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Abstract
Globally liver diseases are the most life-threatening diseases, and according to global can-
cer statistics, liver cancer is the most common. Early detection of liver cancer can prevent 
millions of patients’ mortality every year. Automatic liver cancer detection will help radiol-
ogists to determine the tumour identification and its severity, and it is also helpful to reduce 
the occurrence of errors which results in a reduction in the number of deaths from liver 
cancer. It gives more accurate results in less time, saving the radiologist’s effort and time. 
The proposed model focused on improving the segmenting of liver images and then clas-
sifying the liver tumours from the CT images. The present study suggests the hyper tangent 
Fuzzy C-Means (HTFCM) to segment the liver images. It used Hyper tangent distance to 
calculate the data point distance from the cluster centres and obtained segmentation results 
almost closer to the ground truth liver images. Due to the fuzziness in the liver images, 
all state-of-the-art models except the proposed model cannot precisely locate the tumours. 
This study solved the issue of linear mapping using fuzzy logic, improved the classifica-
tion accuracy, and reduced the processing time of early diagnosis of liver diseases. The 
proposed model improves the classification accuracy to 99.58% and reduces the processing 
time by 2-25 s to classify the liver tumours.

Keywords  Image Processing · Liver Tumor · Unsupervised clustering · Hyper tangent

1  Introduction

It is believed that liver cancer forms in liver tissues and spreads there from other body 
parts [1]. When liver cancer is not detected promptly, it can cause severe complications 
and even death. Over 700,000 people die each year from liver cancer [2]. As a result, it 
is the leading cause of cancer death worldwide, and males have twice as high a risk as 
females [3, 4]. Radiologists and oncologists detect liver abnormalities with computed 
tomography (CT) and magnetic resonance imaging (MRI) [5]. The capture process of 
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electronic devices produces distorted unclear objects, non-uniform intensity, and vague 
boundaries in CT scans or MRI images [6].

Tissues surround liver tumours; it is difficult for radiologists to determine their 
location. Performing a manual liver tumour diagnosis is time-consuming and inaccu-
rate, delaying diagnosis and efficiency. The method is error-prone when it comes to 
classifying liver tumours. Noise, blurriness, and vague boundaries are common char-
acteristics of medical images. There is inaccuracy and uncertainty in the edges of the 
different tumours in the liver image and in the descriptions of the tumours.

Using computer-assisted diagnosis (CAD) improves the accuracy of the characteri-
zation of liver tumours and lesions [1]. CAD systems help physicians diagnose liver 
lesions automatically, but it is difficult to identify their exact size. Applying soft com-
puting and fuzzy logic could provide more clarity on tumours [7]. Soft computing 
techniques have been proposed for the extraction of liver features in some studies. Par-
ticle swarm optimization was applied to classify liver lesion features based on a bidi-
rectional empirical mode decomposition [8]. Using edge-enhancing diffusion filtering 
and intensity-based registration, another study used anisotropic filtering followed by 
adaptive thresholding to segment tumours [9].

It used a region of interest (ROI)-based histogram for segmentation and a grey-level 
co-occurrence matrix to classify liver tumours to extract features from the liver images 
[10]. In [11], authors proposed an improved support vector machine (SVM) algorithm 
to cope with the underfitting and overfitting problems, but they encountered problems 
with linear mapping. The linear mapping of the score vector causes the SVM classifier 
to exaggerate data fitting issues. Fuzzy SVM calculates the feature scores for the ROI 
parts, which helps get better classification results and efficiently differentiate tumours.

The liver lesions are diagnosed into three categories such as meningioma, hepato-
cellular carcinoma, and metastatic carcinoma. To segment liver tumours, unsupervised 
machine learning-derived metastatic unsupervised segmentation is used [12]. Using 
SVM-based ANOVA and Modified Extreme Learning (MEL), liver cancers were clas-
sified, and region segmentation was used to segment liver CT abdomen images [13, 
14]. There is more uncertainty in type 2 fuzzy set-based FCM when compared to type 
1 fuzzy set-driven FCM [15]. A variant of FCM is proposed to eliminate noise, and 
the term credibility is introduced [16]. Using the entropy and hesitation degree of the 
membership function, an intuitionistic fuzzy set theory was presented [17].

It is susceptible to noise and results from incorrect segmentation, which makes 
fuzzy clustering with C-Means (FCM) ideal for many clustering problems [18]. FCM 
algorithms use Euclidian distance for finding the distance between data points and 
cluster centres, but the Euclidian distance can only detect spherical clusters. This 
study compared liver images with those in existing studies based on fuzzy logic. Fuzzy 
entropy was applied to map the original liver image, then its characteristics were con-
sidered. We enhanced the liver image using local information by extracting textual and 
edge information later.

Hyper tangent FCM (HTFCM) was proposed as an improved version of FCM; it 
computes data point distance from cluster canters using hyper tangent distance, 
enhancing the quality of liver image diagnosis with fuzzy segmentation. We reduced 
the noise in liver images by improving the Type 2 fuzzy concept. After hyper tan-
gent segmentation has been applied, liver images are segmented using hyper tangents. 
Features are extracted to distinguish the tumours, and FSVM is used to classify the 
tumours.
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1.1 � Research contribution

The main contribution of the present study is:

1.	 In this study, we considered the LiTS, CHAOS and custom tumour dataset for liver 
tumours classification

2.	 To detect liver cancer in the CT scan liver image, we applied state-of-the-art segmenta-
tion models such as FCM, KPCM, IFCM and PFCM. We propose a hyper tangent FCM 
model and compare the proposed with the state-of-the-art segmentation models.

3.	 We applied the intensity and the textual feature extraction techniques
4.	 The experimental results are compared with the baseline classification models like SVM 

and Random Forest. We compared the proposed with the state-of-the-art classification 
models using the accuracy, sensitivity, and specificity classification performance met-
rics.

5.	 The proposed model surpassed the state-of-the-art models by 2–12% accuracy and 
processing time by 2-25 ms.

We organized the rest of the paper as follows. Section 2 goes with the material col-
lection and the novelty followed in this research. Section 3 describes the experimental 
results, analyses the proposed improved optimization model behavior, and presents the 
results. Section 4 discusses the antecedents of diabetic retinopathy and their limits and 
overcome that limitation in the present research. Section 5 concludes the paper.

2 � Materials and methodology

2.1 � Materials

We collected 1200 CT images from LiTS [19], 3DIRCADb-1 (https://​www.​ircad.​fr/​
resea​rch/​data-​sets/​liver-​segme​ntati​on-​3d-​ircadb-​01/), CHAOS (https://​explo​re.​opena​
ire.​eu/​search/​datas​et?​pid=​10.​5281%​2fzen​odo.​33628​45), custom dataset. The collected 
dataset consists of all stages of liver cancer: 200 normal images, meningioma hepatocel-
lular 300, and 300 metastatic CT images. We split the dataset as 80% for training and 
20% for testing. The distribution of the collected dataset with CT categorical classifica-
tion can be found in Table 1.

Table 1   Dataset distribution for 
this study

Category Count Training Testing

Normal 200 160 40
Meningioma 400 320 80
hepatocellular 300 240 60
metastatic 300 240 60

https://www.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01/
https://www.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01/
https://explore.openaire.eu/search/dataset?pid=10.5281%2fzenodo.3362845
https://explore.openaire.eu/search/dataset?pid=10.5281%2fzenodo.3362845
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2.2 � Methodology

The main objective of this study is to classify liver lesions into meningioma, hepatocellular 
carcinoma, and metastatic carcinoma. The proposed study is organized into four stages: 
Image preprocessing, segmentation, feature extraction and classification. Figure 1 shows 
the block diagram of the proposed study.

The noise and outliers in the liver images are removed, and the contrast of the liver 
image is improved in the image preprocessing stage. Next, the liver and the lesion regions 
are segmented. Later from the segmented liver images, features are extracted from the liver 
and the tumour. Finally, based on the extracted feature differences, the tumours are classi-
fied using the classifier. Figure 2 shows the flow of the present research,

2.2.1 � Image enhancement

First, we converted all the liver images to grey-level images. Then the image enhancement 
is categorized as image normalization, image fuzzification, edge information and textual 
extraction. Figure 3 shows the difference between before performing the image processing 
and after image preprocessing.

Fig. 1   Block diagram of the 
proposed research

Fig. 2   Flow diagram of the 
proposed study
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Image normalization  The range of the intensities in the liver image vary largely. So, we 
normalize the liver images by mapping the image intensity levels into the range [ Omin,Omax]

where Omin = 0andOmax = 255.Ogmax and Ogmin are the maximum and the minimum inten-
sity levels of the original liver image. OmaxandOmin are the maximum and the minimum 
intensity levels of the normalized liver image.O ( i, j ) and (Og(i, j)  are the liver image levels 
of pixels(x,y) after and the before the normalization.

Image fuzzification  We applied the S-membership function [20] to the gray level liver 
images which maps all the elements of into the real numbers in [0,1].

The values in the above specified membership function represent the brightness of the 
pixel intensities of the liver image.

In liver images, the tissues and the tumors belong to the foreground and the all the 
remaining are considered as the background. From Eq. (2), the middle point j is determined 
as the image background classification [21] using the entropy [22]

Let Bx be the gray level probability distribution x,x =1, 2…N.Tb is the below the thresh-
old h,Ta is the above the threshold with maximum intensity N of the liver image. The out-
put distribution is determined using the entropy and it is mathematically represented as:

(1)O(x, y) = Omin +

(
Omax − Omin

)
∗ (Og(x, y) − Ogmin)

Ogmax − Ogmin

(2)S(r ∶ i, j,m) =

⎧⎪⎪⎨⎪⎪⎩

0;r ≤ i
(g−i)

(j−i)(m−i)
;i ≤ r ≤ j

1 −
(r−m)

(m−j)(m−i)
;j ≤ r ≤ m

1;r ≥ m

Fig. 3   (a) Before preprocessing (b) After preprocessing
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The entropy is represented as

Here h∗ is the S member function middle point optimal threshold. Later we converted 
the image into the fuzzy domain using the S member function

where O(x, y) pixel intensity for pixel (x, y) , gh(p) is the liver gray image histogram, p is the 
gray level.

Edge normalization  We applied the edge operator to the fuzzified liver image to extract 
the edge features of the liver images. The mathematical form of the edge operator is:

where ��min=min(��(x, y) ) and ��max = max(��(x, y) ) 0 ≤ x ≤ height − 1 , 0 ≤ y ≤ width − 1 , 
width and height are the liver images width and height.��(x, y) computed using the sobel 
operator [23].

Masking  We applied four masks to determine the region of interest to highlight the 
edge and spot features. For this we used three vectors A = (1,3,5,3,1) B = (-1,0,2,0,-1) 
C = (-1,-2,0,2,1)

(3)Tb(h) = −
∑b

x=1

bx

Bb

��
bx

Bb

(4)Ta(h) = −
∑N

x=a+1

bx

1 − Bb

��
bx

1 − Bb

(5)where Bb =
∑b

x=1
bx

(6)h∗ = Ar gmaxN
x=1

{
Ba(t) + Bb(t)

}

(7)�(x, y) = S(O(x, y) ∶ i, h∗,m)

(8)
gh(p) =

∑
0 ≤ y <≤ B − 1

max(O(x, y))

0 ≤ x ≤ B − 1

p=0
𝛿(O(x, y) − p)

(9)�(h) =

{
0; h = 0

1; otherwise

(10)d�(x, y) =
��(x, y) − ��min

��max − ��min

(M1)ATB =

⎡⎢⎢⎢⎢⎣

1 0 2 0 −1

−3 0 6 0 −3

−5 0 10 0 −5

−3 0 6 0 −3

−1 0 2 0 −1

⎤⎥⎥⎥⎥⎦
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where f𝛽A⊤Bmax
= max(abs

(
f𝛽A⊤B(p, q)

)
) and f𝛽A⊤Cmax

= max(f𝛽A⊤Cmax
) and f𝛽B⊤Amax

= max(abs
(
f𝛽B⊤A(p, q)

)
) and 

f𝛽C⊤Amax
= max(f𝛽C⊤Amax

) 0 ≤ q ≤ height − 1 , 0 ≤ p ≤ width − 1

Contrast enhancement  We measured the local mean of the texture and edge extraction in 
the fuzzy domain to improve the contrast of the image

where �d(x, y) is the window local mean centered at location (x, y) with size h X h.

Defuzzification  The enhanced pixel intensity can be obtained by the inverse function S−1
(��(x, y):i, j,m)

(M2)ATC =

⎡
⎢⎢⎢⎢⎣

1 −2 0 2 1

−3 −6 0 6 3

−5 −10 0 10 5

−3 −6 0 6 3

−1 −2 0 2 1

⎤
⎥⎥⎥⎥⎦

(M3)BTA =

⎡
⎢⎢⎢⎢⎣

1 −3 −5 −3 −1

0 0 0 0 0

2 6 10 6 2

0 0 0 0 0

−1 −3 −5 −3 −1

⎤
⎥⎥⎥⎥⎦

(M4)CTA =

⎡
⎢⎢⎢⎢⎣

−1 −3 −5 −3 −1

−2 −6 −10 −6 −2

0 0 0 0 0

2 6 10 6 2

1 3 5 3 1

⎤⎥⎥⎥⎥⎦

(11)

f𝛽(x, y) =
abs

(
f𝛽A⊤B(p, q)

)
f𝛽A⊤Bmax

∗
abs

(
f𝛽A⊤C(p, q)

)
f𝛽A⊤Cmax

∗
abs

(
f𝛽B⊤A(p, q)

)
f𝛽B⊤Amax

∗
abs

(
f𝛽C⊤A(p, q)

)
f𝛽C⊤Amax

(12)C�(x, y) =

|||�(x, y) − �d(x, y)
|||

|||�(x, y) + �d(x, y)
|||
;

(13)�h(x, y) =

∑x+
(h−1)

2

p=x−
(h−1)

2

∑y+
(h−1)

2

q=y−
(h−1)

2

�(p, q) ∗ f�(p, q) ∗ d�(p, q)

∑x+
(h−1)

2

p=x−
(h−1)

2

∑y+
(h−1)

2

q=y−
(h−1)

2

f�(p, q) ∗ d�(p, q)

;
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2.2.2 � Tumor segmentation

HTFCM is the alternative solution to the limitations of the FCM.HTFCM clusters the data 
based on the hyperbolic distance between the data points and the cluster centres. Next, it 
allocates the membership values to the data points and these points are assigned to the 
clusters that are the highest membership degree. The mathematical form of the HTFCM is

(14)

O
�

(x, y) = S−1(�
�

(x, y) ∶ i, j,m)

= Omin +
Omax−Omin

m−i

√
�

�
(i, j) ∗ (j − i)(m − i);0≤ �

�

(i, j) ≤
j−i

m−i

= Omin +
Omax−Omin

m−i
(m − i −

�
1 − �

�

(i, j) ∗ (m − j)(m − i);
j−i

m−i
≤ �

�

(i, j) ≤ 1

(15)

g(x) =
∑m

p=1

∑k

q=1
�n
pq
�c2

pq
;

=
∑m

p=1

∑k

q=1
�n
pq
‖��aq

�
− �

�
bp
�‖2;

=
∑m

p=1

∑k

q=1
�n
pq
‖1 − K

�
aq, bp

�
‖2;

(16)Where K
(
aq, bp

)
= 1 − tanh

(
−
⇑ aq − bp ⇑

2

�2

)

Fig. 4   Flow chart for the pro-
posed segmentation
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and aq is the data point.
Algorithm 1 gives the details about the proposed HTFCM, and Fig. 4 shows its flow 

diagram.

2.2.3 � Feature extraction

The feature extraction phase characterizes the lesion in the liver images. For liver 
images, the tissues surround the tumour region, and to signify the difference, we use the 
intensity and texture features. Intensity features are mean, standard deviation, skewness, 
and kurtosis and the Texture features are wavelet and Gabor energy.

2.2.4 � Intensity features

(a)	 Mean

where M is the total no: of pixels in the liver image, T is the total no: of pixels in 
region of interest (p,q) are the pixel gray level at position p and q.

(b)	 Standard deviation

	   E is the mean of the liver image.
(c)	 Kurtosis

(17)
�pq =

1

∑m

p=1

�
�
C2pm

�
C2pm

�
1

n−1

(18)and bq =

∑k

q=1
�n
p
⋅ ap

∑k

q=1
�n
p

(19)Mean(E) =
1

M

∑
(pq)∈R

T(p, q);

(20)S =

�∑
(pq)∈R(T(p, q) − E)

2

M
;

1.Initial cluster centres set the number of cluster, fuzzy index and the maximum number of 
iterations

2. for each iteration

update matrix using eq(15)

update cluster center suing hyper tangent

3. Output results

Algorithm 1   Proposed HTFCM
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(d)	 Skewness

2.2.5 � Tumor classification

The extracted features are the input to the fuzzy SVM [24] to classify the liver tumour 
images. We categorized the tumours into meningioma, hepatocellular carcinoma, and 
metastatic carcinoma. The fuzzy SVM uses feature vectors to calculate the feature score 
for ROI, which helps in classifying the tumours.

For a classification set with fuzzy membership function F = {(p1, q1, �1),….(pi, qi, �i,
),…….(pn, qn, �n )} where pi�ℝn and qi ∈ Q,Q={+ 1,-1},�i is the membership function for the 
sample pi belonging to qi and 0 ≤ �i ≤ 1 and the hyperplane is defined as TW

⋅ �(p) + a = 0 
to separate the samples and maximize the margin.

The mathematical representation of the FVSM classifier is

where a∗and�∗
i
 and represents the bias and the Lanrange multiplier and �∗

i
>0 is the support 

vector.
For multi class classifier one against other(OAO) [23] is defined in this study. For a set of n 

classes,(pi, qi, �i, ), i = 1,2,…..pi�ℝn and qi ∈ Q,Q={+ 1,-1}.
The steps for OAO procedure are:

1.	 One class is taken as the positive class and the remining (n-1) classes are considered as 
negative class.

2.	 Construct a binary FSVM classifier and name it as FSVM1;
3.	 Exclude the first class and turn to (n-1) class for classification and later construct FSVM 

classifier for the remaining (n-1) classes
4.	 (n-1) FSVMs has been constructed for n class classification

For each training sample calculate the fuzzy membership based on the distance between it 
and classification hyperplane and cluster center.

where �i represents the fuzzy membership for the sample pi . c(pi) is the distance between 
the sample pi and the cluster center p0 and it is represented as ||pi − p0||. M represents 
the radius of the sample cluster and it is represented as max||pi − p0 || where p0 is the 

(21)Kurtosis =
1

M

∑
(pq)∈ROI(T(p, q) − E)

4

S4

(22)Skewness(N) =
1

M

∑
(pq)∈ROI(T(p, q) − E)

3

S3

(23)g(p) = S

||||||

m∑
j=1

qi�
∗
i
K(pi.p) + a∗

||||||
;

(24)𝛽i =

⎧
⎪⎨⎪⎩

1 −
c(pi)

m+𝛿
;c(pi) ≤ C

�
1 −

C

m+𝛿

�
.

�
1

1+c(pi)−C

�
;c(pi) > C
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hyperplane and pi locates on the same side ofp0 . �=0.1 and C is the distance between the 
hyperplane and the cluster center.

Algorithm 2 gives the details about the improved algorithm used for the classification in 
this research and the Fig. 5 shows the flowchart for the flow of that algorithm.

3 � Experimental results

All the experiments are implemented using python on a computer with configuration Intel 
core i7@2.00 GHz, 8 GB RAM. A model was built for testing the conventional fivefold cross 
validation was taken into account.

3.1 � Evaluation metrics

(25)DICE =
2 ∗ |TP|

|TP| + |FN| + |FP|

Fig. 5   Flow chart for IFSVM

1.Initial fuzzy membership function,hyperplane  and the maximum number of iterations

2. for each iteration

One class is taken as the positive class and the remining (n-1) classes are 
considered as negative class.
Construct a binary FSVM classifier and name it as FSVM1;
Exclude the first class and turn to (n-1) class for classification and later 
construct FSVM classifier for the remaining (n-1) classes
(n-1) FSVMs has been constructed for n class classification

3. For each training sample update cluster center using eq(24)

4. Output results

Algorithm 2   Proposed FSVM
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(26)Rand Index =
Correct similar pairs + correct dissimilar pairs

Total number of pairs

(27)

Hausdroff distance = max(
max

p ∈ P

min

q ∈ Q
⇑ p − q ⇑2,

max

q ∈ Q

min

p ∈ P
⇑ p − q ⇑2)

(28)Accuracy =
|TP| + |TN|

|TP| + |FN| + |TN| + |FP|

(29)Precision =
|TP|

|TP| + |FP|

(30)Recall =
|TN|

|TN| + |FP|

Fig. 6   Comparison of segmented ROI of proposed with the state-of-the-art models for Custom dataset (a) 
Original Image (b) Ground truth (c) Proposed (d) IPFCM (e) PFCM
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3.2 � Liver tumor segmentation evaluation

Due to the vagueness of the medical images, all the state-of-the-art models except the 
proposed model cannot detect blood clots. Figure  6 compares the segmented region of 
interest proposed with the state-of-the-art models. The proposed model rejects the unwanted 
tissues and areas and detects the tumour regions only. Figure 4 shows that the proposed model 
could obtain the segmentation results almost closer to the ground truth. Figure 6 shows that 
the PFCM model does not precisely recognize the tumour region. After comparing all model 
results with the ground truths, we identified that the proposed model almost accurately detects 
the exact shape and size of the tumour region. The proposed model surpasses every state-
of-the-art model in that the remaining models detect the tumour regions in the liver image. 
However, the size and shape of the tumour are not accurate compared to the ground truth.

(31)F1 − score =
2 ∗ Precision ∗ Recall

|Precision| + |Recall|

Fig. 7   Segmentation analysis of the dataset (a) 3DIRCADb01 (b) LiTS (c) CHAOS (d) custom
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Figure  7 represents the performance analysis of the proposed segmentation results 
for the dataset 3DIRCADb01, LiTS, CHAOS, custom. We evaluated the different exper-
iments by considering various measures, including Dice, rand index accuracy, precision, 
recall and accuracy. We also assessed the five experimental results.

We compared the segmented region of interest proposed with the state-of-the-art models 
and tabulated the results in Table 2. We compared the segmentation results of liver tumours 
proposed with the otsu, FCM, IFCM, PFCM, IPFCM, HDensenet, and K-Means. Table 2 
tabulated the accuracy and the processing time of the state-of-the-art models. For 3DIR-
CADb01, the proposed obtained an accuracy of 99.18%, followed by Resnet with an accu-
racy of 99.02%, then Otsu with an accuracy of 98.51% and IPFCM with an accuracy of 
97.84%. The processing time for the proposed segment of the liver image is 8 s, followed by 
Resnet and IPFCM at 9 s and PFCM at 10 s. The accuracy of the proposed model surpasses 
other existing state-of-the-art models by 2–10% and reduces the processing time by 2-14 s.

3.3 � Liver tumor classification evaluation

The tumour’s crucial features are tested and trained by FSVM. All the features are 
extracted from the collected region of interest. Later the feature selection process is car-
ried out to optimize the feature set. Finally, the optimized features are used to train and 
test the FSVM. Figure 8 shows the confusion matrix for performing the multiclass clas-
sification of liver diseases.

After the segmentation of the liver tumour region, features are extracted separately. 
The classifier classifies the liver tumour from the obtained features into meningioma, 
hepatocellular carcinoma, and metastatic carcinoma. We compared the proposed classi-
fication performance with the state-of-the-art models and tabulated the results in Table 3.
The classification accuracy obtained by the state of the art models(Random forest, Ran-
domized tree, J48, KNN, SVM, Naïve Bayes) are 90.74%, 94.71%, 95.47%, 91.43%, 
96.48%, 91.84%.The proposed HTFCM with FSVM achieved the uppermost classification 
accuracy. The proposed model achieved precision and Recall of 98.36% and 1.00%.

Table 2   Comparison of accuracy and processing time of segmented image of the proposed with state of the 
art models

A Accuracy, P Processing Time

Algorithm used 3DIRCADb01 LiTS CHAOS Custom

A(%) P(s) A(%) P(s) A(%) P(s) A(%)  P(s)

Otsu [25] 98.51 11 97.86 15 97.67 17 98.74 15
FCM [26] 93.66 22 95.75 22 93.37 22 93.74 26
IntuitionistFCM [27] 94.68 11 94.87 11 95.68 11 94.58 11
Possibilistic FCM [28] 95.36 10 95.58 10 96.73 10 95.68 10
Intuitionist Possibilistic FCM [29] 97.84 9 96.48 9 96.58 10 97.79 15
HDensenet [30] 90.46 13 91.57 14 91.58 11 90.58 13
Stacked encoder [31] 96.47 11 95.73 11 94.64 11 96.29 15
Resnet [32] 99.02 9 98.58 9 98.69 12 99.22 13
En-Dnet [33] 97.86 12 96. 85 12 98.58 12 97.39 12
HTFCM 99.18 8 98.69 8 98.80 9 99.01 10
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The requirement for training and the testing time of various algorithms are tabulated 
in Table 4. From the results, we observed that the proposed model has less movement and 
testing time for input liver images.

The analysis is carried out on various k-fold cross-validations. Table 5 tabulates the val-
ues of the study of the proposed model with the state-of-the-art models by considering dif-
ferent cross-validations. The table tabulates the other splits of the training and testing sets 
with cross-validation analysis. The results show that the proposed achieved an accuracy of 
98.73% for a 70-30 split, 99.58% for an 80-20 division and 99.29% for a 90-10 split. This 
reveals that the split plays a vital role in classification accuracy.

4 � Discussion

The study aimed to detect liver cancer and classify tumours using CT scans. Early lung 
cancer indicators include enlarged and widened nodules, the primary visual features radi-
ologists observe. When lung cancer is in its early stages, the inside structure and the bor-
ders of the lungs appear very subtle. As a result, diagnosis becomes very challenging, and 
identifying abnormal and normal regions becomes difficult.

A hyper tangent FCM was proposed to segment the liver images to detect the tumour 
region from a CT scan liver tumour. This study first processed the noise in the liver images 

Fig. 8   Confusion matrix

Table 3   Classification comparison of proposed with state of the art models

s.no Model Accuracy(%) Precision(%) Recall(%) F1-score(%)

1 Randomforest [34] 90.74 75.46 89.46 78.83
2 Randomized tree [35] 94.71 77.94 92.54 77.95
3 WGDL + GMM + DNN [11] 99.38 97.33 99.78 98.14
4 HFCNN [36] 97.22 78.48 92.98 78.27
5 CascadedCNN [37] 94.21 91.43 97.38 84.73
6 DeeplapV3 [38] 98.50 89.45 93.56 79.78
7 Proposed 99.58 98.36 1.00 99.17
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using fuzzy image preprocessing and converted the liver images to a fuzzy set. The pro-
cessed image is segmented using the proposed hyper tangent FCM to detect the tumours 
in the liver images. The proposed model ceases the effect of outliers during the cluster-
ing process. The proposed HTFCM is evaluated and compared its performance with state-
of-the-art FCM models. This analysis proves that the proposed model surpassed the other 
state-of-the-art models. Finally, classified the extracted features and compared the classifi-
cation accuracy with the state-of-the-art models.

Liver image enhancement is critical for radiologists and CAD systems. By using fuzzy 
logic and liver image characteristics, we implemented image enhancement. We identified 
tumour features scattered throughout the liver image using edge and texture information 
and mapped them to maximum fuzzy entropy. When the FCM considers membership cat-
egories category-wise, data points are abnormal. A traditional clustering method cannot 
handle noise and outliers in medical images. We used hyper tangent clustering to segment 
medical images. Unfortunately, the image could not be extracted in its entirety.

FSVM performance was compared with classical SVM, and all features were used for 
the classifiers in these experiments. In FSVM, every training image is assigned a member-
ship, which weakens the influence of noise and outliers on classification accuracy. In the 
current input features and data, the fuzzy theory improves the classification performance of 
SVM better than classical SVM.

Standard FCM does not eliminate the noise and outliers in the medical images. A hyper 
tangent FCM enables the recognition of outliers, minimises the outliers’ effect, and ceases 
it. It further detects and extracts the outliers in the medical image segmentation. The pro-
posed framework delivered excellent results very quickly and efficiently. It can also be tried 
with tumours other than liver tumours, as the hyper tangent FCM showed promising results.

Chlebus et  al. [34] classified DR using Random forest and achieved accuracy of 
90.74%, sensitivity of 75.46%, specificity of 89.46%, F1-score of 78.83%. Jansen et al. 
[35] used the Randomized tree and achieved accuracy of 94.71%, sensitivity of 77.94%, 
specificity of 92.54%, F1-score of 77.95%. Das et  al. [11] proposed a hybrid model 

Table 4   Training and Testing 
analysis

Model Training time(s) Testing time(s)

Random forest [34] 2536 34.53
Randomized tree [35] 2364 28.46
WGDL + GMM + DNN [11] 2242 18.43
HFCNN [36] 2168 16.64
CascadedCNN [37] 2142 13.64
DeeplapV3 [38] 2124 11.45
Proposed 2015 9.47

Table 5   Cross validation analysis Model 70–30 split 80-20split 90-10split Cross validation

[39] 86.77 93.83 95.85 96.36
[40] 88.76 95.46 97.43 95.85
[41] 90.53 95.73 98.57 93.75
[42] 90.51 96.84 99.28 94.73
Proposed 98.73 99.58 99.29 98.63
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WGDL+ GMM+DNN and achieved accuracy of 99.38%, sensitivity of 77.33%, speci-
ficity of 92.78%, F1-score of 78.14%. Dong et al. [36] proposed a novel model HFCNN 
and achieved accuracy of 97.22%, sensitivity of 78.48%, specificity of 92.98%, F1-score 
of 78.27%. Soler et al. [37] developed a CascadedCNN model and achieved accuracy of 
94.21%, sensitivity of 91.43%, specificity of 97.38%, F1-score of 84.73%. Othman et al. 
[38] proposed a novel DeeplapV3 model and achieved accuracy of 99.50%, sensitivity 
of 89.45%, specificity of 93.56%, F1-score of 79.78%.

The proposed framework correctly detects most parts of the tumour with an accu-
racy of 99.18% for tumour segmentation and 98.58% for tumour classification. But still, 
some false positives could be improved by applying false positive filters on a large data-
set. The framework could be improved to handle all types of datasets and will make 
more widely accepted by hospitals or other institutes. In addition, we considered a lim-
ited dataset, and future research should be carried out to increase the dataset size.

5 � Conclusion

This study proposed a hyper tangent FCM to segment the liver images to detect the 
tumour region from a CT scan liver tumour. This study first processed the noise in the 
liver images using fuzzy image preprocessing and converted the liver images to a fuzzy 
set. The processed image is segmented using the proposed hyper tangent FCM to detect 
the tumours in the liver images. The proposed model ceases the effect of outliers dur-
ing the clustering process. The proposed HTFCM is evaluated and compared its perfor-
mance with state-of-the-art FCM models. This analysis proves that the proposed model 
surpassed the other state-of-the-art models. Finally, classified the extracted features and 
compared the classification accuracy with the state-of-the-art models.

The tumours exist in different shapes and sizes; we will try to plug a mechanism 
to incorporate the position and the channel feature information and capture more spa-
tial information in the intra-slices and inter-slices of the 3D medical data. Due to the 
different layer thicknesses of the data, there is an individual difference in the abdomi-
nal features there is a need to solve the continuity of adjacent layers. It is necessary to 
standardize the imaging parameters and collect more data to establish training in future 
datasets to optimize further and improve the segmentation results. In future work, the 
segmentation and classification accuracy could be improved by introducing different 
research models for segmentation and classification.
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