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Abstract
Social media sites are now quite popular among internet users for sharing news and opinions.
This has become possible due to the inexpensive Internet, easy availability of digital devices,
and the no-cost policy to create a user account on socialmedia platforms. People are fascinated
by socialmedia sites because they can easily connect with others to share their interests, news,
and opinions. According to studies, someone who lacks credibility is more likely to spread
false information in order to achieve goals of any kind, be it influencing political opinions,
earning attention, or making money. The automatic detection of social media related fake
news has thus emerged as a highly anticipated research area in recent years. This paper offers
a comprehensive review of the automatic detection of fake news on social media platforms.
It contains details of the key models or techniques related to machine/deep learning proposed
(or developed) during the period of the year 2011 to the year 2022 alongwith the performance
metrics of each model or technique. The paper discusses (a). the key challenges faced during
the development of an effective and efficient fake news detection system, (b). some popular
datasets for carrying out fake news detection related research, and (c). the major research
gaps, and future research directions in the area of automatic fake news detection on social
media.
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1 Introduction

Nowadays, social media sites are used as a form of democratic media by internet users to
often exchange opinions and news [1]. This is particularly true in developing nations where
sixty-two percent of users get their news through social media [2]. This has become possible
due to improved technology, easy availability of digital devices, inexpensive Internet, and
the no-cost policy to create a user account on social media platforms [3]. Consequently,
conventional news media like newspapers, magazines, television, radio, etc. are switching
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to digital platforms like blogs, news sites, and social media platforms (Twitter, Facebook,
etc.) to reach a large audience in different ways [4]. Social media platforms are better able to
connect with huge audiences as compared to conventional media and other digital media [5].
Furthermore, socialmediamay be a tremendous tool for individuals and businesses to interact
and provide details in less time than ever before if used properly. However, the information
that consumers acquire via social media sites is obviously not always accurate and might
not reach them right away. What’s worse is that these sites are being utilized to disseminate
misleading information, which is appropriately referred to as "fake news" [6], for the purpose
of influencing others’ thoughts solely for one’s own benefit [4].

The proliferation of news portals and social media sites propagating false news is driven
by two key factors [2]: a). intentions to make money, that entail generating a sizable quantity
of income from viral news stories; and b). intentions to build particular ideology, that focus
on influencing people’s views on particular issues. Furthermore, the proliferation of bots and
trolls, which are online malevolent agents, is one of the major factors in the spread of false
information [7] in the present era.

Fake news has existed for a while [8]. Long before the Internet was invented, there were
fake news and hoaxes [9]. It is crucial right now to inquire as to why it has gained global
notice andwhy there is an increase in public awareness about fake news. The primary cause of
this is that online fake news production and publication are cheaper and faster as compared
to conventional news media like newspapers and television. Social media hoaxes, rightly
known as fake news, have raised considerable concerns across the globe. It is clear that a
layperson, due to a lack of expertise, may struggle to determine the validity of fake news. As
a result, in recent years, academics, researchers, and the industry have been inclined to the
development of effective and reliable techniques for spotting false news on social media. In
other words, limiting the required work and time by an individual to recognize false news
and restrict its spread are the prime goals of fake news detection research. In order to make
early as well as automatic spotting of social media related fake news, several attempts have
been made so far, particularly in the area of machine/deep learning [10].

1.1 Research contribution

The following is a list of this paper’s main contributions:

1. To review and provide a summary of 60 key published papers related to automatically
detecting fake news on social media platforms;

2. To provide the details of key models or techniques related to machine/deep learning that
was proposed (or developed) during the period of the year 2011 to the year 2022 and
present their performance metric;

3. To discuss key challenges faced during the development of a reliable approach for spotting
false news and provide details of some popular datasets for carrying out research related
to spotting fake news; and

4. To present gaps in the literature and potential future directions in the field of automatic
detection of social media related fake news.

1.2 Paper organization

There are five sections in the paper. The theoretical background for detecting news on social
media platforms is presented in Section 2; Section 3 outlines the research methodology
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used to conduct the current review; Section 4 provides the summary of 60 key published
papers related to the automatic detection of false news on social media that were published
between the time frame of the year 2011 to 2022; Section 5 covers results and discussion; and
Section 6 provides the conclusion.

2 Theoretical background

The current section puts light on the fundamentals associated with the detection of fake news
on social media including the definition of fake news and its detection techniques.

2.1 Definition of fake news

There is a long history to the term "fake news." But it gained popularity and developed a bad
reputation throughout the 2016 election campaign for the US Presidential Post [11]. Since
then, fake news has become a highly anticipated area of research, and it is widely understood
to refer to the tainting of information with rumors, hoaxes, propaganda, false news, and other
types of incorrect information [12]. Even in journalism, there is presently no agreement on
how to define or classify fake news, despite the fact that these phrases indicate misleading
information. It is therefore necessary to have a clear and correct definition of fake news in
order to examine it and evaluate relevant studies related to it. In order to get a solid knowledge
of the concept of fake news, it is crucial to first understand a few related phrases that connect
to fake news prevailing on social media:

• Hoax: It implies a fabrication designed to appear to be the truth [13].
• Junk News: In general, it implies the whole news material that relates to a publication
rather than simply one piece, and it gathers a variety of facts [14].

• FalseNews:Untrue news reports that aremeant formisleading themasses intentionally or
unintentionally are knownas false news.Theyhave a similar format to that of conventional
news articles but differ in their organization and goal [12, 15].

• Click-bait: It is regarded as being low-quality journalism done to draw viewers and bring
in money from advertising [16, 17].

• Rumor: According to certain academicians, rumor falls within the genre of propaganda
[18]. It is derived from a Latin word that implies "noise". It is regarded as an unverified
statement propagated from one person to another [19].

• Satire: It implies a kind of news that is produced with the intention of criticizing or
entertaining masses that may seem to be actual news but can be harmful if shared inap-
propriately [8, 20].

• Propaganda: It suggests the use of deception, selective omission, or the presentation of
biased information in news stories to affect the target audience’s feelings, thoughts, and
actions in order to advance certain ideologies, causes, or beliefs [8].

All the above terms associated with fake news can be categorized into three types of
information [21] that are compared in Table 1:

• Malinformation: It is described as a factual assertion that is used to harm a person, a
group, or a country [22].

• Disinformation: It consists of the purposeful, deliberate, or intentional spread of inac-
curate or misleading information with the objective to confuse, deceive, or mislead the
public [23, 24].
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Table 1 Associated terms of fake news

Associated term Malinformation Disinformation Misinformation

Hoax No Yes Yes

Junk News Yes Yes No

False News Yes Yes Yes

Click-bait No Yes No

Rumor No Yes Yes

Satire Yes No No

Propaganda Yes Yes No

• Misinformation: It can be described as the spread of misleading information without an
agenda by those who are either ignorant of the truth or have cognitive impairments [25,
26].

The increasing digitalization of news has changed the perception towards news due to
which the traditional way of defining news won’t work. Zhou, Zafarani [27], thus, defined
fake news broadly as:

Definition 2.1 Fake news is false news

According to the above description, fake news generally contains declarations, assertions,
posts, articles, speeches, and other material regarding a certain topic. Furthermore, such news
can be produced by both professional and non-professional journalists.

Shu et al. [6] describe fake news in more detail while making sure it satisfies the general
standards for being false news and covers the public’s perception of fake news:

Definition 2.2 A news piece that has been purposefully written with the objective to mislead
and that can be verified as false is called fake news.

2.2 The impact of fake news on the real world

The rapid increase in interest in fake news can be explained by taking into account a
lot of significant incidents that have recently occurred throughout the world. According to
Vosoughi et al. [15], the majority of cases involving fake news are actually motivated by
politics. Following the 2016 US presidential elections, the phrase "fake news" has become a
buzzword [28]. According to some, it’s possible that Donald Trump didn’t win the election
had it not been for the consequences of misleading information (besides the alleged Russian
troll influence) [2]. Furthermore, according to a study, fake news influenced the 2016 UK
Brexit referendum [29]. Some other noteworthy fake news events on a global scale include
the stock market crash caused by a false tweet about the death of President Obama in 2013
[30], the false reports on Pizzagate that caused an attack on a restaurant with gunfire [6],
and the general doubt related to vaccines prevailed during the epidemics of Ebola and Zika
virus [31]. The publication of a fake news item that hackers had plotted in a news agency in
the Middle East nation of Qatar was one of the factors that caused the 2017 Gulf diplomatic
impasse, which lasted three months [32]. Ideological changes are commonly brought on by
the spread of false information in the Middle East [33]. Nearly two weeks following Russia’s
invasion of Ukraine in 2022, numerous erroneous reports claimed that the conflict was a
fraud, a media invention, or that the West had exaggerated its severity [34].
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In another instance, the Indian PM’s declaration of a Janata curfew in March 2020 led
to a national lockdown for stopping the spread of COVID-19. This became the subject of
research onmisinformation in India, as shown in Fig. 1, which revealed a spike in the number
of untrue stories [35]. Twenty-two YouTube news channels were reportedly blocked by the
Indian government for allegedly providing false information in an effort to deceive viewers
[36]. Since there are far toomany real-time instances of fake news, they cannot all be included
here.

2.3 Fake news detection techniques

In order to identify whether a piece of news is fake or not, it is important to first develop an
understanding of essential concepts related to fake news detection including its mathematical
modeling, framework, model development, and prospective dataset for the model’s training
and testing. The mathematical model for the identification of fake news is a part of the
machine learning binary classification problem. In a data mining framework for spotting
fake news, features are extracted, then a model is built. During the feature extraction stage,
a formalized mathematical framework representing news content and associated auxiliary
data are created. News content, social context, and domain-specific feature extraction are the
three most widely used techniques for identifying social media related fake news. Figure 2
provides the broad categorization of feature extraction types.

2.2.1. News-Content-based feature extraction Features of news content explain the meta-
data for a particular piece of news. It is possible to build various feature representations
depending on the raw content properties (like the author, title, body, and any embedded
images or videos in a news story) to produce discriminatory elements of false news using
news content. The news stories that are frequently utilized for extracting features can be
either of linguistic or visual form. By collecting various writing styles and spectacular head-
lines, linguistic-based elements can be used to identify false news [17]. The text content

Fig. 1 An analysis of rumors spread during the Janta Curfew in India (Courtesy: University of Michigan study
on false information, released in April 2020)
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Fig. 2 The broad categorization of feature extraction types

can be used to extract linguistic-based properties in the following ways: (a). lexical features
(includes characteristics at the levels of character and word, including the number of char-
acters per word, unique words, the overall number of words, and the number of times long
words appear), and (b). syntactic features (composed of sentence-level components, includ-
ing widely used BoW (bag-of-words), "n-grams", POS tagging, and many more). Contrarily,
fake news can be identified through visual aspects by locating its various features utilizing
visual resources like photographs and videos. For checking the news veracity, several visual
features and statistical features can be retrieved [37].

2.2.2 Social-Context-based feature extraction Social media interactions serve as a source
of auxiliary data for determining the veracity of news articles and can serve as an easy way to
illustrate the process of news diffusion over time. The two crucial components of the social
media context are users and posts whose retrieval is helpful in the identification of false
news. The user-based feature extraction involves obtaining user-profiles and characteristics
that may be found either at individual level (by determining the credibility of the person
by looking at their amount of posts, followers, etc. [10]), or at group level (by determining
"average followers" and "percentage of verified followers" [38, 39] which serve to list the
common characteristics of user groups who are interested in specific news). Contrarily, the
post-based feature extraction involves locating user responses to social media posts in order
to identify any fake news that may be done at (a). post level (using "feature values" for
each post that can be retrieved using a number of embedding strategies in addition to the
linguistic-based approach [40]), (b). group level (by determining the average credibility score
for specific news articles utilizing the crowd’s intelligence, which is the "feature value" of all
noteworthy posts as a whole [41]), and (c). temporal level (by determining "feature values"
based on the temporal variations of those features [39]).

2.2.3. Domain-Specific-based feature extraction These characteristics, which correspond
to the news of specific areas, could consist of external links, paraphrased text, the count of
graphs, and their mean size. They can be obtained using propagation-based or network-based
methods. The propagation-based feature extraction determines the news veracity by using the
idea of how false news spreads [42]. Contrarily, the network based feature extraction includes
identifying and extracting features from various networks (that develop on social media sites
based on common interest) including diffusion network [38], co-occurrence network [40],
stance network [41] and many more.

Following the extraction of features for fake news detection, a process known as "model
development" is carried out to create machine learning models that can better distinguish
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between fake and real news using the data from the collected features. According to the
kind of feature retrieved from the news posted on social media sites, there are two kinds
of models for spotting false news, namely (i). based on news content (it is developed using
features derived from news content), and (ii). based on social context (it is created utilizing
collected information from social context). There are two methods for building models based
on news content: based on knowledge, and based on style. The knowledge-based technique
tries to verify claims made in a certain news report in a specific context by fact-checking
proposed statements in the article utilizing external sources [43]. Building a model to spot
fake news based on knowledge may require three different fact-checking techniques [27]:
(a). expert-oriented based (it uses human subject-matter specialists from specific fields to
consult important records in order to confirm the veracity of a claim made in the news), (b).
crowd-sourced based (it uses a sizable population of personswho can annotate supplied news,
and then do a general assessment of each annotation to determine whether the claim made in
the news is true), and (c). automatic (it builds an autonomous, scalable system to check the
veracity of the assertion in the supplied news using information retrieval, machine learning,
graph theory, and natural language processing techniques [44]). The above-mentioned fact-
checking techniques are illustrated in detail in Table 2. The style-based approach for building
a model related to detecting fake news focus on tracking down the writers of manipulative
news articles. Building a style-based model for spotting false news has so far relied on
two different strategies, namely (a). deception-based (it works by utilizing deep network
models, like those used by CNN, or rhetorical structure theory to identify false or misleading
statements or claims in news reports [45]), and (b). objectivity-based (it recognizes style cues,
such as click-bait and hyper-partisanship, that could be a sign of a decrease in the quality of
news reporting in an effort to deceive the masses).

For building models based on social context to spot false news, there can be two methods:
based on stance, and based on propagation. The stance-based technique uses direct feedback,
such as "thumbs up", "thumbs down" or other reactions on social media sites in order to
establish the user’s stance on a specific person, thing, or idea - whether they are in favor of
it, against it, or neutral [47]. Contrarily, the propagation-based technique employs the theory
that the credibility of major posts on a social media site is directly tied to the credibility of
the relevant news with the purpose of confirming the news veracity.

3 Researchmethodology

The research methodology followed in this paper was developed after referring to the
PRISMA-defined research procedure [48] in order to review important papers related to the

Table 2 Illustrations of fact-checking techniques

Fact-check sites Technique employed Domain Kind of work

Snopes1 Expert-oriented Politics, social issues Fact-checking website

Politifact2 Expert-oriented US politics Fact-checking website

Fiskkit3 Crowd-sourced Politics, society, religion etc. Discussion forum

FAKTA [46] Automatic MBFC website’s news media Fact-checking system

1 https://www.snopes.com
2 https://www.politifact.com
3 https://fiskkit.com
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automatic detection of social media related false news. Five steps are taken to complete the
review, and they are all clearly shown in Fig. 3:

Step-1: IEC-compliant organisation of published documents (Inclusion/Exclusion Cri-
teria)

• Criteria 1: All cited published papers must be in English;
• Criteria 2: All cited published papers must be original works;
• Criteria 3: All cited published papers place a strong emphasis on research into the
automatic detection of social media based false news; and

• Criteria 4: All cited published papers must be from a particular time frame. The
current review is based on papers published from the year 2011 to 2022.

Step-2: Choosing a source to access published papers

• The initial finding for articleswas done as per the keyword search of "automatic detec-
tion of social media related fake news" on Google Scholar and electronic databases
like IEEExplore, Springerlink, ScienceDirect, and ACM.

• There were ten keywords, ranging from short to long phrases, used during the search
for suitable published papers in the above-discussed databases. These keywords
include "automatic detection of social media related fake news", "AI techniques for
detecting fake news", "ML methods for detection of fake news", "Deepfakes", "fake
news datasets", "content-based detection of fake news", "context-based detection of
fake news", "network-based spotting of false news", "review paper on fake news",
and "review paper on fake news detection". Around 561 articles were obtained.

• The articles were then filtered on the basis of title as well as publisher, including
IEEE, Springer, ACM, Elsevier, AAAI, and ACL. Around 120 published papers
were selected from journals with good impact factors and highly reputed conference
proceedings.

• A distribution chart of the percentage of papers published by reputed publishers is
presented in Fig. 4. The maximum number of articles have been published by ACM
(31.0%) while ACL (6.0%) published the least number of articles.

Step-3: Selection of papers for review
The abstracts of each selected article were read to determine their relevance. On the basis
of relevance, 60 articles in total were chosen for the review in Section 4.
Step-4: Data collection

All the collected data were analyzed and used in Section 5 for results and discussion.

Fig. 3 Research methodology followed during review of papers
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Fig. 4 Percentage of papers published by reputed publishers

4 Review of selected published papers

This section provides a comprehensive review of a total of 60 highly cited published papers in
the field of automatic spotting of social media related fake news. This section first reviews all
the related survey papers, followed by a review of all the research papers in order to develop
a good understanding of the given research domain.

4.1 Review of survey papers

Vlachos and Riedel [43] surveyed prominent websites of fact-checking and selected two
websites out of them (Channel 4 and PolitiFact) to construct the first public dataset for
carrying out the fact-checking related task. They explained the procedure of fact-checking
and used baseline approaches for the given taskwith amajor limitation that decisions obtained
through baseline approaches weren’t easily interpreted.

Özgöbek and Gulla [49] reviewed several articles to identify key machine learning as well
as linguistic methods for detecting fake news on an automated basis and they grouped them
into three broad categories - content-related methods, user-related methods, and network-
related methods.

Shu et al. [6] provided a survey paper on spotting social media related false news from the
perspective of datamining. They not only narrowed down the idea of fake newswith respect to
data mining research but also provided key approaches, different models, prominent datasets
as well as major evaluation metrics required for the automatic spotting of false news.

Meinert et al. [50] surveyed eight journal articles and compared them on the basis of
the techniques for identifying false news on social media including social context features,
credibility features, semantic features, linguistic features, network features, statistical image
features, and visual features. They discussed the increasing role of socialmedia in propagating
false news.

Kumar and Shah [51] provided a thorough review of research related to fake news on
social media and the web, and categorized the review into three categories - (a). on the basis
of platforms of study (Twitter, Facebook, Review Platforms, Sina Weibo, Multi-Platform,

123



47328 Multimedia Tools and Applications (2024) 83:47319–47352

and Other); (b). on the basis of characteristics of fake news (text, user, graph, rating score,
time, and propagation); and (c). on the basis of the type of algorithms used for detecting fake
news (based on features, models, and graphs).

Parikh et al. [52] provided a survey of the most recent techniques for the automatic
identification of false news and described popular datasets for studying fake news events.
The paper presented four key open challenges for research related to the detection of fake
news.

Sharma et al. [53] provided a comprehensive review on identification as well as mitigation
techniques for dealing social media related false news. The paper not only discussed the key
players involved during the fake news propagation but also highlighted the serious challenges
posed by the increased instances of fake news across the globe and thus presented the goals
for fake news research. All the identification techniques of fake news were discussed in detail
and the mitigation techniques were deeply analyzed. Finally, the distinguishing qualities of
the accessible datasets for fake news research were summarized along with future work.

Pierri and Ceri [12] presented a comprehensive data-driven survey on social media related
fake news. Their work focused not only on the feature classification used by each study
for the identification of false information but also on the datasets for guiding classification
techniques.

Da Silva et al. [54] reviewed a large number of articles to identify key machine-learning
techniques for spotting fake news. Further, the paper found that the combination of classical
techniques along with a neural network can detect fake news more effectively as compared
to a single classical machine learning method. The paper also traced the requirement of a
domain ontology in order to unify myriad definitions and terminology related to the domain
of fake news so as to prevent any kind of misleading opinions and inferences.

Zhang and Ghorbani [55] presented a comprehensive review to determine the ill effects
of online fake news, and identify the sophisticated detection techniques. The paper argued
that most of the detection techniques are built on features extracted from the users, content,
and context associated with news. The paper also covered existing datasets for detecting fake
news and proposes key research directions for the future analysis of online fake news.

Mridha et al. [56] provided a comprehensive review on spotting fake news using deep
learning techniques. The paper highlighted the myriad consequences of fake news, briefly
tabulated major datasets for experimental setups, and presented significant approaches based
on deep learning to spot fake news CNN (Convolutional Neural Network), RNN (Recurrent
Neural Network), GNN (Graph Neural Network), GAN (Generative Adversarial Network),
AttentionMechanism, BERT (Bidirectional Encoder Representations for Transformers), and
ensemble techniques. The paper discussed the key scope of future research in the given
domain.

Bani-Hani et al. [57] developed anOWL(WebOntologyLanguage) basedFandet semantic
model to present a thorough analysis of the context-based techniques for spotting socialmedia
related fake news.

4.2 Review of research papers

This subsection provides the summary of key research articles published during the period
between the years 2011 and 2022. Each summary includes the details of the model or tech-
niquedevelopedbasedonmachine/deep learning, the data inputs usedduring the experimental
setup, and the performance metrics of each model or technique.
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Castillo et al. [10] created a model based on a decision-tree algorithm with a broad fea-
ture set to predict the credibility of news. They used Twitter events as input data for their
experiment and an accuracy of 86 percent was attained using the supervised classifier. The
strength of the model is that it utilizes a broad feature set and achieves a high accuracy of
86%. It has the weakness that it is limited to Twitter events, and there is no comparison with
other models.

Rubin et al. [58] categorized news as true or fraudulent using an SVM classifier using a
combination of Rhetorical Structure Theory and Vector Space Modeling techniques. They
utilized news transcripts with associated RST analyses for input data and the SVM classifier
achieved 63% accuracy. They found their predictive model not better than the chance of 56%
accuracy. However, themodel was shown to outperform the fake detection abilities of humans
by 54% accuracy. The model aimed to discover differences in systematic language and to
report the key method that could be employed for checking news veracity by the system.

Ferreira et al. [59] utilized multiclass logistic regression to create a model for the classi-
fication of stance and provided rumored claims as well as news articles from the Emergent
dataset to the system as input data. The accuracy of the model was 73 percent, which was 26
percent greater than that of the Excitement Open Platform [60].

Jin et al. [41] employed conflicting social opinions in a credibility propagation network
to automatically check news veracity in microblogs. They used tweets from Sina Weibo
Chinese microblog and their proposed model called CPCV (Credibility Propagation with
Conflicting Viewpoints) achieved an accuracy of 84% which was better than the accuracy by
4% compared with Jin et al. [61].

Janze et al. [62] built a model for investigational study based on blended methods of
Elaboration LikelihoodModel and User-Generated Content employing emotional, cognitive,
behavioral, and visual indicators of the news shared on Facebook. The paper utilized fact-
checked data of Facebook posts from the BuzzFeed News dataset and the predictive accuracy
of the top-performing configurations was greater than 80 percent. The major limitation of
the proposed work is that it only uses Facebook messages which are different from other
social media platforms in the structure as well as at the function level. The paper pointed to
getting their proposed detection system bypassed by any future advancement made in natural
language generation using the findings suggested in the paper.

Wang et al. [63] introduced the LIAR dataset to support the building of computational and
statistical approaches for spotting fake news. Further, the study used five baselines (SVM,
CNNs, Bi-LSTMs,majority baseline, and regularised LR) to analyze patterns in surface-level
linguistic data in the proposed dataset in order to spot fake news where the experiment results
showed that CNNs (Convolutional Neural Networks) based model surpassed all models in
performance, yielding an accuracy of 27 percent on the held-out test set.

Buntain et al. [64] built a classification model to determine whether a tweet in a thread on
Twitter is real or false where Tweet Events from CREDBANK and PHEME datasets were
provided as input data for training and testing the model. The proposed model performed
better than Castillo et al. [65] with an accuracy of 61.81 percent as opposed to 66.93 percent
accuracy using the PHEME dataset and 70.28 percent accuracy using the CREDBANK
dataset.

Ruchansky et al. [40] created a hybrid deep learning-based model, named CSI (Capture,
Score, and Integrate), so as to recognize false news with respect to the user and article
by identifying three distinct characteristics (text, reaction, and source) of fake information.
Despite the lacking of used related ground-truth labels, the CSI model achieved 89.2%
accuracy on the Twitter dataset and 95.3% accuracy on the Weibo dataset.
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Kotteti et al. [66] employed TF-IDF vectorization (in order to eliminate unnecessary
features) and data imputation to fill in missing values for categorical and numerical features
in a dataset. The paper used short statements from the LIAR dataset as input and 86 percent
accuracy was obtained utilizing the supervised classifier.

Aldwairi et al. [9] offered a simple browser add-on that might be used to identify and
filter out potential clickbait. The paper used news statements from social media sites as input
during the experimental setup and used the logistic classifier to attain a 99.4 percent accuracy.

Pan et al. [67] combined methods of knowledge graphs and the TransE model to create
the B-TransE model in order to effectively handle the issue of content-based spotting of fake
news. They provided news articles as input to the proposed models. The (FML + TML-
D4) version of the model achieved the following accuracies - (i). 0.89 using the poly-kernel
function of the SVM (Support Vector Machine) classifier, (ii). 0.87 using the linear function
of the SVM classifier, and (iii). 0.81 using the RBF function of the SVM classifier

Della et al. [68] developed a model, named HC-CB-3 (where HC stands for ’Harmonic
boolean label Crowdsourcing’, and CB stands for ’Content-Based’), to detect fake news
automatically. The paper provided Facebook posts and their likes as input to the model and
attained 81.7 percent accuracy.

Atodiresei et al. [69] created a service-based architecture for spotting fake users as well as
fake news on Twitter. In order to build the system, the authors used Java as the programming
language, Node.js for persistent storage, NoSql as the database, and MongoDB to store
unstructured information, and they organized contents into two collections - users and tweets.
The experiment results showed that the system discovered 88 similar tweets with a confidence
score of 60.0. When the same tweet was retweeted by some other user, the system found 99
similar tweets with the same confidence score of 60.0.

Wang et al. [70] built an Adversarial Network-inspired event-invariant framework named
EANN that contains (a). a feature extractor based on a multimodal technique, (b). a detector
for locating false news, and (c). an event discriminator for spotting false newson an early basis.
The authors provided Tweet events from real-time datasets, including Weibo and Twitter, as
inputs to the system. It attained 71.5 percent accuracy on the Twitter dataset and 82.7 percent
accuracy on the Weibo dataset.

Ajao et al. [71] created a hybrid model based on deep learning by employing LSTM (Long
Short-Term Memory) and CNN (Convolutional Neural Network) models to automatically
spot features inside posts and used Tweets as input for feeding themodel in order tomake fake
news predictions. The model attained 82 percent accuracy without any prior understanding
of the topics being covered. However, negative appreciation was observed against the LSTN
model (plain-vanilla) due to a lack of necessary training examples.

Karimi et al. [72] designed a framework based on CNN and LSTM, called MMFD
(Multi-source Multi-class Fake news Detection), by employing a combination of techniques
including automated retrieval of features, fusion based on multiple sources, and spotting of
fake news on an automated basis. The paper used statements from the LIAR dataset as input
to the framework to predict fake news and it attained the maximum accuracy of 38.81 percent
from several source combinations. The major limitation of the proposed framework is that
it was found difficult to determine the fakeness of news from the profiles of writers and the
short statements.

Wu et al. [73] created a TraceMiner model to detect false news using information from the
diffusion network, even when the content details were absent. The authors used Tweets from
Twitter as input to the model for predicting the fakeness of news. TraceMiner outperformed
all baselines and its variations including TM(DeepWalk) and TM(LINE) with sample ratios
ranging from 0.1 to 0.9.
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Gupta et al. [74] treated a news article as a three-mode tensor structure called "News, User,
Community" and latently embedded the news articles in order to simulate the "echo chambers"
inside the social media network to construct a model, named CIMTDetect (Community
Infused Matrix Tensor Detect), that can identify fake news. The proposed model attained
maximum scores of precision, recall, and F1-score of 0.843 ± 0.270, 1.000±0.000 and
0.813± 0.078 on the BuzzFeed News dataset while it achieved high scores of 0.842± 0.191
precision, 0.933 ± 0.041 recall, and 0.818 ± 0.069 F1-score on the Politifact dataset.

Dong et al. [75] developed a hybrid attention model, called DUAL, for the prediction of
fake news. The model was built using a bidirectional attention-based GRU (Gated Recurrent
Units) for feature retrieval, which is then applied to produce an attentionmatrix for identifying
false news. The authors used short statements from both LIAR and BuzzFeed News datasets
as input to the proposed model and obtained 82.3 percent accuracy using the LIAR dataset
as opposed to 83.8 percent accuracy using the BuzzFeed News dataset.

Guacho et al. [76] created a KNN graph of news items by utilizing embeddings of tensor-
based news pieces to identify their similarities in embedding and latent space. Even though
the proposed method only used 30 percent of the labels from a public dataset, it surpassed
SVM classifier with 75.43 percent accuracy.

Helmstetter et al. [77] applied a weakly supervised approach for building a model that
automatically gathered a large-scale noisy training dataset containing tweets. Further, the
tweets were automatically labeled during data collection through their sources either as
trustworthy or untrustworthy. The model, when evaluated, detected fake news with an F1
score up to 0.9 even though the dataset was highly noisy.

Liu et al. [78] constructed a classifier based on time series utilizing Convolution Neural
Network and Recurrent Neural Network to detect false news by determining the changes
of local as well as global kinds during the identification of users along the path of news
propagation. The authors provided sharing cascades on Weibo, Twitter15, and Twitter16
datasets as input to the classifier and it surpassed all baselines with 85 percent accuracy using
the Twitter datasets and 92 percent accuracy using the Sina Weibo datasets.

Shu et al. [79]measured users’ sharing behaviors to identify group representatives’ chance
of sharing fake news, and performed a comparison among characteristics of their implicit and
explicit profiles to identify fake news. The paper used statement claims from the Politifact
and the Gossipcop dataset while testing the model for fake news prediction and achieved
96.6% accuracy using the Gossipcop dataset and 90.0% accuracy utilizing the PolitiFact
dataset while comparing the effects of profile features as a whole versus only implicit or
explicit features.

Reis et al. [80] applied supervised learning classifiers over a dataset of news articles with
characteristics drawn from news sources, news sources’ environments, and news content.
Random forests and XGBoost classifiers outperformed all baselines in terms of AUC (Area
Under the ROC Curve) and F1-score. The random forest classifier achieved an AUC of 0.85
± 0.007 and an F1-score of 0.81 ± 0.008. XGBoost classifier achieved an AUC of 0.86 ±
0.006 and an F1-score of 0.81 ± 0.011.

Olivieri et al. [81]merged the textual characteristicswith that of the task-generic character-
istics (retrieved fromGoogle’s search engine results during crowdsourcing ofmissing values)
for building a fake news detection model and used news articles from the PolitiFact website
as input to the model. The experimental results demonstrated a significant improvement in
F1-Score of 3 percent over the state-of-the-art techniques for a six-class task.

Bharadwaj et al. [82] employed semantic elements in conjunction with a number of
machine-learning techniques to identify false news on the internet. The short statements
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of real_or_fake dataset were used as input for the experimental setup. Bigrams outperformed
a random forest classifier to achieve an accuracy of 95.66 percent.

Rasool et al. [83] utilized iterative learning and dataset relabeling to build a multilevel,
multiclass technique for identifying fake news. The authors used short statements from the
LIARdataset as input to themodel for fake news prediction. The proposed technique achieved
an accuracy of 39.5%.

Traylor et al. [84] utilized Textblob, NLP, and SciPy Toolkits to build a system for the
identification of fake news through influence mining (a cited attribution procedure) in a
Bayesian classifier of machine learning. The precision of the proposed system in predicting
if a heavily quoted article is likely to be fraudulent was 63.333 percent.

Shu et al. [85] built a FakeNewsTracker model using deep LSTMs (Long Short-Term
Memories) where both the encoder and the decoder have two layers with 100 cells each. The
authors provided short statements from the BuzzFeed News dataset as well as the Politifact
dataset as input to the model for the fake news prediction. The proposed model achieved 67%
accuracy on the PolitiFact dataset and 74.2% accuracy on the BuzzFeed News dataset.

Yang et al. [86] developed a probabilistic graphical model, called UFD (Unsupervised
Fake News Detection), by employing the data of social engagement hierarchy to extract the
opinions of social media users, along with the Gibbs method for sampling, for the purposes
of identification of false news and determination of the credibility of users. The authors
provided short statements from the LIAR dataset and the BuzzFeed News dataset as input to
the model in order to detect fake news. The model achieved 67.9 percent accuracy using the
BuzzFeed News dataset and 75.9 percent accuracy utilizing the LIAR dataset.

Kesarwani et al. [87] employed the K-Nearest Neighbor classifier and provided short
statements from the BuzzFeed News dataset as input to the classifier in order to spot false
news related to social media. The classifier achieved 79% classification accuracy.

Shu et al. [88] developed propagation networks, called STFN and HPFN, and compared
as well as contrasted the features of hierarchical propagation network and the struc-
tural/temporal/linguistic features of fake/real news in order to experimentally check their
role in spotting fake news. The authors used short statements from the Politifact dataset and
the Gossipcop dataset as input to models for fake news prediction. The combined STFN-
HPFN propagation network model attained 86.3 percent accuracy utilizing the Gossipcop
dataset and 85.6 percent accuracy using the PolitiFact dataset.

Zhou et al. [89] developed a theory-drivenmodel built using supervised learning classifiers
to analyze news material at the lexical, syntactic, semantic, social, forensic psychology, and
discourse levels to identify fake news. The paper used short statements of the two datasets.
PolitiFact and BuzzFeed News, for experimental purposes. The proposed model achieved
50 to 60 percent accuracy using the BuzzFeed News dataset and 60 to 70 percent accuracy
utilizing the PolitiFact dataset.

Lu et al. [90] created a model, called GCAN, based on the idea of an attention mecha-
nism of neural network for the purpose of spotting fake tweets if the original tweet and the
corresponding series of retweets without comments are provided as input. The authors used
sharing cascades from Twitter15 and Twitter16 datasets as inputs to the model for fake news
prediction. On the Twitter15 dataset, the GCANmodel surpassed all the baselines with 87.67
percent accuracy utilizing the Twitter16 dataset.

Ni et al. [91] built an MVAN (Multi-View Attention Networks) model based on deep
learning for the purpose of spotting fake news on an early basis. Theymerged the text semantic
attention and the propagation structure attention in themodel in order to simultaneously gather
important hidden cues from the originating tweet’s dissemination structure. The authors
provided sharing cascades from Twitter15 and Twitter16 datasets as input to the model for
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fake news prediction.MVANmodel surpassed all baselines, obtaining 92.34 percent accuracy
using the Twitter15 dataset and 93.65 percent accuracy utilizing the Twitter16 dataset.

Sahoo et al. [92] utilized LSTM (Long Short-Term Memory) analysis to create a system
in the Chrome environment that can detect fake news on Facebook. The authors provided
news articles from the FakeNewsNet dataset as input to the system for spotting fake news.
The proposed system attained 99.4 percent accuracy.

Kaliyar et al. [93] developed FakeBERT, a BERT-based deep learning model, to identify
fake news by combining numerous blocks of the one-layer Convolution Neural Network in
parallel with myriad kernel sizes and filters. The proposed model had the benefit to deal
with the ambiguity issue observed during natural language processing and it outperformed
all baselines by 98.90% accuracy.

Dou et al. [94] developed the UPFD (User Preference-aware Fake news Detection) frame-
work to spot fake news that used the combined approaches of graph modeling and news
content to simultaneously collect myriad signals related to user preferences. News articles
from the FakeNewsNet dataset were provided as input to the framework for fake news pre-
diction. The UPFD achieved an accuracy of 84.62% and F1-score of 84.65% on the Politifact
dataset. It achieved an accuracy of 97.23% and F1-score of 97.22% on the Gossipcop dataset.

Verma et al. [95] proposed a two-phase model, called WELFake (Word Embedding over
Linguistic features for Fake news prediction), that provided machine learning-based clas-
sification of fake news. The dataset is preprocessed and the linguistic feature is used to
validate news veracity during the first phase of the model, followed by the merging of Word
Embedding with linguistic features followed by utilizing voting classification during the sec-
ond phase. The news article from the well-curated WELFake dataset was used as input for
the system during the prediction of fake news and it achieved 96.73% accuracy which is
1.31% better in comparison to the BERT-based model, and 4.25% better in comparison to
the CNN-based model.

Ozbay andAlatas [96] developed amodel using standard SSO (Salp SwarmOptimization)
technique according to a nonlinear decrement coefficient and a varying inertia weight in
order to obtain the highly optimum solution for spotting fake news. The short statements
from real word datasets including LIAR, Buzzfeed News, ISOT, and Random political news
were provided as input to the experimental setup. The system achieved 78.0 percent accuracy
utilizing the LIAR dataset, 80.3 percent accuracy on the Buzzfeed News dataset, 85.9 percent
accuracy using the ISOT fake news dataset, and 71.3 percent accuracy on theRandompolitical
news dataset.

Nasir et al. [97] suggested a hybrid model based on deep learning for detecting fake news
that uses recurrent and convolutional neural networks. The real-time datasets including ISOT
and FA-KES were used to validate the model and the hybrid model outperformed the non-
hybrid model by 0.60± 0.007 accuracy on the FA-KES dataset, and by 0.99± 0.02 accuracy
on the ISOT dataset.

Iwendi et al. [98] proposed thirty-nine text features using Deep Learning classifiers in
order to identify fake news related to COVID-19. The authors built the dataset using news
and other information from various social media sites. The proposed features detected fake
news with 86.12% accuracy, a 20% improvement through the proposed features.

Seddari et al.[99] suggested a hybrid approach to integrate knowledge-based and linguistic
elements to recognize false news. The short statements from the BuzzFeedNews dataset were
provided as input to the system for fake news prediction. The accuracy of the proposed system
obtained was 94.4%.

Min et al. [100] proposed a model for spotting fake news, called PSIN (Post-User Inter-
action Network), that utilized the strategy of divide-and-conquer to effectively determine the
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interactions of post-and-user, post-and-post, and user-and-user with respect to social con-
text while preserving their implicit features. Further, an adversarial topic discriminator was
employed for the topic-rationalist feature learning so as to enhance the capability of the
system to generalize the newly introduced topics. The system is provided with short news
statements as input from the existing multiple datasets like Politifact, Snopes, etc. The pro-
posed PSIN model outperformed all the baselines by an average AUC (Area under the ROC
curve) of 0.6367 and 0.3094 mean F1-score.

Galli et al. [101] developed a framework based on machine/deep learning techniques for
spotting fake news while utilizing myriad feature arrangements discussed in the literature.
The inputs from the real-world datasets including LIAR, FakeNewsNet, and PHEME were
provided to the system for making predictions of fake news. The experiment was performed
on various machine learning classifiers including SGD, Naive Bayes, Linear SVC, Random
Forest, Logistic Regression, Nearest Neighbor, Decision Tree, Gradient Boost, Perceptron,
and Passive Aggressive where the framework achieved the highest accuracy of 62.7% using
Logistic Regression classifier on the LIAR dataset while it achieved the highest frequency of
59.6% using the Logistic Regression classifier using the Politifact dataset. The experiments
were also performed using different deep learning classifiers including BERT (Bidirectional
EncoderRepresentations fromTransformers), C-HAN(ConvolutionalHierarchicalAttention
Networks), BI-LSTM (Bidirectional Long-Short Term Memory), and CNN (Convolutional
Neural Network). The framework achieved 61.9 percent accuracy using the BERT classifier
on the LIAR dataset while it attained 58.8 percent accuracy using the BERT classifier on the
Politifact dataset.

Sadeghi et al. [102] designed amethod to spot false news using theNLI (Natural Language
Inference) technique where the relevant and similar information that appeared in reliable
news outlets are utilized as additional information in order to determine the truthfulness of
a particular news article. The proposed method achieved 85.58% accuracy on the FNID-
FakeNewsNet and 41.31% accuracy on the FNID-LIAR dataset.

Chi and Liao [103] proposed a model, named QA-AXDS, to automatically check the
news veracity on social media while providing the necessary details about the results at
the same time. The model contains key features including (a). it is data-driven; (b). it is
supposed to be more scalable than the existing quantitative models; (c). it is supposed to
be human-interactive and can automatically acquire knowledge at the human level; (d). it
is supposed to provide greater interpretability and transparency than the existing machine
learning-based models; and (e). its explanation method is supposed to increase the chances of
improving the algorithms while working on the explanations of the raised issues. The authors
used datasets including Twitter 2017, Twitter 2019, and Reddit for providing input to the
system for fake news prediction. The experiments were performed using different classifiers
including BranchLSTM, B.E.R.T., Xgboost, SVM (Support Vector Machine), LR (Logistic
Regression), MLP (Multilayer Perceptron). The model achieved the highest accuracy of (a).
0.784 on the Twitter 2017 dataset using the BranchLSTM classifier; (b). 0.778 on the Twitter
2019 dataset using the BranchLSTM classifier; and (c). 0.929 on the Reddit dataset using the
BranchLSTM and the LR classifiers.

Choudhury and Acharjee [104] developed a genetic algorithm-based model to spot fake
news on social media. The experimental results showed that the model achieved 61 percent
accuracy on the Liar dataset, 97 percent accuracy on the Fake Job Posting dataset, and 96
percent accuracy on the Fake News dataset using SVM (Support Vector Machine) classifier.
All the papers reviewed so far in this section has been compared in Table 3.
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Fig. 5 Yearly publication of documents on the detection of social media related fake news

5 Results and discussion

The detection of social media related fake news has been one of the most anticipated fields of
research in recent years. Following the 2016 US Presidential election, research related to the
identification of fake news on social media has dramatically increased. This is demonstrated
by Figs. 5, 6, and 7, which were collected from Scopus eSS1 when searching for the phrase
"Detection of SocialMedia Related FakeNews". The amount of documents released annually
from 2014 to 2022 is shown in Fig. 5. Additionally, Fig. 6 outlines the various document
kinds that were released till December 2022. Surprisingly, conference papers have produced
the most empirical/experimental research in the field of false news detection with 64.2%,
while editorial and retracted have contributed the least with 0.1%.

Figure 7 provides a pie chart explaining the key domains for paper publications based
on the spotting of social media related fake news. The pie chart simply indicates that the
Computer Science field has the maximum publications in the area of spotting fake news at
42.8%, while the Energy field has contributed the least with 1.4%. The presented analysis
further emphasizes that social media fake news detection research is a diverse area of study
rather than being solely confined to the computer science and engineering field.

5.1 Fake news detection challenges

According to Zhang et al. [55], fake news has three characteristics represented by 3 Vs:
Volume, Veracity, and Velocity. Following a thorough analysis of papers on the detection of
social media-related fake news, we came to the conclusion that the two additional character-
istics denoted by 2 Vs (Variety and Valid Dataset) besides the 3 Vs as described by Zhang et
al. together constitute five Vs as significant challenges to developing a reliable and effective
fake news detection system as shown in Fig. 8.

1 https://www.scopus.com

123

https://www.scopus.com


47342 Multimedia Tools and Applications (2024) 83:47319–47352

Fig. 6 Published document types in relation to the identification of social media related fake news

Fig. 7 Key domains for paper publication related to the spotting of social media based fake news

Fig. 8 Five V’s related to fake news as key challenges for its detection
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• Volume: It is not possible to properly fact-check everything using human experts since
fake news is created quickly and widely [6]. This also necessitates developing early-
detection technologies for fake news so as to restrict its propagation online [78].

• Veracity: It can be challenging to distinguish between real and false news because fake
news is intentionally produced to mislead readers and mimic legitimate news sources.
[6, 7, 55].

• Velocity: The lifespan of fake news publishers is short [2]. It is considerably more chal-
lenging to identify fake news because it is disseminated on social media in real-time. It’s
challenging to determine the number of internet users who are actively interacting with
a specific piece of viral news [55].

• Variety: Fake news affects many different elements of people’s lives and can be classified
in a variety of interconnected ways, including hoax, disinformation, fake reviews, satire
news, rumors, propaganda, click-bait, and so forth [55].

• Valid dataset:Very few training datasets for the purpose of spotting fake news have been
provided by the research community, which generally do not have complete information
with respect to misleading news, just because of restrictions made by social media sites
on the collection of data related to public domain [105]. A valid dataset is crucial for
checking news veracity. Some of the widely used datasets for carrying out the automatic
spotting of social media related fake news are described in the subsection−5.2

5.2 Dataset

A benchmark dataset is crucial for the computational work being done on fake news identifi-
cation on social media. The commonly utilized datasets in the publications analyzed during
the current review study include Politifact,2 LIAR,3 FakeNewsNet,4 BS Detector,5 Twitter,6

BuzzFeed News,7 Weibo,8 PHEME,9 and CREDBANK.10 Table 4 summarizes the quality,
advantages, and disadvantages of these datasets used in the field of spotting fake news and
how well-suited they are for various fake news detection tasks. Public fake-news databases
come in three different varieties: claims(they can consist of one or more sentences to provide
information that needs to be validated, e.g. POLITIFACT), complete articles (single piece of
information consisting of interconnected claims of several kinds, e.g. BS DETECTOR and
FAKENEWSNET), and SNS (Social Networking Services) data (despite being same in size
as that of claims, it also contains a lot of non-text data, such as information from Buzzfeed
News, PHEME, and Credbank, as well as structured data from accounts and posts).

There are certain datasets that have been developed in recent years covering the fake
news events of either multiple regions or multiple languages. For instance, MultiFC Dataset
[106] (it covers online fake news events in English, Spanish, Arabic, and Russian languages),
BharatFakeNewsKosh dataset [107] (it is a dataset specifically focused on fake news in India

2 https://www.kaggle.com/general/232077
3 https://paperswithcode.com/dataset/liar
4 https://www.kaggle.com/datasets/mdepak/fakenewsnet
5 https://github.com/thiagovas/bs-detector-dataset/
6 https://www.kaggle.com/general/35739
7 https://github.com/BuzzFeedNews/
8 https://github.com/ww-rm/weibo-rmdt
9 https://www.kaggle.com/datasets/usharengaraju/pheme-dataset
10 https://github.com/compsocial/CREDBANK-data
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and covers nine Indian languages including Assamese, Bangla, English, Gujarati, Hindi,
Malayalam, Odia, Tamil, and Telugu), and Arabic Fake News Dataset (AFND) [108] which
comprises of Arabic news articles collected from various Arabic news websites.

5.3 Research gaps and future directions

The following research gaps have been identified as a result of the comprehensive review
conducted in this paper. These gaps are important areas that need to be addressed in future
research on the automatic detection of social media-related fake news:

1. Real-time detection: One major research gap is the need for methods that can reliably
spot false news at an early stage in real-time. Developing a real-time detecting system
for fake news is crucial to prevent the propagation of misinformation and enable timely
intervention.

2. Global benchmark dataset: Fake news is a global issue, and each country faces unique
challenges in addressing it. To tackle fake news on a global level, it is necessary to con-
struct benchmark datasets that cover local and national instances of fake news.Combining
these datasets from different nations can contribute to the development of a comprehen-
sive global benchmark dataset for detecting fake news.

3. Fine-grained classification: While many current datasets use binary labels to classify
news as true or false, there is a need for more precise classification methods that consider
the intent behind the news. Differentiating between true fake news and related content
such as opinion pieces and satirical news can provide more nuanced insights and improve
the effectiveness of detection models.

4. Alternative approaches: In addition to machine/deep learning methods, there is a need
to explore other reliable and efficient ways to identify false news. Research should focus
on investigating alternative approaches and techniques that can complement existing
methods and enhance the accuracy of fake news detection.

5. Application in related areas: Fake news identification has implications beyond its direct
impact on spotting false news. Research in areas such as locating bots/spammers, detect-
ing clickbait, identifying stance, and addressing rumors is vital to address the broader
challenges associated with misinformation. Future work in these areas will contribute to
a comprehensive understanding and mitigation of the difficulties related to fake news.

6. Feature reduction: Exploring techniques to reduce the size of feature vectors and
effectively handle large amounts of fake news data is an important research direction.
Developing efficient feature selection or extraction methods can improve the scalability
and performance of fake news detection models.

7. Visual content analysis: There is a lack of trustworthy research on extracting features
from visual entities like photographs and videos to develop systems for spotting fake
news. Investigating the use of visual content analysis and integrating it into detection
models can provide valuable cues and enhance the overall accuracy and effectiveness of
fake news detection.

8. Attention mechanism: The attention mechanism, a technique that focuses on relevant
parts of the input, shows promise in improving the accuracy of models for spotting false
news. Further research in this area can explore the application of attention mechanisms
to fake news detection models and investigate its impact on performance.

9. Unraveling belief in fake news: One of the potential research gap could be the need
for a deeper understanding of the complex dynamics influencing belief in fake news.
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This includes the interplay between media ecosystems, cognitive factors, and sociologi-
cal influences. [109] highlights the importance of investigating the impact of information
agendas, cognitive biases, emotional factors, and sociological factors such as echo cham-
bers. By unraveling these complex dynamics, the research aims to address the challenges
posed by the belief in fake news in contemporary society.

10. Enhanced fake news analysis through advanced pattern-mining system: There is a
need for the development of advanced pattern-mining frameworks that can effectively
analyze fake news data. Current techniques often struggle to provide actionable insights
into the structure of fake news. The proposed DMRM-FNA (DMRM-Fake News Anal-
ysis) framework addresses this challenge by extracting patterns from fake news and
comparing them with real news data [110]. Future research can focus on further improv-
ing the efficiency and accuracy of pattern mining techniques for analyzing large-scale
social network data.

11. Fake news propagation (epidemiological and non-epidemiological perspectives):
Understanding the dynamics of fake news propagation is crucial in combating mis-
information. This research highlights the exploration of both epidemiological and
non-epidemiological models to capture the spread of fake news [111]. Future studies
can delve deeper into these models, including their extensions and modifications, to gain
insights into real-world scenarios. This line of research enables a better understanding
of the complex mechanisms behind fake news propagation.

12. Temporal focus estimation in news articles: Estimating the temporal focus of news
articles plays a significant role in combating fake news and providing relevant contextual
information. Ahmed et al. [112] combines co-training, lexicon expansion, and semi-
supervised learning techniques to identify temporal expressions and classify articles
based on criteria such as "what," "when," "where," and "who". Further research can
focus on improving the accuracy and robustness of temporal focus estimation, exploring
semantic sentence segmentation methods, and addressing challenges related to network
instability.

13. Leveraging lexicon expansion for event detection: Incorporating lexicon expansion
techniques can enhance the accuracy of event detection algorithms in news retrieval.
This research demonstrates the benefits ofWordNet-based lexicon expansion, contextual
representations, and semi-supervised learning for training classifiers [113]. Future stud-
ies can explore further enhancements to the approach, such as incorporating additional
contextual features, optimizing the matching classifiers, and evaluating the performance
on larger datasets. The research contributes to improving temporal analysis in news article
retrieval and provides a comprehensive framework for accurate time estimation.

14. Transformer-based approach for fake news detection: The utilization of Transformer-
basedmodels for fake news detection shows promise in improving classification accuracy.
Raza et al. [114] proposes a framework that incorporates a Transformer-based encoder-
decoder model and incorporates various features from news content and social contexts.
Future research can explore the application ofTransformer-based approaches in fake news
detection, further refine the model architecture, and investigate techniques to address the
challenge of limited labeled data.

By addressing these research gaps and exploring the future directions mentioned, the field
of automatic spotting of social media-related fake news can make significant advancements.
These efforts will contribute to the development of more robust and effective methods for
identifying and combating fake news, enabling a more reliable and trustworthy information
environment. The potential benefits include improved early detection and prevention of fake
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news propagation, enhanced understanding of fake news dynamics, accurate temporal focus
estimation, and more accurate and efficient fake news detection models.

6 Conclusion

This paper provides a comprehensive review of 60 published papers based on the automatic
detection of social media related fake news. All the papers were selected between the time
frame of the year 2011 to 2022 according to the PRISM research methodology. The summary
of each reviewed article was presented while highlighting (a). key techniques adopted based
on machine/deep learning, (b). datasets used for experimental setups, and (c). performance
metrics of eachmodel or technique. Themajor research findings of the reviewwere discussed
along with the key challenges faced during the building of an automatic detection system
for identifying fake news. Finally, the major research gaps along with the future scope of
automatic detection of social media related fake news were discussed.
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