3000903
https://doi.org/10.1109/TCSVT.2020.2978194
https://doi.org/10.1109/TCSVT.2020.2978194
https://doi.org/10.1109/JSEN.2019.2903399
https://doi.org/10.1109/JSEN.2019.2903399
https://doi.org/10.1109/TIM.2021.3077679
https://doi.org/10.1016/j.oceaneng.2020.107848
https://doi.org/10.1016/j.oceaneng.2018.03.092
https://doi.org/10.1016/j.ssci.2019.08.016
https://doi.org/10.1016/j.oceaneng.2020.107110
https://doi.org/10.1016/j.oceaneng.2020.107110
https://doi.org/10.1080/03088839.2020.1791994
https://doi.org/10.1080/03088839.2020.1791994
https://doi.org/10.1016/j.ress.2021.107466
https://doi.org/10.1016/j.ress.2021.107466
https://doi.org/10.1109/TITS.2019.2908191


48923Multimedia Tools and Applications (2024) 83:48907–48923	

1 3

	27. 	 Yang X, Yan J (2022) Correction to: on the arbitrary-oriented object detection: classification based 
approaches revisited. Int J Comput Vision 130(7):1873–1874

	28. 	 Hong Z, Yang T, Tong X, Zhang Y, Liu S (2021) Multi-scale ship detection from SAR and optical 
imagery via a more accurate YOLOv3. IEEE J Sel Top Appl Earth Obs Remote Sens PP(99):1–1

	29. 	 Shi J, Jiang Z, Zhang H (2021) Few-shot ship classification in optical remote sensing images using 
nearest neighbor prototype representation. IEEE J Sel Top Appl Earth Observ Remote Sens PP:1–1

	30. 	 Zhang M, Rong X, Yu X (2022) Light-SDNet: a lightweight CNN architecture for ship detection. IEEE 
Access 10:86647–86662. https://​doi.​org/​10.​1109/​ACCESS.​2022.​31993​52

	31.	 Prasad DK, Dong H, Rajan D, Quek C (2020) Are object detection assessment criteria ready for mari-
time computer vision?,". IEEE Transactions on Intelligent Transportation Systems 21(12):5295–5304

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a 
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript 
version of this article is solely governed by the terms of such publishing agreement and applicable law.

https://doi.org/10.1109/ACCESS.2022.3199352

	Maritime traffic situation awareness analysis via high-fidelity ship imaging trajectory
	Abstract
	1 Introduction
	2 Literature review
	2.1 Ship trajectory data extraction and outlier removal
	2.2 Maritime traffic situation awareness
	2.3 Visual analysis under complex scene

	3 Methodology
	3.1 Fog removal with dark channel prior model
	3.1.1 Estimation of G and t(m)
	3.1.2 Obtain output fog-free image

	3.2 Ship imaging trajectory determination with SAMF tracking model
	3.3 Ship trajectory outlier removal

	4 Experiment
	4.1 Data description and experimental platform
	4.2 Results

	5 Conclusion
	Acknowledgements 
	References


