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Abstract
In this paper, we discuss two efficient three-term conjugate gradient methods (ECG) for
impulse noise removal. The directions of ECG are first the direction of steepest descent
and then spanned by the three terms: The steepest descent direction, the previous direction,
and the gradient differences at the previous and current points. The second and third terms
are scaled by two different step sizes called conjugate gradient parameters. Our goal is to
generate and control these parameters such that they do not jointly dominate while preserving
the effect of all terms, except near the optimizer where the first term dominates the other
two terms. They are independent of the line search method and useful for finite precision
arithmetic. The global convergence of ECG is proved. The efficiency (the lowest relative
cost of function evaluations) and robustness (highest number of solved problems ) of ECG
compared to known conjugate gradient methods are shown in terms of PSNR (peak signal
noise ratio) and time in seconds.

Keywords Image processing · Impulse noise removal · Unconstrained optimization ·
Conjugate gradient method · Wolfe line search method

Mathematics Subject Classification 90C30 · 90C25 · 65K05

1 Introduction

Image denoising is a fundamental problem in image processing that occurs in the acquisition,
transmission, storage, and processing of images. Image denoising is about removing noise
from a noisy image and restoring the true image. In denoising, it is not easy to detect edges
and textures that have high-frequency components due to noise, so some details may be lost.
Therefore, it is important to develop new algorithms that can recover meaningful information
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from noisy images and produce high-quality images. The development of two-phase algo-
rithms whose first phase is denoising may be more effective than denoising methods, e.g., see
[6–9, 21, 22]. The second phases of these algorithms can be any optimization methods with
small memory requirements, such as conjugate gradient methods and limited memory quasi-
Newton methods. These optimization methods can recover the images found by denoising.
Therefore, two-phase methods are developed as a version of denoising. There are different
types of noise such as Gaussian, Poisson, Rician, and salt and pepper impulse noise in med-
ical images [1, 6, 7]. In medicine, many methods are used to remove impulse noise, such as
X-ray, computed tomography, magnetic resonance imaging, ultrasound, and dermoscopy.

2 Related work

There are many methods for removing salt and pepper impulse noise, such as the descent
spectral conjugate gradient method of Yu et al. [34], nonmonotone adaptive gradient method
ofYu et al. [35] with a low-complexity, generalized trimmedmean filter byRytsar& Ivasenko
[28], wavelet filter of Karthikeyan et al. [20] andWang et al. [31], fuzzy algorithms of Anisha
et al. [1] and Russo et al. [27], trust region method of Kimiaei & Rahpeymaii [21], conjugate
gradient method of Kimiaei & Rostami [22] and Zhou et al. [37], and gradient method of Liu
et al. [23]. For impulse noise removal methods, other recent references are Chen et al. [11],
Halder & Choudhuri [17], Nadeem et al. [24], Shah et al. [29], and Wang et al. [32].
Among all methods, conjugate gradient methods (CG) are popular because they require little
memory. CG methods try line search methods along CG directions to speed up reaching
an optimal point. Line search methods find step sizes that force a reduction in objective
function values. Directions of CG methods are a kind of subspace spanned by two terms
(the steepest descent gradient at the current point and the previous direction) or three terms
(the steepest descent gradient at the current point and the previous direction, the gradient
differences at the old and current points). These terms are scaled by step sizes called CG
parameters. These parameters play a key role in the efficiency of CGmethods. To ensure that
CG methods find an optimal point, CG directions should satisfy the descent condition, i.e.,
the product of the gradient at the current point and the CG direction should be negative. If
CG parameters become too large, the descent condition may be violated and a saddle point
or a maximum point will be found instead of a minimum point. On the other hand, if these
parameters become small, the corresponding term will be dominated by the other terms and
the subspace will become smaller. Therefore, it is very important to generate and control CG
parameters so that they do not become too large or too small, unless CG iterations are near
an optimal point. In this case, the first term (the steepest descent direction) should dominate
the other two terms. When CG iterations are near a minimum point, the gradient is small and
the CG direction (which in this case is the steepest descent direction) has a small magnitude.
In other words, the risk of skipping the minimum point due to large steps is reduced and CG
methods have a high chance of finding the minimum point when noise is present. To achieve
this, CG parameters should be slowly reduced by a decreasing factor. So far, there are no
known studies on these points. Therefore, if it is possible to improve CGmethods, this would
be interesting and could significantly improve the efficiency and robustness of CG methods.
Then such CG methods can be used in the second phase of two-phase methods (e.g., [6–9,
21, 22]).
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2.1 Variant Median filter methods

Shukla et al. [30] proposed the median filter (MF) method to remove salt and pepper noise
by using the median of the window to replace the central pixels with the window. If the
central pixels are salt and pepper, they are replaced by the median of the window. MF cannot
distinguish true pixels from noise.
The adaptive median filter (AMF) method is a widely used adaptation of MF (cf. [19]). AMF
performs spatial processing to determine whether or not pixels in an image are affected by
impulse noise. In addition, this method classifies pixels as noise by comparing each pixel in
the image with the surrounding neighboring pixels. With AMF, the size of the neighborhood
and the threshold for the comparison are adjustable. Impulse noise is a pixel that is different
frommost of its neighbors but is not matched with similar pixels. In this case, this noisy pixel
is replaced by the neighboring pixels.

Notation Let x ∈ R
M×N be the original image with M × N pixels. Then we consider the

set
A =

{
1, 2, ..., M

}
×

{
1, 2, ..., N

}

of indices. We denote by xi, j the component of the original image at position (i, j). We form
the four neighborhoods

Vi, j =
{
xi−1, j , xi, j−1, xi, j+1, xi+1, j

}

of xi, j . Let [dmin, dmax] be the dynamic range of the original image x , i.e., for all i =
1, 2, · · · , M and j = 1, 2, · · · , N , xi, j ∈ [dmin, dmax]. Then we define

yi, j =

⎧
⎪⎨
⎪⎩

xi, j with probability 1 − p − q,

dmin with probability p,

dmax with probability q,

since the noisy image contains salt and pepper noise. Applying AMF to the noisy image y,
we obtain the repaired image ỹ and the candidate set

N =
{
(i, j) ∈ A | ỹi, j �= yi, j , yi, j = dmin or dmax

}

of noise.

2.2 Two-phasemethods

In this section, two-phase methods are described. In the first phase, damaged noises are iden-
tified. Then, in the second phase, damage noises are recovered by solving an unconstrained
optimization problem with a continuously differentiable objective function (e.g., see [6–9,
21, 22]).
Let us consider now how to work two-phase methods. In first phase, noisy image pixels
are identified. If (i, j) /∈ N , then the pixel xi, j is not damaged and is kept without any
change. But for (i, j) ∈ N the pixel yi, j should be denoise. For this, let u∗ be a denoised
image. As in [6, 8, 9], in the second phase, if (m, n) ∈ Vi, j \ N , we set u∗

m,n = ym,n and
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for (m, n) ∈ Vi, j ∩ N we obtain ym,n by solving the following problem with the smooth
objective function

min
u∈R|N |

F(u) :=
∑

(i, j)∈N

{
|ui, j − yi, j | + η

[ ∑
(m,n)∈Vi, j \N

φα(ui, j − ym,n)

+ 1

2

∑
(m,n)∈Vi, j∩N

φα(ui, j − um,n)
]}

. (1)

Here η is a regularization parameter and φα is an even edge-preserving potential function.
Some of the most popular edge-preserving potential functions [4, 5, 7, 10, 15] are

φα(t) =
√
t2 + α, α > 0, (2)

φα(t) = |t |α, 1 < α ≤ 2, (3)

φα(t) = log
(
cosh(αt)

)
, α > 0, (4)

φα(t) = |t |
α

− log
(
1 + |t |

α

)
, α > 0, (5)

φα(t) =

⎧⎪⎨
⎪⎩

t2

2α
, |t | ≤ α,

|t | − α

2
|t | > α,

α > 0. (6)

There are many ways to solve the problem (1), such as Newton method, quasi-Newton
methods, trust region methods, etc. Since this problem is a large problem, only low-memory
methods such asCGmethods (e.g., see [6–9, 22]) and limitedmemory quasi-Newtonmethods
(cf. [21]) can be used to solve these problems.

2.3 Known CGmethods

To solve the problem (1), starting from an initial guess u0 ∈ R
|N |, CG methods generate a

sequence {uk}k≥0 by
uk+1 := uk + αkdk . (7)

Here αk is a step size, obtained by inexact line search methods, and dk is a descent search
direction satisfying the descent condition

∇FT
k dk < 0, (8)

computed by

dk :=
{

−∇Fk, k = 0,

−∇Fk + βkdk−1, k ≥ 1.
(9)

Here ∇Fk := ∇F(uk) is the gradient of F at uk and βk ∈ R is the CG parameter with known
choices

βHS
k := ∇FT

k yk−1

dTk−1yk−1
, Hestenes & Stiefel [18] (10)

βFR
k := ‖∇Fk‖2

‖∇Fk−1‖2 , Fletcher & Reeves [14] (11)

βDY
k := ‖∇Fk‖2

dTk−1yk−1
, Dai & Yuan [12] (12)
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βHZ
k := βHS

k − 2‖yk−1‖2 ∇FT
k dk−1

(dTk−1yk−1)2
, Hager & Zhang [16] (13)

βPR
k := ∇FT

k yk−1

‖∇Fk−1‖2 , Polak & Ribiere [26] (14)

where yk−1 := ∇Fk − ∇Fk−1 and ‖ · ‖ denotes the Euclidean norm.
A generic version of three-term CG (TTCG) methods was proposed by Beale [3] to solve
unconstrained optimization problems whose search direction

dk := −∇Fk + βkdk−1 + γkdt (15)

is calculated. Here βk = βFR
k , βHS

k , βDY
k , dt is a restarted direction, a direction with a restart

procedure, and

γk :=

⎧
⎪⎨
⎪⎩
0, k = t + 1,
∇FT

k yt
dTt yt

, k > t + 1.

In fact, the goal of TTCG methods is to improve two-term CG methods. As in [2], a com-
parison among TTCG methods is made for solving unconstrained optimization problems,
showing that TTCG methods are numerically efficient and robust. To obtain the step size αk ,
we use the strong Wolfe line search [33]

F(uk + αkdk) − F(uk) ≤ c1αk∇FT
k dk, (16)∣∣∣∇FT

k+1dk
∣∣∣ ≤ −c2∇FT

k dk, (17)

where 0 < c1 < c2 < 1. The inequality (16) is called Armijo which tries to get a decrease in
the function value. The inequality (17) is called curvature which lies a step size in the broad
neighborhood of a local minimum point of F with respect to α.

As discussed in Section 2, CGmethods have no plan to control CG parameters. For example,
if βk in (15) is close to zero before CG iterations are near a minimum point, then dk will be the
steepest descent −∇Fk , which has a zigzagging behavior, one of the sources of inefficiency
of optimization algorithms. However, if CG iterations are close to a minimum point, the
steepest descent direction −∇Fk can be used effectively. In (17), if one of βk or γk or both
are near zero before CG iterations are near an optimal point, the subspace is reduced and dk
cannot take advantage of dk−1 and dt . On the other hand, if at least one βk or γk is large, then
the descent direction (8) can be violated. In this case, the Wolfe line search method cannot
be used the descent condition (8) does not hold.

3 Our contribution and organization

In this work, we develop a two-phase methods to remove noise. First, AMF is used to detect
damaged pixels. Second, two efficient TTCG methods are proposed based on the steepest
descent direction, the old direction, and the gradient differences at the old and current points.

The new phase of our algorithm is indeed the second phase. The first phase is not new and
not very important for us, since it deals only with the detection of the damaged pixels. In
practice, the second phase will be very efficient and will be able to recover the noisy pixels
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with high quality, regardless of how efficient the first phase is or how it can be updated by
new techniques.
The parameters of our CG directions are generated and controlled in a new way:

• None of the terms of the subspace form is large, which does not violate the descent
condition (8), which is a prerequisite for using the Wolfe line search method to speed up
our CG methods.

• None of the terms of the subspace form dominates the other in general. In fact, our CG
directions use their three terms when CG iterations are not near the optimal point.

• When CG iterations are near a minimum point, the first term (steepest descent direction)
dominates the other two terms because CG iterations should have small gradients in this
case and accordingly CG directions has a small size and the risk of significantly skipping
the minimum point is reduced.

If the second and third terms dominate the first term in cases where CG iterations are near a
minimum point, CG directions may be large, violating the descent condition (8) and causing
saddle points or maximum points to be found.
The descent property and global convergence of the proposed algorithms are proved. Numer-
ical results show that our method is competitive compared to the state-of-the-art CGmethods.
In fact, in our comparison, the first phases of all CG methods are the same; only the second
phases use different CG directions along which the Wolfe line search method is tried.
Section 2 describes two efficient CG methods to remove salt and pepper noise. Section 3
gives numerical results to illustrate the efficiency and robustness of the new algorithms. Some
conclusions are given in Section 4. Finally, an additional material is reported in Section 5.

4 New efficient CG directions

In this section, we construct two new efficient TTCGmethods for impulse noise removal from
medical images. Our new directions are spanned by the steepest descent direction −∇Fk ,
the previous direction dk−1, and the difference of the gradients yk−1 at the old point uk−1

and at the current point uk . Moreover, CG parameters are used to improve the numerical
results of the noise removal. In practice, each component of dk−1 and yk−1 is adjusted
based on the corresponding component of gk such that each component of the new direction
is no larger than that of ∇Fk . Since in finite precision arithmetic the descent condition
cannot be guaranteed numerically without such an adjustment, although this condition holds
theoretically, the search direction is almost always orthogonal to the gradient. Hence this
adjustment is essential to generate an efficient direction in finite precision arithmetic.

• The first efficient CG method (ECG1). We first define CG parameters based on our
discussed adjustment as follows:

β1
k := η1

(1 + k)η2
max

i=1,2,...,|N |

{ ∣∣∣ (∇Fk)i

(dk−1)i

∣∣∣
∣∣∣ (dk−1)i �= 0

}
, (18)

β2
k := η1

(1 + k)η2
max

i=1,2,...,|N |

{ ∣∣∣ (∇Fk)i

(yk−1)i

∣∣∣
∣∣∣ (yk−1)i �= 0

}
, (19)

in which η1, η2 ∈ (0, 1) and k counts the number of iterations. Hence, the new iterate is
updated by (7) whose direction dk is computed by

dk :=
{

−∇Fk + β1
k dk−1 + β2

k yk−1, if ∇FT
k dk−1 ≥ 0,

−∇Fk, otherwise.
(20)
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Here the step size αk satisfies (16)-(17). Whenever the directions generated by (20) are
not descent, they are replaced by dk = −∇Fk .

• The second efficient CG method (ECG2). Before our new direction is introduced, four
Boolean variables are defined as follows:

Dec1 :=
(
∇FT

k dk−1 > 0 and ∇FT
k yk−1 < 0

)
,

Dec2 :=
(
∇FT

k dk−1 < 0 and ∇FT
k yk−1 > 0

)
,

Dec3 :=
(
∇FT

k dk−1 < 0 and ∇FT
k yk−1 < 0

)
,

Dec4 :=
(
∇FT

k dk−1 > 0 and ∇FT
k yk−1 > 0

)
.

Therefore the new direction

dk :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∇Fk − β1
k dk−1 + β2

k yk−1, if Dec1 is true,

−∇Fk + β1
k dk−1 − β2

k yk−1, if Dec2 is true,

−∇Fk + β1
k dk−1 + β2

k yk−1, if Dec3 is true,

−∇Fk − β1
k dk−1 − β2

k yk−1, if Dec4 is true,

(21)

of ECG2 is computed while satisfying the descent condition (8). The new iterate of
ECG2 is updated by (7) while computing the search direction by (21).

Our CG parameters (18) are slowly reduced by a factor
η1

(1 + k)η2
, so that when CG iterations

are near an optimal point (k becomes large), the steepest descent direction −∇Fk is used,
whose size is small in such a case. On the other hand, two terms

max
i=1,2,...,|N |

{ ∣∣∣ (∇Fk)i

(dk−1)i

∣∣∣
∣∣∣ (dk−1)i �= 0

}

of (18) and

max
i=1,2,...,|N |

{ ∣∣∣ (∇Fk)i

(yk−1)i

∣∣∣
∣∣∣ (yk−1)i �= 0

}

of (19) do not allow β1
k and β2

k to quickly become too small. Indeed, these two terms allow
none of −∇Fk , dk−1, and yk−1 to dominate until CG iterations are not near an optimal point.

5 Global convergence

To investigate the descent property and the global convergence of ECG1 and ECG2, we
assume the following standard assumptions:

Assumption 3.1 The level set L(u0) :=
{
u ∈ R

N
∣∣∣ F(u) ≤ F(u0)

}
is bounded, i.e., there

exists a constant M > 0 such that

‖u‖ ≤ M, for all u ∈ L(u0). (22)

Assumption 3.2 In some neighbourhood � ⊆ L(u0), the gradient of the objective function
F has Lipschitz continuous gradient, i.e., there exists a constant L > 0 such that

‖∇F(u) − ∇F(v)‖ ≤ L‖u − v‖, for all u, v ∈ �. (23)
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Assumptions 3.1 and 3.2 imply that there exists a constant ε > 0 such that

‖∇Fk‖ ≤ ε, for all k ≥ 0.

The following lemma ensures that the descent property of our algorithms is satisfied, resulting
in the angle between the gradient and the search direction is far from 90◦.

Lemma 1 Let dk be the direction generated by ECG1 or ECG2. Then, dk is a descent direc-
tion, i.e., the condition (8) holds.

The following lemma is called Zoutendijk condition which is used to prove the global con-
vergence of CG methods.

Lemma 2 Let dk be a descent direction and the step size αk satisfies the strong Wolfe line
search (16)-(17). Then, under Assumptions 3.1 and 3.2, the condition

+∞∑
k=0

(∇FT
k dk)

2

‖dk‖2 < +∞ (24)

holds.

Proof See [38].

The following lemma [36] has a key role in the proof of the next theorem below.

Lemma 3 Let dk be the direction generated by ECG1 or ECG2 and Assumptions 3.1 and 3.2
hold. If

∞∑
k=1

1

‖dk‖2 = +∞, (25)

then
lim inf
k→∞ ‖∇Fk‖ = 0.

The following theorem is the main global convergence of our new algorithms whose proof
is discussed in Section 8.2.

Theorem 1 Let dk be the descent direction and {uk}k≥0 be the sequence generated by ECG1
or ECG2. Then

lim inf
k→∞ ‖∇Fk‖ = 0. (26)

6 Numerical results

We compare two versions of our methodsECG1 and ECG2with two-phase methods, whose
first phases are AMF and whose second phases are known CG methods, on several standard
images. AMF detects damaged pixels and restores them to some extent and then CGmethods
(CG directions along which Wolfe line search method is used) uniquely restores the image
restored by AMF. As mentioned earlier, any denoising method can be used in the first phase.
In fact, these two-phase methods are an evolution of denoising and their efficiency comes
from the second phase.
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Code compared. The following known CG algorithms are used in our comparison:
CGFR: This algorithm uses dk := −∇Fk + βFR

k dk−1.
CGHS: This algorithm uses dk := −∇Fk + βHS

k dk−1.
CGPR: This algorithm uses dk := −∇Fk + βPR

k dk−1.
CGDY: This algorithm uses dk := −∇Fk + βDY

k dk−1.
CGHZ: This algorithm uses dk := −∇Fk + βHZ

k dk−1.

NPR1:This algorithm uses dk := −∇Fk +βN PR1
k dk−1, βN PR1

k = βPR
k

yTk−1dk−1+‖yk−1‖‖dk−1‖
.

NPR2: This algorithm uses dk := −∇Fk +βN PR2
k dk−1, βN PR2

k = βPR
k

∇FT
k dk−1+‖∇Fk‖‖dk−1‖

.

NPR3: This algorithm uses dk := −∇Fk + βN PR3
k dk−1, βN PR3

k = βPR
k

∇FT
k ∇Fk−1+‖∇Fk‖‖∇Fk−1‖

.

NPR4: This algorithm uses dk := −‖yk−1‖2
‖sk−1‖2 ∇Fk + βN PR4

k dk−1, and

βN PR4
k :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇FT
k yk−1

‖∇Fk−1‖2 , if ∇FT
k yk−1 < 0,

− ‖∇Fk‖2
‖∇Fk−1‖2 , if ∇FT

k dk−1 > 0,

0, otherwise.

Test images. Five standard images are used:

• Lena has been widely used in image processing since 1973. It is an image of Swedish
model Lena Forsé cropped from the centerfold of the November 1972 issue of Playboy
magazine. This image has a fixed resolution of 100 lines per inch and 256× 256 pixels.

• House’s test image is in many versions due to cropping, scanning, resizing, compression,
or conversion from color to grayscale. Here we use the version with 256 × 256 pixels.

• Cameraman image is one of the most popular standard grayscale test images of size
256×256 belonging to MIT. By using standard test images, it is possible to test different
image processing and compression algorithms and compare the results both visually and
quantitatively. This image presents a number of challenges to image algorithms, such as
image enhancements, image compression, etc. The image has a dynamic range of pixels
between 0 and 255 (8- bits). The minimum value is 7 and the maximum value is 253.
Here we use both versions of 256 × 256 and 512 × 512 pixels.

• Computed tomography of the head (CT) uses X-rays to produce cross-sectional images
of the body. This is possible because different tissues interact with X-rays in different
ways. Some tissues allow X-rays to pass through without affecting them much, while
other tissues exert a stronger effect. This image has 512 × 512 pixels.

• The brain sagittal (CerebSagE) MRI study looks at the brain with 24 sagittal (vertical -
front to back) slices starting on the right side of the brain and moving to the left. This
image consists of 512 × 512 pixels.
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Tuning parameters. ECG1 and ECG2 use the tuning parameters η1 = 0.1 and η2 = 0.85
while all algorithms in the Wolfe line search use the tuning parameters c1 = 10−4 and
c2 = 0.5.

Stopping tests. All algorithms are stopped whenever ‖∇Fk‖ ≤ 10−4.

Performance profile. A popular tool for identifying the efficiency of algorithms is the per-
formance profile of Dolan & Moré [13]. This profile uses two cost measures: time in
seconds and the peak signal noise ratio

PSN R = 10 log10
2552

1

M × N

∑
i, j (u

r
i, j − u∗

i, j )
2
.

Here M × N is the size of the image, uri, j is the noisy image, u∗
i, j is restored the image and

u = 1

M × N

∑
i, j

(u∗
i, j )

2,

is the mean of the corrupted image. Denote by S the list of compared solvers, by P the
list of problems, and by cp,s the cost measure of the solver s to solve the problem p. The
performance profile of the solver s ∈ S

ρs(τ ) := 1

|P|
∣∣∣
{
p ∈ P

∣∣∣ prp,s := cp,s
min(cp,s0 | s0 ∈ S)

≤ τ
}∣∣∣.

is the fraction of problems that the performance ratio prp,s is at most τ . In particular, the
fraction of problems that the solver s wins compared to the other solvers is ρs(1) and the
fraction of problems for sufficiently large τ that the solver s can solve is ρs(τ ).

Our finding. We say that a method is competitive with others if it is significantly more
efficient and robust than others in terms of cost measures: PNSR, time in seconds, relative
cost of function and gradient evaluations, and the number of iterations. This can be done by
plotting performance profiles of all methods with respect to these cost measures:

• First, we compare all known CG with respect to PNSR, as shown in Fig. 1. The result is
that NPR4 and NPR1 are the first and second best methods.

• Then, we compare only NPR1 and NPR4 to find out which of the two methods has the
lowest relative cost of function and gradient evaluations, the lowest iterations, and the
lowest time in seconds (see Fig. 2), which confirms that NPR4 is competitive compared
to NPR1.

• Next, two versions of our methods ECG1 and ECG2 were compared (see Fig. 3). The
result is that ECG2 is competitive compared to ECG1.

• Finally, we compare our best method ECG2 with the best method NPR4 of the known
CG methods shown in Fig. 4, with the result that ECG2 is so competitive compared to
NPR4. Figures 5, 6, 7, 8 and 9 show that, after AMF identifies damaged pixels, ECG2
can significantly recover noisy images, even in the presence of high noise. After applying
our CG methods, PSNR is significantly increased. Numerical results show that ECG2 is
competitive with other known methods in terms of time in seconds and PSNR.
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Fig. 1 Performance profiles of known CG methods in terms of PSNR
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Fig. 2 Performance profiles of NPR1 and NPR4 in terms of: (a) the total number of iterations; (b) the total
number of function evaluations; (c) the total number of gradient evaluations; (d) time in seconds

123



43696 Multimedia Tools and Applications (2024) 83:43685–43703

0 0.02 0.04 0.06 0.08 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

ECG1
ECG2

0 0.02 0.04 0.06 0.08 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

ECG1
ECG2

(b)(a)

Fig. 3 (a) Performance profiles of ECG1 and ECG2 in terms of PSNR; (b) Performance profiles of ECG1
and ECG2 in terms of time in seconds

7 Conclusion

In this work, a two stages method for removing impulse noise, especially from medical
images, was presented. The first stage used AMF to detect damaged pixels. Every new
technique welcomes the use of the first stage, but this is not our case because this stage does
not affect our method. The second stage included two new three-term CG directions, a kind
of subspace spanned by the direction of steepest descent, the old direction and the gradient
differences at the old and current points. The second and third terms of this subspace were
scaled by two newCGparameterswhose goalwas to obtain three terms (no dominance among
the three terms), guarantee the descent condition, and use the steepest descent directionswhen
CG iterations were near an optimal point.
Our CG methods are independent of the type of line search method and useful in finite
precision arithmetic. The global convergence of CG methods are proved. Several standard
images were used to show that the new method is robust and efficient compared to other
known CG methods for removing impulse noise.
Future work may involve constructing larger subspace techniques that can use other types
of directions as a new component of the subspace. For example, the conjugate gradient
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Fig. 4 (a) Performance profiles of NPR4 and ECG2 in terms of PSNR; (b) Performance profiles of NPR4
and ECG2 in terms of time in seconds
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Fig. 5 Recovering the 256 × 256 noisy Lena image via ECG2. (a)-(c) are the noisy images with 50%, 70%
and 90% of noises, (d)-(f) are the restored images via adaptive median filter (AMF), (g)-(i) are the restored
images via ECG2

direction can be enriched and combined with other directions such as the limited memory
quasi-Newton method or other low-memory techniques.

8 Tools for ECG

8.1 The proof of Lemma 1

Let dk be the direction by ECG1, computed by (20). If dk does not satisfy the descent
condition, then we have

∇FT
k dk = −‖∇Fk‖2 < 0.
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Fig. 6 Recovering the 512×512 noisy HeadCT image via ECG2. (a)-(c) are the noisy images with 50%, 70%
and 90% of noises, (d)-(f) are the restored images via adaptive median filter (AMF), (g)-(i) are the restored
images via ECG2

Suppose that dk is generated by ECG2. We consider the following four cases.
case 1. Dec1 results in that dk is descent, i.e.,

∇FT
k dk = −‖∇Fk‖2 − β1

k∇FT
k dk−1 + β2

k∇FT
k yk−1 < 0.

case 2. Dec2 results in that dk is descent, i.e.,

∇FT
k dk = −‖∇Fk‖2 + β1

k∇FT
k dk−1 − β2

k∇FT
k yk−1 < 0.

case 3. Dec3 results in that dk is descent, i.e.,

∇FT
k dk = −‖∇Fk‖2 + β1

k∇FT
k dk−1 + β2

k∇FT
k yk−1 < 0.

case 4. Dec4 results in that dk is descent, i.e.,

∇FT
k dk = −‖∇Fk‖2 − β1

k∇FT
k dk−1 − β2

k∇FT
k yk−1 < 0.
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Fig. 7 Recovering the 512 × 512 noisy CerebSagE image via ECG2. (a)-(c) are the noisy images with 50%,
70% and 90%of noises, (d)-(f) are the restored images via adaptivemedian filter (AMF), (g)-(i) are the restored
images via ECG2

As a result, the direction by ECG2 is descent. ��

8.2 The proof of Theorem 1

Let
γk = max

{
|β1

k |, |β2
k |

}
≤ M∗. (27)

Then either (20) or (21) results in

‖dk‖ ≤ ‖∇Fk‖ + |β1
k |‖dk−1‖ + |β2

k |‖yk−1‖. (28)

Assumption 3.2 implies
‖yk−1‖ ≤ αk‖dk−1‖. (29)
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Fig. 8 Recovering the 256× 256 noisy Cameraman image via ECG2. (a)-(c) are the noisy images with 50%,
70% and 90%of noises, (d)-(f) are the restored images via adaptivemedian filter (AMF), (g)-(i) are the restored
images via ECG2

Therefore, (27)-(29) lead to

‖dk‖ ≤ ε + M∗‖dk−1‖ + M∗Lαk‖dk−1‖
= ε + M∗(1 + αk L)‖dk−1‖.

In the same way as the proof of Lemma 3.1 in [36], there exists a positive constant M such
that

‖dk‖ ≤ M, for all k ≥ 0,

so that ∞∑
k=1

1

‖dk‖2 ≥
∞∑
k=1

1

M2 = +∞.
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Fig. 9 Recovering the 512× 512 noisy Cameraman image via ECG2. (a)-(c) are the noisy images with 50%,
70% and 90%of noises, (d)-(f) are the restored images via adaptivemedian filter (AMF), (g)-(i) are the restored
images via ECG2

Finally, Lemma 3 implies that
lim inf
k→∞ ‖∇Fk‖ = 0.
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