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Abstract
An exemplary for emerging knowledges and the capacity to provide reliable cloud services, 
cloud computing. Giving consumers on-demand access to “unlimited” computer resources 
is one of the key components of cloud computing. Single cloud-holding resources, how-
ever, are typically constrained and might not be able to handle the unexpected spike in user 
demands. In order to support resource sharing amongst clouds, the multi-cloud concept 
is thus established. These days, offering resources and administrations across numerous 
clouds is unquestionably amazing. The goal of conventional research on cloud schedul-
ing is to reduce costs or increase speed. However, the major indicator of QoS and a vital 
problem is the dependability of work process scheduling. As a result, multi-objective 
scheduling for a logical work process in a multi-cloud environment is suggested in this 
research with the goal of controlling the work process while also balancing cost and timeli-
ness while satisfying the criterion of reliability. The adaptive golden eagle optimisation 
(AGEO) algorithm is created to realise this idea. The solution encoding, fitness analysis, 
and updating functions are used in the proposed algorithm’s validation. Different workflow 
models are employed for the experimental study, and performance is assessed using vari-
ous indicators. The projected approach attained 1920 utilization. Similarly, the PSO and 
GA achieved 1901 and 1900 utilization.
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1 Introduction

 The development of cloud computing architecture has accelerated due to the enor-
mous surge in knowledge of information on the internet. The Internet-based delivery of 
innovation administrations is greatly aided by cloud computing. Customers are given 
access to the PC framework’s resources, such as data storage and recording power, 
without having to deal directly with dynamic management [1]. Three different kinds of 
help related to configuration, status, and programming are all available from a cloud. 
An infrastructure as a service (IaaS) foundation called Primary Administration offers 
[2] configuration administrations like capacity configuration and computing resources. 
Platform as a Service (PaaS) level second aid enables users to compile their requests 
on a specific platform. The third aid provides software as a service (SaaS) [3], which 
enables users to get programmes directly through the cloud without having to install 
anything locally. Utilizing advancements in virtualization, cloud providers identify 
assets for clients as Virtual Machines (VMs) [4].

When several customers are requesting administrative tasks from the cloud, a pro-
duction fault booking is expected to operate as part of distributed computing’s regular 
operations. Effective allocation booking provides both a constrained chance to deliver 
the required quality of service (QoS) and an improved opportunity to distribute assets 
between identified faults [5]. With the defined constraints in the VM area taken into 
account, the work scheduling problem is resolved and effective results are obtained. 
As a result, one of the fundamental elements of every cloud architecture is the job 
scheduling algorithm [6]. To help cloud users, numerous cloud organiser models are 
employed. The multi-cloud is one that stands out. Multi-cloud is a service provided by 
two businesses that are dispersed among several distinct cloud providers. The multi-
cloud level might be entirely private, entirely open, or both. Different cloud possibili-
ties are used by organisations to distribute recording resources [7] and remove the dan-
ger of data disasters and individual duration. In distributed computing, the internal and 
external resource needs are maintained; for examples, movement speed, accumulation, 
resource costs, and reaction time may vary for each task. Execution of load adjust-
ments, dependability, and the dynamic transfer of assets to the registration centre are 
often the main issues [8]. As a result, it is anticipated that the assignment for cloud 
computing may have been scheduled incorrectly.

Standard and dynamic task scheduling are the two different types of task schedul-
ing systems. For specialised businesses, static scheduling makes use of public data and 
scheduling firms. This is more than the prior booking system, and it runs businesses 
when the data is murky [9]. Despite the fact that this task is NP-complete, there have 
been some calculations to date that have satisfied the constraints for planning error 
predictions. Several upgrade approaches have been used in job planning, including 
particle swarm optimization, tabu search, simulated annealing, ant colony optimiza-
tion, electro search, and genetic algorithms. Given the large record power anticipated 
to carry out a continuous logical work process [10], it is difficult to develop an effi-
cient computation that takes into account every constraint required to carry out the 
task scheduling [11].

Section 2 of the added section of the research article provides an overview of work 
scheduling. Section  3 presents the background investigation of the multi-cloud envi-
ronment. The proposed strategy is presented in Section 4. In part 5, the article’s synop-
sis is given.
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2  Related works

Researchers have developed a number of task-scheduling methods. This section only analy-
ses a few research articles.

The transcendental planning computation aimed at explicit cloud knowledge is evalu-
ated using the Prediction of Tasks Computation Time approach (PTCT). Belal Ali al-
maytami et al., [12] have presented an intelligent scheduling algorithm employing a Direct 
Acyclic Graph (DAG). Similar to how the MacBook computation is greatly improved, 
the suggested calculation also simplifies and minimises the scheming and difficulty of by 
means of the PCA and ETC networks. In comparison to complex Min-Min, Max-Min, 
QoS-Guide, and MiM-MaM scheduling computations, reproduction results resolve the 
unmatched demonstration of computations directed at different conformations in effective-
ness, rapidity, and schedule length proportion.

For production cloud management, V.Priyaet al., [13] proposed integrated asset book-
ing and load adjustment computations. This method uses the uncertainty of doing so as 
the foundation for a multi-dimensional resource planning model to provide asset planning 
capabilities in the cloud architecture. By gradually selecting an appeal from a class using 
multi-dimensional sequence load optimization computations, it was possible to increase 
the utilisation of VM through response and acceptable load modification. By reducing 
abuse and overuse of resources, a load modification intention previously further optimises 
idle time for each type of request. Reconfigurations were made possible to evaluate the 
Cloudsim test system’s dependability on cloud server farms, and it achieves better results 
in terms of achievement rates, asset planning efficiency, and reaction time.

Particle swarm optimization (PSO), which was intended to use heuristic computations, 
has been improved by Seema A. Alsaidy et al., [14]. Calculations for the longest job to fast-
est processor (LJFP) and minimal completion time (MCT) are utilized to introduce PSO. 
Projected LJFP-PSO and MCT-PSO computations are presented. The MacBook is rated for 
managing all power usage measures, randomization, and entire processing time. For assess-
ment reasons, the proposed method is also contrasted with the traditional work scheduling 
approaches. The LJFP-PSO and MCT-PSO are compared through standard PSO and calcu-
lations of a similar nature to determine their reliability and dispersion.

Given that efforts are viewed as premature and free in PSO computation, Fatemeh 
Ebadifardet al. [15] have developed a error planning. This solution utilised a load-balanc-
ing process to produce the fundamental PSO technique. This approach is opposed to the 
suggested method, Round Robin (RR), the improved PSO job scheduling, and the load-bal-
ancing system. The method demonstrates these calculations for the restructuring outcomes 
with a 22% gain in asset consumption and a 33% decrease in the Macbeth, contrast, and 
crucial PSO computations. The results show that, compared to the conventional PSO com-
putation, our recommended approach is more efficient with additional jobs and integrates 
closer to a superior arrangement.

The Energy-Effective Assignment Booking Calculation in the Order Priority Technique by 
Best-Worst (BWM) and Technique for Order Preference by Similarity to Ideal Solution (TOP-
SIS) have been introduced by ReihanehKhorsand et al., [16]. This paper’s main objective was 
to determine the most significant cloud booking configuration. A dynamic collection first dis-
tinguishes grading standards. After receiving such advice, a BWM cycle was utilised to lower 
the critical load aimed at each level, and depending on that, the relevance of the chosen rules 
changed. These weighted standards were then added by TOPSIS as inputs to assess and gauge 
each additional option presented. ANOVA and CloudSim Toolkit are used for fact-checking, 
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and it is predicted that the presentation of the planned and existing computations will include 
some definitions for these metrics (makepan, energy use, and property value).

The computing time of tasks in the cloud is one of the important considerations. As a plat-
form for dynamic computation, cloud schedulers should be quick and easy to integrate with 
the actual cloud platform. These scheduling plans ought to be quickly convergent and offer 
an ideal outcome. Therefore, the goal of this research is to maximise throughput, Average 
Resource Utilization Ratio (ARUR), and task execution time. A thorough analysis of the rel-
evant literature reveals that the vast majority of task scheduling techniques now in use are 
tested on relatively small datasets, which is insufficient to demonstrate their scalability. This is 
due to the fact that scheduling algorithms must be scalable.

3  System model

Models and applications for cloud resources are described in this section. The broad definition 
and workflow model for the idea of cloud resources and applications are presented in this part. 
The task processing time is taken into account in order to schedule tasks effectively.

3.1  Cloud resource model

The IaaS platform provides computing power in the form of virtual machines to process large-
scale scientific procedures. The processing VM is commonly referred to as an instance. This 
gives the instances access to numerous QoS factors, including network bandwidth, storage 
capacity, CPU type, and different prices. Figure 1 shows the prototype cloud resource model.

This instance type’s description reads,

Where K is described as the number of instance kinds. The instance kind IK is described 
as [17],

(1)I =
{
I1, I2, .., IK

}

(2)
{
ICK ,C

BW
K

,CIC
K
,CS

K
,BWK , SK

}

Fig. 1  Directed acyclic graph
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Where, BWK is represent as the bandwidth, SK is denoted as the storage capacity and 
ICK is described as processing power. CBW

K
 is represented as the cost of bandwidth, CIC

K
 is 

represented as the cost of processing power and CS
K

 is denoted as the cost of storage capac-
ity. The task processing time in the instant IK is denoted as follows,

Here, 
(
TI
)
 denotes the period’s length with a million instructions, and l

(
TI
)
 denotes the 

execution time with all of the information received from them. Based on the parent task, 
TJ ∈ Parent

(
TI
)
 , the data transmission time is assessed which is constructed as follows,

Here, BWL is described as the bandwidths of the instances to TJ scheduled, BWK is 
described as the bandwidth of the instances to TI scheduled, dI,J is described as the data of 
the task. At the same time, two tasks are processed after that data transmission time moves 
to zero.

3.2  Application model

The application model is developed based on the DAG graph which is formulated as 
follows,

Here, t =
{
t1, t2,… , tn

}
 is described as the computational tasks and e =

{
Eti ,tj

|||ti ≠ tjandti, tj�t} 
is control sets or information dependencies among tasks described as directed edges. The 
precedence constraint among two tasks is denoted as the edges eti,tj . Normally, the task ti is 
a parent of tj

(
ti�Parent

(
tj
))

 and, the child of ti is denoted as tj . This restriction stipulates 
that a task process like tj is expected individual after the procedure of determining its pater-
nities and full data collected from the parents has been completed. Add two dummy tasks 
to the beginning and end conditions of the DAG in order to increase the number of texit and 
tentry presented in the task operation. Figure 1 illustrates a simple DAG instance. The weight 
assigned to each edge in the graph is indicated by the estimated data transmission time 
among the relevant activities. The workflow condition is processed using three virtual 
machines 

(
Vm1,Vm2 and Vm3

)
 in this instance [18].

3.3  Scheduling architecture

Create a multi-objective scheduling algorithm for this study with the goal of enhancing 
workflow in a multi-cloud environment. Utilising this anticipated technique, the work-
flow cost and timeline are optimised while taking dependability limits into account. Thus, 
when network scheduling occurs, three different types of difficulties are taken into account, 
including the type of task instructions for data transmission, the type of VM picked for the 
task, and the cloud IaaS platform chosen. The MOS approach, which is based on the adap-
tive golden eagle optimisation algorithm, is used to resolve these issues. Figure 2 presents 
the suggested architecture.

(3)t
process

I,K
=

l
(
TI
)

ICK

(4)ttransmission
I,J

=
dI,J

Min
(
BWK ,BWL

)

(5)g = (t, e)
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The cloud user initially launches a workflow application using any design as its 
foundation. After that, dependability, cost, and makespan are taken into account when 
designing the multi-objective scheduling technique. Finally, the workflow tasks are 
associated with the efficient cloud platforms that fit the necessary VM type. Each cloud 
service provider includes a task line and a process order for these jobs in their workflow 
architecture. In this case, a task is being completed while an endless variety of virtual 
computers continuously work with cloud users and parallel tasks in the queue. The tasks 
connected to dependence relations should be moving forward in accordance with the 
requirements. Each cloud in this multi-cloud scenario has unique performance metrics 
and pricing.

3.3.1  Multi-objective functions

A multi-objective optimization problem has three suitability functions, each of which is 
designated as f (x) . These fitness functions are f1(x), f2(x),… ., fK(x) , and they all need to 
be optimized simultaneously. Here, x stands for the decision space and X is an element. 
Pareto dominance is often used to compare the f (x) solution (i.e., X1,X2�X).

Here, 
(
X1

)
<

(
X2

)
 is described as dominates X2 , f (x) required to be reduced. The 

outcome is known as Pareto optimum since it does not get better with more solutions. 
The multi-objective function of this proposed strategy is thought to be connected to 
cost, time, and resource utilisation. The following is an explanation of these objective 
functions:

(6)X1 > X2 ⟺ ∀I ∶ fi
(
X1

)
≥ fi

(
X2

)
∧ ∃J ∶ fi

(
X1

)
< fi

(
X2

)

Task 

User interface

Request manager

Scheduler

Physical machine

VM1 VM2

VM Monitor

CPU Memory Storage

Physical machine

VM1 VM2

VM Monitor

CPU Memory Storage

R
e
so

u
rc

e
 m

o
n

it
o
r

User

Fig. 2  Proposed architecture
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3.4  Resource utilization

The number of commands used to operate the virtual machine up until its completion time 
is similar to the virtual machine resource utilisation. The VM’s resource use is calculated 
as follows:

Where, mi
(
ti
)
 is denoted as the task size and A is described as the set of tasks. The aver-

age utilization is represented as follows,

Where, |�| is denoted as the cardinality of it and � is represented as the set of instances.

Cost function

The number of commands used to operate the virtual machine up until its completion 
time is similar to the virtual machine resource utilisation. The VM’s resource use is calcu-
lated as follows:

Here, CIC
K

 is described as the processing cost and tprocess
I,K

 is described as the processing 
time. The following equation is used to calculate the cost of data transfer between tasks and 
to their offspring.

Here, bandwidth cost is denoted by CBW
K

 . Consider here the data communication and 
analysis times among its parents to calculate the cost of storage.

Here, CS
K

 is described as the storage cost. Finally, the total cost of handling finished jobs 
is defined as,

Makespan

A workflow’s whole completion time is known as the makespan. The makespan of a 
parameter is determined using the entire time of the departure job due to the DAG’s con-
struction. Additionally, the highest path of the workflow is used to calculate a workflow’s 
processing time in a risky manner. Therefore, the makespan is defined as the time it takes 

(7)uk =

∑
ti�A

mi
�
ti
�

∑
ti�A

�
t
process

I,K
+Maxtj�parent(ti)

ttransmission
I,J

�

(8)Utilization =

∑
Vmk�� uk

���

(9)CostPC
i

= t
process

I,K
× CIC

K

(10)CostBW
i

=
∑

tj�t(ti�Parent(tj))

ttransmission
I,J

× CBW
K

(11)CostS
i
=

(
t
process

I,K
+ max

ti�Parent(tj)
ttransmission
I,J

)
× CS

K

(12)Cost =
∑
tj�t

CostPC
i

+ CostS
i
+ CostBW

i
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for the last operation of a risky route to complete. To control the task’s start time and com-
pletion time, two operations are defined. The task’s start-up time is calculated as follows 
based on the completion times of its parents and the time required for data communication 
between its parents:

Here, tstr
(
ti
)
 is described as the starting time, tcom

(
tj
)
 is described as the complete time 

computed based on the below formulation,

After that, the makespan is computed based on the below formulation.

4  Proposed approach

The proposed approach helps to solve the workflow scheduling problem by taking into 
account the discrete multi-objective optimization problem that links workflow tasks to nec-
essary instances. The adaptive golden eagle optimization approach was created in order to 
resolve the multi-objective function and make it possible for an efficient workflow schedul-
ing process in a multi-cloud environment.

4.1  Golden eagle optimization algorithm

The golden eagle, sometimes known as the patchwork chrysaetos, preys on hawk and 
eagle prey. These eagles are closely related to people. The spiral trajectory used in the 
golden eagles’ hunting and cruising is one of its distinctive features. The prey is present 
for the most of the spiral trajectory on the eagle’s single side. Through this procedure, they 
are able to observe their hounded prey and surround stones with bushes to determine the 
best angle of attack. The characteristics of the golden eagle are moving forward in every 
instance of flight with two forces: a tendency to cruise and a tendency to attack. The golden 
eagle attacks quickly because it is aware that it only catches little prey. The chasing’s pri-
mary behaviour.

• It searches for other eagles to gather data about prey.
• They continue to have a predisposition for both attack and cruise for the entirety of the 

trip.
• Its current high propensity for cruising in the early stages of a smooth transition to 

hunting to an added propensity for attacking in the later stages.
• The eagle pursues a spiral trajectory designed to detect the traditional attack route.

(13)tstr
�
ti
�
=

⎧
⎪⎨⎪⎩

0 ti = tentry

max
ti�Parent(tj)

�
tcom

�
tj
�
+ ttrn

i,j

�
otherwise

(14)tcom
(
tj
)
= tstr

(
ti
)
+ t

process

I,K

(15)Makespan = tcom
(
texit

)
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The golden eagle generates intelligent balance, assault, and cruising between the two 
stages, such as exploration and exploitation. The algorithm’s accurate modelling is dis-
played in the manner as follows. The measured construction aims to mimic the variations 
in golden eagles’ hunting behaviour. The presentation of the formulation’s spiral motion 
is followed by the analysis of its division into assault and cruise vectors that emphasise 
exploration and exploitation.

4.1.1  Golden eagle spiral motion

This algorithm is based on the spiral motion of golden eagles. Every golden eagle keeps 
a record of its most favourable lodging location. The eagle is motivated to pursue the best 
prey and go on the attack. Every time, the golden eagle circled the best position that was 
too far away for it to pick the circle connected with a memory comparable to its own and 
randomly selected the prey of the other golden eagles. As a result, the golden eagle’s origi-
nal population is described as follows:

4.1.2  Selection of prey

Each golden eagle has the option to select a prey to use for its attack and travel functions in 
every iteration. The prey is created as the best solution in the golden eagle algorithm so far 
taking into account a flock of golden eagles. Each golden eagle is capable of holding the 
ideal answer. Based on the selected prey, each golden eagle’s cruise and attack vectors are 
calculated. The memory is then modified so that the new location now comes before the 
old location. The prey-chosen strategy in the golden eagle optimisation is crucial to get-
ting effective results. Every lone golden eagle selected the prey from its storage as part of a 
broad selection process.

4.1.3  Attack (exploitation)

The attack is planned with a vector that starts with the eagle’s current position in the attack 
strategy. The assault vector offers the population of golden eagles the most popular sites, 
which is an advantage of the exploiting process in golden eagle optimization. The attack 
vector in the golden eagle optimization is calculated using the equation below,

Here, the eagle’s current position is denoted by ��⃗xI  , its preferred prey location is denoted 
by ���⃗x∗

F
 , and the eagle’s attack vector is denoted by ��⃗aI  . An benefit of the exploitation stage in 

golden eagle optimisation is that the assault vector often controls the golden eagle popula-
tion to the best-identified places.

4.1.4  Cruise exploration phase

In connection with the attack vector, the cruise vector is calculated. The cruise vector, which 
is perpendicular to the circle of the attack vector, is referred to as a tangent vector. The golden 
eagle’s cruise can also be at a linear speed that is connected to its prey. In order to compute the 

(16)F�{1,2,… , population size}

(17)��⃗aI =
���⃗x∗
F
− ��⃗xI
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cruise vector, first solve the equation for the tangent hyperplane, which is an N-dimensional 
vector that is expressed in confidence to the circle’s tangent hyperplane. The hyperplane equa-
tion is stated in its scaler form as follows:

Here, X =
[
x1, x2, .., xn

]
 is described as a variables vector,h =

[
h1, h2, .., hn

]
 . The hyper-

plane random point is described as,p =
[
p1, p2, .., pn

]
 and d = ���⃗H. �⃗P =

∑N

I=1
hjPj . The eagle’s 

position is thought to be a random spot on the hyperplane, and its assault path is thought to be 
typical for the hyperplane. This is how its cruise vector is displayed,

Here, X∗ =
[
X∗
1
,X∗

2
,… ,X∗

N

]
 is described as the location of the chosen prey, 

X =
[
X1,X2,… ,XN

]
 is described as the design or decision variables vector and 

���⃗AI =
[
A1,A2,… ,AN

]
 is described as the attack vector.

4.1.5  Moving to new positions

The displacement of the golden eagle is made up of vectors and an attack. The following is 
how the golden eagle step vector is presented:

Here, ∥ ���⃗AI ∥ is described as the Euclidean norm of the attack vectors, ∥ ���⃗CI ∥ is described as 
the Euclidean norm of the cruise vectors, ���⃗R1 and

���⃗R2 is described as the random vectors which 
are presented in the period [0,1], �c is described as the cruise coefficient, �a is described as 
the attack coefficient. The Euclidean norm of the cruise and attack vectors are formulated as 
follows,

The golden eagle position in iteration t + 1 is computed based on the addition of the step 
vector.

(18)h1x1 + h2x2 +⋯ + hnxn = d ⇒

N∑
J=1

hjxj = d

(19)
N∑
J=1

AJXJ =

N∑
J=1

At
J
X∗
J

(20)𝛥XI =
���⃗R1𝜌a

���⃗AI

∥ ���⃗AI ∥
+ ���⃗R2𝜌c

���⃗CI

∥ ���⃗CI ∥

(21)∥ ���⃗AI ∥=

√√√√ N∑
J=1

A2

J

(22)∥ ���⃗CI ∥=

√√√√ N∑
J=1

C2

J

(23)Xt+1 = Xt + �xt
I
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4.1.6  Movement from exploration to exploitation

This is the first round of the hunting battle, and it shows a strong propensity for attack in 
the later rounds due to increased exploration in earlier rounds and high exploitation in later 
rounds. As shown below [19], intermediate parameters are calculated taking into account 
transition.

Here, pT
c
 and p0

c
 is described as the final and initial parameters of propensity to cruise, p0

a
 

and pT
a
 is described as the initial and final parameters of propensity to attack, T  is defined 

as maximum iterations and t is defined as the present iteration.

4.2  Levy flight distribution

Levy flight is used to calculate jump size and to update the position of the golden eagle, 
which employs the levy probability distribution function, which is a power law operation 
[20]. The following is the formulation of the levy distribution function:

Here, S is referred to as the scale parameter, and, is referred to as the position parameter, 
all of which are controlled by the distribution function’s distribution function’s scale. The 
global and local search is caused to be contained by this levy distribution function. Levy 
flight distribution is substituted for linear decline as the parameter A. The following is how 
the levy flight A variable is presented:

Here, R1 is described as the random vector, s is described as the position of a 
golden eagle. Levy flight-based A manages the local search abilities and global search 
characteristics.

4.3  Adaptive golden search optimization algorithm

The updating procedure of the suggested method, the golden search optimisation algo-
rithm, is made possible by the levy flight distribution. Eight different types of eagles are 
shown here for merging different allocation and prioritisation approaches. This population 
is creating an order vector for the relationship between parents and kids in a workflow and 
assigns each job an index between 1 and N, where N is the total number of tasks in the 
workflow. The order in which tasks are running on the VM is also shown as part of the 
order vector. The vector parameter is established during the beginning population devel-
opment and remains constant up until the algorithm’s conclusion for each golden eagle. 
These tasks are directed at order vector-related processing. The proposed method’s solu-
tion, known as the golden eagle position vector, is a sequence that takes into account the 

(24)
{

pa = p0
a
+

t

T
||pTa − p0

a
||

pc = p0
c
+

t

T
||pTc − p0

c
||

(25)l(s, 𝛾 ,𝜇) =

{√
𝛾

2𝜋
exp

[
−

𝛾

2(S−𝜇)

]
1

(S−𝜇)3∕2
if 0 < 𝜇 < ∞

0 if S ≤ 0

(26)A = levey(s) ∗ R1
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associated tasks and assigns the management of workflow activities to VM. The index of 
the task is provided to the position vector dimension, which is related to the parameter that 
calculates the index of the virtual machine that the task is planned on.

4.3.1  Objective functions

The multi-objective problem in the proposed method has three competing goals, including 
cost, makespan, and resource utilisation. The following formulation is used to create it:

4.3.2  Fitness function

The appropriateness of each golden eagle is determined using the raw operation. A golden 
eagle’s basic functioning is calculated taking into account the strength of its superiors. The 
definitions and functions indicate that the raw parameter is based on Pareto dominance. 
The move to Pareto supremacy to dangerously control the workflow is part of the intended 
method. The following formulation describes the condition under which the two eagles I,J 
dominate J:

This definition also alters the constituents of the dominated set. Although the defini-
tions of the eagles’ raw and strength parameters are different, they are the same as those 
described in the golden eagle optimisation algorithm. The duties are arranged effectively 
with the aid of the predicted strategy.

5  Performance evaluation

This section uses the task scheduling procedure to validate and defend the planned tech-
nique. The proposed method is put into practise using cloudSim devices and Java (JDK 
1.6), and its performance is assessed. On a 2 GHz dual-core PC running a 64-bit version of 
Windows 2007, the anticipated system experiments were tested.

5.1  Experimental outcome

Virtual machine scheduling with the aid of the AGEO technique is the fundamental infor-
mation of the proposed technique. Give M resources and N tasks their initial assignments. 
The scheduling process can now take into account cost, resource use, and makespan thanks 
to the AGEO approach (Table 1).

(27)OF = Min f =

(
1

utilization
, cost,makespan

)t

(28)Cost(i) ≤ Cost(j)∧

(29)Utilization(i) ≥ Utilization(j)∧

(30)Makespan(i) < Makespan(j)∧
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Three issues are taken into account in order to validate the proposed technique. The 
problem considers the high-range variables. (1) In the issue, middle-range variables are 
considered (2) In the issue, low-range parameters are employed. (3) The challenge takes 
into consideration 589 virtual computers and 200 real machines. (1) The problem meas-
ures 294 virtual computers and 100 real machines. (2) In problem 3, 50 actual machines 
and 126 virtual machines are considered. In problem 3, 400 tasks are taken into account. 
In problem 2, 200 tasks are taken into account. and in problem 1, 100 tasks are taken into 
account. the overall number of CPUs utilized, which corresponds to the overall number 
of virtual machines utilized in each issue. The resource is then used for a time of 1000 to 
100,000 milliseconds, and the memory is used for a time of 100 MB to 1GB.

5.1.1  Workflow model 1: Performance validation with 589 virtual machines and 200 
physical machines (problem instance 1)

Utilising 589 virtual computers and 200 actual machines, the performance evaluation of 
problem issue 1 is assessed. 400 tasks are then assigned to be scheduled in virtual machines 
after that. In this evaluation, the anticipated result is put up against a traditional method 
like GWO or PSO. It is possible to schedule tasks with the aid of the projected method. 
In the context of a multi-cloud environment, three fitness functions—resource utilisation, 
makespan, and cost—are taken into account (Tables 2, 3 and 4).

The 200 physical machines and 589 VMs used to determine the normalised cost are 
used to analyse the performance validation of workflow model 1. Following that, 400 
jobs were assigned to virtual machines for scheduling. In terms of normalised cost, the 
proposed method is compared to the traditional methods. In terms of normalised cost, 
the projected strategy produced the best results. The anticipated technique reached 70 
normalised costs by iteration five. The PSO and GA also reached 95 and 115 normalised 

Table 1  Implementation parameter

Parameter Description Workflow model 3 Workflow model 2 Workflow model 1
Range Range Range

Time 1000 ms − 100,000 ms 1000 ms − 100,000 ms 1000 ms − 100,000 ms
Memory 100 MB-1 GB 100 MB-1 GB 100 MB-1 GB
CPU 126 294 589
Tasks 100 200 400
Virtual Machine 126 294 589
Physical Machine 50 100 200

Table 2  Normalized cost 
parameters

Iterations Proposed PSO GA

5 160 180 200
10 120 135 150
15 150 168 185
20 85 105 130
25 70 95 115
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costs, respectively. Figure 3 displays the normalized cost performance of model 1. Uti-
lizing the 200 physical machines and 589 virtual machines shown in Fig. 4 and the per-
formance validation of workflow model 1 is computed in terms of make span. Following 
that, 400 jobs were assigned to virtual machines for scheduling. In terms of make span, 
the planned methodology is contrasted with the traditional methods. In terms of nor-
malised cost, the projected strategy produced the best results. The anticipated approach 
is reached with 150 makes pans in iteration 5. The PSO and GA also attained 165 and 
195 make span. Utilising the 200 physical machines and 589 virtual machines shown 

Table 3  Makespan parameters Iterations Proposed PSO GA

5 200 225 250
10 175 185 200
15 160 175 195
20 165 185 205
25 150 165 195

Table 4  Utilization parameters Iterations Proposed PSO GA

5 1950 1900 1895
10 1925 1895 1800
15 1910 1850 1825
20 1905 1825 1810
25 1900 1800 1795
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Fig. 3  Normalized cost for workflow model 1
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in Fig. 5, the performance analysis of workflow model 1 is computed in terms of uti-
lisation. Following that, 400 jobs were assigned to virtual machines for scheduling. In 
terms of utilisation, the proposed strategy is contrasted with the traditional methods. 
Utilization-wise, the predicted method produced the best results. The planned approach 
reached 1900 utilisation at iteration 5. The PSO and GA also attained 1800 and 1795 
utilisation, respectively.
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5.1.2  Workflow model 2: performance validation with 294Virtual Machines 
and 100Physical Machines (Problem instance 2)

Using 294 virtual machines and 100 actual machines, the performance evaluation of prob-
lem issue 2 is conducted. 200 tasks are then assigned to be scheduled in virtual machines 
after that. In this evaluation, the anticipated result is put up against a traditional method 
like GWO or PSO. It is possible to schedule tasks with the aid of the projected method. 
In the context of a multi-cloud environment, three fitness functions—resource utilisation, 
makespan, and cost—are taken into account (Table 5, 6 and 7).

The performance validation of workflow model 2 is assessed in terms of normalized 
cost, which is computed by employing the 100 actual computers and 294 VMs. 200 jobs 
were then assigned to be scheduled in VMs. In terms of normalised cost, the proposed 
method is compared to the traditional methods. In terms of normalised cost, the projected 
strategy produced the best results. The estimated approach reached 63 normalised costs 
during iteration 5. The PSO and GA are also reached at 68 and 80 normalised prices, 
respectively. Figure 6 displays the normalised cost performance of model 2. The 100 physi-
cal computers and 294 VMs that are used to compute the make span analysis for the per-
formance validation of workflow model 2 in the Fig.  7. 200 jobs were then assigned to 
be scheduled in VMs. In terms of makespan, the predicted strategy is compared to the 
traditional methods. The projected strategy produced the best results in terms of timeliness. 
The anticipated approach is achieved with 50 makespans during iteration 5. The PSO and 

Table 5  Normalized cost 
parameters

Iterations Proposed PSO GA

5 80 88 102
10 73 76 78
15 65 68 79
20 60 65 75
25 63 68 80

Table 6  Makespan parameters Iterations Proposed PSO GA

5 100 125 135
10 80 95 105
15 60 68 75
20 55 58 68
25 50 55 65

Table 7  Utilization parameters Iterations Proposed PSO GA

5 1995 1985 1965
10 1978 1965 1950
15 1965 1955 1932
20 1935 1920 1900
25 1932 1910 1898
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GA have accomplished 55 and 65 makespan, respectively. The utilization of the 100 physi-
cal computers and 294 virtual machines shown in Fig. 8 is computed for the performance 
validation of workflow model 2 in terms of utilisation. 200 jobs were then assigned to be 
scheduled in virtual machines. In terms of utilisation, the proposed strategy is contrasted 
with the traditional methods. Utilization-wise, the predicted method produced the best 
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results. The estimated approach reached 1932 utilisation during iteration 5. The PSO and 
GA also met their respective utilisation goals of 1910 and 1898.

5.1.3  Workflow model 3: performance analysis with 126virtual machines and 126 
physical machines (Problem instance 3)

126 virtual machines and 50 actual machines are used to analyse the performance of prob-
lem issue 3. 100 jobs are then assigned to be scheduled in virtual machines after that. In 
this evaluation, the anticipated result is put up against a traditional method like GWO or 
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Fig. 8  Utilization of workflow model 2

Table 8  Normalized cost 
parameters

Iterations Proposed PSO GA

5 40 48 55
10 35 38 42
15 32 39 46
20 28 35 40
25 20 28 35

Table 9  Makespan parameters Iterations Proposed PSO GA

5 50 55 65
10 35 48 55
15 30 45 55
20 25 35 40
25 15 28 35
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Table 10  Utilization parameters Iterations Proposed PSO GA

5 1975 1854 1845
10 1950 1825 1820
15 1925 1900 1895
20 1910 1925 1910
25 1920 1901 1900
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Fig. 9  Normalized cost for workflow model 3
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PSO. It is possible to schedule tasks with the aid of the projected method. In the context 
of a multi-cloud environment, three fitness functions—resource utilisation, makespan, and 
cost—are taken into account (Tables 8, 9 and 10).

The normalised cost estimated by using the 50 physical computers and 126 virtual 
machines is used to analyse the performance validation of workflow model 3. Following 
that, 100 jobs were assigned to virtual machines for scheduling. In terms of normalised 
cost, the proposed method is compared to the traditional methods. In terms of normalised 
cost, the projected strategy produced the best results. The anticipated technique reached 20 
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normalised costs by iteration five. The PSO and GA also achieved 28 and 35 normalised 
costs, respectively. Figure  9 provides a graphic representation of the model 3’s normal-
ised cost. Utilising the 50 real machines and 126 virtual machines that make up the work-
flow model 3’s performance validation, make span is computed to analyse the performance 
of the model 3 and given in Fig.  10. Following that, 100 jobs were assigned to virtual 
machines for scheduling. In terms of makespan, the predicted strategy is compared to the 
traditional methods. The projected strategy produced the best results in terms of timeliness. 
The anticipated approach is reached with 15 makespans during iteration 5. The PSO and 
GA have also accomplished 28 and 35 makespan, respectively. The 50 physical computers 
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and 126 virtual machines shown in Fig. 11 are used to compute the utilisation analysis of 
the performance validation of workflow model 3. Following that, 100 jobs were assigned 
to virtual machines for scheduling. In terms of utilisation, the predicted strategy is com-
pared to the traditional methods. Utilization-wise, the predicted method produced the best 
results. The planned approach reached 1920 utilisation on iteration 5. The PSO and GA 
also met their respective utilisation goals of 1901 and 1900. The delay measure of the pro-
posed model is illustrated in Fig. 12. Waiting time and energy utilization is analyzed and 
given in Figs. 13 and 14. From the validation, the proposed technique has been obtained 
best outcomes (Table 11).

6  Conclusion

This study proposes multi-objective scheduling for a logical work process in a multi-
cloud environment, with the goal of controlling the work process while at the same time 
controlling cost and makespan and satisfying the dependability requirement. The AGEO 
algorithm has been developed in order to realise this idea. The suggested approach uses 
updating, fitness calculation, and solution encoding functions. Different workflow models 
have been utilised for experimental analysis. The effectiveness of the suggested approach 
has been assessed using a variety of indicators. Three issues have been taken into account 
in order to validate the proposed technique. The high-range parameters are used in prob-
lem (1) Middle-range parameters are used in problem (2) Low-range parameters have been 
taken for problem (3) 200 physical machines and 589 virtual machines have both been 
taken into account in problem 1. Problem 2 takes into account 294 virtual machines and 
100 physical machines. 50 real machines and 126 virtual machines are taken into account 
in problem 3. In problem 3, 400 tasks are taken into account. In problem 2, 200 tasks are 
taken into consideration, whereas in problem  1, 100 tasks are. The predicted technique 
has produced effective results in terms of utilisation, normalisation cost, and makespan, 
according to the analysis.
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