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Abstract
Motion blur of an image is a common phenomenon that occurs while taking a photograph due
to the relative movement of the object and an image acquiring device. It is essential to detect
this phenomenon of blurring of images in many applications such as information retrieval.
This paper proposes a novel local blur detection technique, and it performs better than the
existing works. This technique mainly uses Radon transform and Laplacian of Gaussian on
the local neighborhood around each pixel to estimate blur information. Additionally, two
new weight functions are introduced based on local geodesic distance and local variance. It
is shown that these functions play a significant role in segregating blur and non-blurred parts.
Simulation results validate the correctness and accuracy by testing the proposed algorithm on
some challenging images with similar color information in the foreground and background.
Various quantitative performance measures have determined the superiority of the proposed
method.

Keywords Fourier transform (FT) · Geodesic distance · Local blur angle estimator (LBAE) ·
Point spread function (PSF) · Laplacian of gaussian (LoG) · Radon transform (RT)

1 Introduction

It is well known that blurred images are generated due to either motion of the object or
due to the motion of the camera while capturing the image. Therefore two types of blurred
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images exist, i.e., 1) partial blur and 2) global blur. In both cases, researchers have developed
numerous techniques for their detection and restoration. Many researchers have discussed
the restoration of global blur images, which are presented in [4, 5, 7, 15, 16, 24, 26, 29, 31,
34, 35, 39]. Most of these techniques have followed the well-known blur model for linear
motion, which is defined as follows:

g(z) = h(z) ⊗ f (z) + n(z), (1)

where g(z) is an observed image, h(z) is a degraded function, f (z) is an original image,
and n(z) is a noise function. And ′′⊗′′ is two dimensional convolution operator. Here, we
denote z = (x, y) as 2 dimensional domain of an image and dz = dxdy as suitable integral.
This notation will be followed throughout this paper. In this model, the degraded function
produces cumulative effects of distortions in the full image after convolution with the original
image.

In the case of a partial blur, one or more objects are blurred during photography. Two types
of blur models are shown in Fig. 1(a) & (b). Here, we focus on one or more linear motions of
an object in the image. To restore this type of blurred object, one needs to detect the blurred
object and subsequently apply blur restoration techniques. Many of these techniques are
studied in [8, 9, 11, 19, 22, 27, 28, 36, 40]. But the challenge lies in detecting exact blurred
regions of the degraded image. Hence, we have focused on detecting precise blurring regions
of an image. Several techniques have been proposed in the literature to detect & segment
partial blur in the image. Here, we have briefly reviewed a few of them. Pan et al. [14] have
used maximum a posteriori framework to segment and deblur various blurred regions in an
image. In [1], Chakrabarti et al. have introduced a likelihood measure using local Fourier
Transform to determine whether a specific kernel blurs a particular image patch or not. Liu et
al. [23] have proposed region-based features, namely, local power spectrum slope, gradient
histogram span, and maximum saturation for identifying blur regions. In addition, they have
discussed local autocorrelation congruency features for classifying detected blur either in
motion or defocus blur. Similarly, Kalalembang et al. [17] have used block-based discrete
cosine transform for blur detection, and Tang et al. [37] used log averaged spectrum residual

Fig. 1 Different kind of Point Spread Functions (PSF): (a) Linear motion PSF (b) Two linear motions in
different directions
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to estimate blur map. In [32], Shi et al. have modified the set of blur features which are
derived from multiple domains such as gradient histogram, kurtosis, and local filters, for
blur detection. In [2], Bahrami et al. have estimated local blur kernels from gradient images,
using an image patch, which generates a relative blur degree for each patch to classify it as
blur or non blur patch. Similarly, in [30], Paramanand et al. have used a local image patch
to estimate the transformation spread function around each pixel to classify it as blurred
or non-blurred pixels by manually selecting the patches. In [3], Bini et al. have proposed
PDE based image deblurring method wherein they used diffusive image smoothing term and
a reactive image enhancement term to construct the nonlinear level set model. Devy et al.
[8] proposed a local blur kernel estimator based on two filters, i.e., Gabor and dictionary,
to study the pattern around each pixel. However, the number of filters is decided manually,
which limits the scope of this method. In [33], Su et al. have detected blur by examining the
singular value information for each image pixel, and subsequently, alpha channel is used to
classify the type of the blur. In [10], Golestaneh et al. have proposed a method to estimate
spatially varying blur from a single image by using a multi-scale transform decomposition
followed by fusion and sorting of high-frequency coefficients of gradient magnitudes. This
method detects both defocus andmotion blur without prior knowledge of blur type. Similarly,
one of the effective technique described by Javaran et al. in [13] also detect and segment blur
and nonblur region for both types of a blur - defocus blur and motion blur. In the case
of real images, the techniques discussed so far may not produce connected blur/non blur
regions. Recently, few deep learning-based methods have been explored. Kim et al. [20] used
a deep convolutional neural network for the detection of defocus and motion blur technique.
Subsequently, Ma et al. [25] have used a support vector machine (SVM) to classify image
patches in a blur and non-blur regions after training Deep Neural Network (DNN). Other
DNNbased researchworks can be found in [12, 38]. These techniques are capable of detecting
motion blur regions up to a certain accuracy. There is still a need for further improvement in
detecting the exact portion of blurred regions.blur In this paper, we propose a novel approach
to detect local blur in an image where blurred and non-blurred regions have similar colors.
In the existing literature, this issue has been addressed partially. In our approach, we applied
Radon transform and Laplacian of Gaussian on a local neighborhood around each pixel in the
image and observed that the values of these Radon transform give significant differences for
blurred and non-blurred pixels. We utilized this phenomenon along with the work proposed
in [18] to classify each pixel either in blurred or non-blurred pixels. The main contributions
of this paper are listed below:

– A novel local blur estimator is proposed based on the value of Radon transform (RT)
of LoG and local blur angle estimator (LBAE). Here, it is emphasized that a local blur
estimator is used for calculating blur information, while a local blur angle estimator is
used for finding a blur angle at each pixel in an image. The main framework of the
proposed method is shown in Fig. 2.

– Two new weight functions k1(z) and k2(z) have been suggested, which play a significant
role in deciding pixel-wise weightage of blur information derived from LBAE and the
value of RT of LoG, respectively.

– Few variants of the second weight function k2(z) are proposed, and their performance
analyzed.

The outline of this paper is as follows. In Section 1, we briefly discussed previous works
related to the detection and segmentation of partial blur. In Section 2, we have reviewed the
concepts of blur model, Radon transform, Laplacian of Gaussian, and local blur angle esti-
mator, which are used extensively in the proposed method. A novel local blur estimator along
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Fig. 2 Framework of the proposed technique

with two weight functions are proposed in Section 3. Section 4 describes the experimental
results of the proposed model and evaluation of the quantitative performance of the proposed
method with other existing methods. Conclusions are discussed in Section 5.

2 Background

In this section, we present the concepts of the blur model, Radon transform, Laplacian of
Gaussian, directional derivative and earlier works of local blur angle estimation technique.
In this section, we present the concepts of the blur model, Radon transform, Laplacian of
Gaussian, directional derivative, and earlier works of local blur angle estimation technique.

2.1 Blur model

Blur kernel of one directional motion blur model [6] is described as:

K L =
{

1
L ; if 2

√
x2 + y2 ≤ L

2 and y
x = tanθ,

0; otherwise,
(2)
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where, L is a blur length, θ is a blur angle, and (x, y) is pixel position. Many techniques
are used for estimating blur parameters. Primarily used estimation is mentioned in [21]. The
argument related to the maximum value of Radon transform (RT) gives blur angle, and the
motion blur length is estimated using the cepstrum of a blurred image which is the distance
between two significant negative peaks from the origin [21].

The original image can be restored using a convolution theorem, provided the blur kernel
is known. The linear motion blur model described in (2), will work in the case of a partial
blur, only if the object is uniformly moving in a linear direction. But, this model fails to
deblur an object without finding a proper blur region. Therefore, it is essential to detect the
blurred region for applying further post-processing techniques.

2.2 Operators: RT, loG, directional derivative

The Radon transform (RT) is used to measure the strength of a line in an image, the details
of RT are well discussed in [29] and is defined as:

R(I , ρ, θ) =
∫ ∞

−∞
I (ρcosθ − ysinθ, ρsinθ + ycosθ)dy, (3)

where R(I , ρ, θ) denotes Radon transform and it is an integral in an image I along the line at
an angle θ and at distance ρ from origin. Laplacian of Gaussian (LoG) is used for sharpening
the edges after suppressing the noise and it is defined as:

LoG = x2 + y2 − 2σ 2

σ 4 e
−(x2+y2)

2σ2 , (4)

where σ is a standard deviation, x and y are pixel locations. Directional derivative of an
image I at pixel location (a, b) in the direction of vector ν = (ν1, ν2) is defined as

∇ν I = ∇x I .ν1 + ∇y I .ν2, (5)

where ∇x and ∇y are derivative operators.

2.3 Local blur angle estimation

In this subsection, we have discussed the local blur angle estimation method in detail, which
is mentioned in [18]. Here, the authors have introduced a local blur angle estimator (LBAE)
to find pixel-wise blur angle throughout an image using LoG and RT, and it is defined as

θ̃ l = Argmax
θ

Var
{
∇y

[
R
(
LoG(∇uI)

)]}
, (6)

where θ̃ l denotes estimated blur angle for each pixel, l indicates local blur angle and
R(LoG(∇u)) is the composition of operators where R, LoG and ∇u are denoted as Radon
transform, Laplacian of Gaussian and directional derivative, respectively. All these operators
are applied sequentially on a small window that is selected around each pixel in an image.
Here, a directional derivative operator is used for sharpening the edges. To use a directional
derivative, the availability of prior information about the likely blur direction is essential.
The prior information of likely blur direction is helpful in increasing the accuracy of blur
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angle estimation. Blur angle estimators have been proposed for finding likely blur directions,
in [18], which are defined as follows:

θ̂
g
k = Arg max

θ �=θ̂
g
1 ,θ̂

g
2 ,...,θ̂

g
k−1

Var
{
∇y

[
R(∇I)

]}
, (7)

where θ̂
g
k , k = 1, 2, · · · , n’s are likely blur angle existing in an image related to n different

objects and g indicates for global blur angle. In the case of the non-availability of likely blur
directions, one can use a normal gradient operator.

Subsequently, the LoG is applied after applying directional derivative followed by RT.
The index of the maximum value of RT gives a blur angle. This estimator determines the
blur angle effectively from objects blurred by different blur parameters. However, it fails in
segregating blurred and non-blurred regions accurately, which can be seen from Fig. 9(b) for
the erroneous outcomes in the non-blurred region. In this paper, we have proposed a new
technique to overcome this problem.

3 Proposed technique

In this section, we have described a novel local blur estimator along with two weight func-
tions. The goal of this method is to detect blurred and non-blurred regions accurately and
efficiently. The proposed method primarily uses LoG and RT on a small window in two
different estimators. The proposed local blur estimator is defined as

B̃(z) = k1(z)θ̃ l(z) + k2(z)R̃max (z), (8)

where θ̃ l(z) is

θ̃ l(z) = Argmax
θ

Var
{
∇y

[
R
(
LoG(∇I(z)

)]}
. (9)

Here, θ̃ l is locally estimated for each pixel and other parameters in (9) are the same as in
(6). Note that the (9) and (6) are the same if likely blur directions in (6) are not considered,
and it is used for emphasizing blur region detection. In the second term, R̃max (z) is used to
emphasize non-blur region and is defined as

R̃max (z) = max
θ

Var
{
∇y

[
R
(
LoG(∇I(z)

)]}
. (10)

Here, R̃max (z) is the maximum value of R(LoG(∇)) in the neighbourhood of each pixel in
I (z), where R and LoG are defined in (3) & (4), respectively. In each window of an image,
RT calculates the strength of the lines at a particular angle. Therefore, the value of R̃max (z) is
higher at the blurred region points as compared to non-blurred region points. Experimentally,
it is observed that in the non-blurred region, the R̃max (z) is consistently lower, as also seen
from Fig. 3(b).

The weight functions are defined as

k1(z) = 1

1 + β(θ̃ l(z) − Mθ̃ )
2

and k2(z) = 1

1 + αdgel (z)
. (11)

Here, Mθ̃ is mode of θ̃ l(z) and dgel (z) is a maximum value of edge weighted geodesic
distance which is calculated locally from R̃max (z) & (12).
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Fig. 3 a) Test image: Horse b) Corresponding R̃max (z) calculated by taking 12×12 window size

The constants α and β are used for generating weight of the function k2(z) and k1(z),
respectively. In particular, the smaller value of these constants implies givingmore weightage
to the corresponding function. The values of these constants taken for various test images
are recorded in Table 3.

The first term in (8) provides more weightage to the blurred region of an image. The
weight function k1(z) is selected in such a way that it vanishes at the non-blurred region and
approaches to 1 at the blurred region as depicted in Fig. 4(b). Whereas the second term of (8)
provides more weightage to the non-blurred region of an image. The weight function k2(z)
is selected in such a way that it vanishes in blurred region and approaches to 1 in non-blurred
region, which is opposite of k1(z) and, can be seen in Fig. 4(c).

In each local window IB(z), geodesic distance is calculated for each pixel from a central
candidate pixel (x0, y0) by dgel (z) = 0 for z = (x0, y0) and dgel (z) = dB (z)

‖dB (z)‖L∞ for other

Fig. 4 (a) Test image: Horse-500×332 (b) The values of the function k1(z) along the green line inside the
rectangle (superimposed as yellow color) (c) The value of the function k2(z) along the green line inside the
rectangle (superimposed as yellow color)
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Fig. 5 (a) The average value of k
′
2(z) derived using local variance (b) Average value of k2(z) derived based

on geodesic distance function (c) Absolute difference between blurred and non-blurred region. Number of
samples: 1000 random pixels from each region. Test image shown in Fig. 4(a) has used for computation

pixels z in B, where dB(z) is determined by solving the following PDE:

| �dB(z) | = f (z), (12)

dB(z) = 0, z ∈ B.
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Here, f (z) = εg +βg | �Gσ ⊗ IB(z) |, where εg and βg are constant parameters and Gσ

is a Gaussian function with standard deviation σ to make the IB(z) free from noise and ⊗ is
a convolution operator. Here, f (z) is a distance function which calculate distance between
central pixel (i.e., z = (x0, y0)) and other pixels in the small window. This distance function
f (z) = εg + βg | �Gσ ⊗ IB(z) | is fulfilling the properties, where if f (z) is small then
we have flat region and if f (z) is large then we have edgy region. And keeping the values
of the constants εg = 10−3 and βg = 1000, we get small distance in the flat region because
| �Gσ ⊗ IB(z) |= 0 in the flat region, whereas | �Gσ ⊗ IB(z) | will be large in edgy region.
Other choices of k2(z) are

k
′
2(z) = 1

1 + α1Varl(z)
and k

′′
2(z) = 1

1 + α2H(z)
, (13)

where Varl(z) is local variance in R̃max for each pixel and H is the Heaviside function which
is defined as

H(z) =
{
0 ; R̃max (z) < ε for non-blurred region

1 ; R̃max (z) > ε for blurred region.

Here, ε > 0 needs to be chosen manually dependent on R̃max (z) value, which varies from
image to image. For instance, if the object is motion blurred with a small blur length, R̃max (z)
values of blur and non-blur region has narrow difference. In this way, choice of manual ε > 0
became significant and picked so that a large portion of the pixels from non-blur region have
R̃max (z) < ε. In view of investigations, we observed that the k2(z) is more reliable, however
k

′
2(z) has a superior computational proficiency. While k

′′
2(z) is more reliable and efficient if

the value of ε is picked appropriately. For automatic computation, one has to choose either
k2(z) or k

′
2(z). By comparing the mean values of k2(z) for blurred and non-blurred region as

shown in Fig. 5 (b), it is seen that the difference is more for k2(z) in blurred and non-blurred
region. By similar comparison for k

′
2(z), it is seen that k

′
2(z) produces a narrow gap for

blurred and non-blurred region which is shown in Fig. 5 (a). This is depicted in Fig. 5(c) in
terms of absolute differences in blurred and non-blurred region of k2(z) and k

′
2(z). Therefore,

we conclude that geodesic distance based function matches better to the desired function as
compared to local variance based function as seen in Fig. 5(c). Pseudo code of the proposed
method is presented in algorithm 1.

Algorithm 1 Pseudo code of the proposed technique.
1: Input: Blurred image I
2: Steps to calculate R̃max (z) and θ̃ l (z);
3: Consider small neighbourhood Is (z) around each pixel I (z)
4: Apply gradient operator ∇ on sub-image Is (z)
5: Apply LoG on resultant outcome
6: Determine R by Applying ’Radon transform’ after LoG
7: Apply vertical oriented directional gradient operator on R
8: Calculate θ̃ l (z) using (9) and R̃max (z) using (10)
9: Find k1(z) and k2(z), for each (i, j), using (11)
10: Find B̃(z) using (8)
11: Output: Segmented image
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Fig. 6 (a) Test image: Lena-512×512. (b), (d) & (f) Blur images with 10 ◦, 30 ◦ and 60 ◦ blur angle and
50 pixels blur length, respectively. (c),(e) & (g) Comparison of the average value of R̃max for various blur
lengths- 10, 20, 30, 40, and 50 pixels. Here note that BL means blur length
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Fig. 7 (a) Test image: Mandrill-512×512. (b), (d) & (f) Blur images with 10◦, 30◦ and 60◦ blur angle and
50 pixels blur length, respectively. (c), (e) & (g) Comparison of the average value of R̃max for various blur
lengths- 10, 20, 30, 40, and 50 pixels. Here note that BL means blur length
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4 Experimental results and discussion

In this section, we present the experimental results and evaluation of the performance of the
proposed method.

4.1 Estimators, dataset and parameter setting

This subsection describes implementation of the proposed estimators on test images. First, we
discuss the significance of the estimator R̃max (z) given in (10). To validate the effectiveness
of (10), we consider a test image of size 512×512 pixels; Lena and Mandrill which are
displayed in Figs. 6(a) and 7(a), respectively. To test R̃max in the blurred and non-blurred
images, we generated blurred images with different blur parameters. Here, we have used the
linear blur model mentioned in (2) with different blur parameters, i.e., blur lengths ranging
from 10, 20,...,and 50 pixels, for each of the blur length we applied three blur angles (10◦,
30◦, and 60◦). By picking various pairs of blur lengths and blur angles, we created blur
images. Subsequently, considered 100,000 sub-images for window size ranging 10 × 10
to 30 × 30 from random locations and R̃max is calculated for each sub-images. Moreover,
the average value of R̃max is compared between blurred and non-blurred images which are
displayed in Figs. 6 and 7. Here non-blur image is considered as original image. The wide
gap in R̃max values of blurred and non-blurred images is observed from both the test images
which are shown in Fig. 6(b-g) and Fig. 7(b-g). This phenomena are used effectively for
segmenting blurred and non-blurred region. Moreover, it is seen that R̃max of blurred image
is always greater than of non-blurred image for a given window size, which can be seen
from Figs. 6(b-g) and 7(b-g). The optimal window size should be above 10 pixels according
to [18]. Therefore, we have chosen 10×10 to 16×16 pixels, window size for computation.
For clarity, the comparison of R̃max values from blur and nonblur images are calculated for
two test images - Lena and Mandrill, which is shown in Figs. 6(c),(e) & (g) and 7(c),(e) &
(g) for blur angles 10◦, 30◦ & 60◦, respectively. The function R̃max is segregating blurred
and non blurred region effectively and therefore using the value of R̃max , we constructed
local blur estimator. Next, we discuss θ̃ l(z) and the proposed estimator B̃(z) along with two
weight functions k1(z) and k2(z). From Fig. 9(b), it is observed that θ̃ l(z) produces uniform
blur information in blurred region, whereas in a non-blurred region it gives nonuniform

Fig. 8 : Jaccard Similarity (JS) index for k2(z) for various window size
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Fig. 9 (a) Input image: Horse-533×355; (b) Ground truth, (c) Blur information from [18], (d) Segmented
object [18], (e-f) Blur information and segmented object using method from [10], (g-h) Blur information and
segmented object using method from[32], (i-j) Blur information and segmented object using proposed method
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Fig. 10 (a) Input image: Bike-533×355; (b) Ground truth, (c) Blur information and using method from [18] ,
(d) Segmented object from [18], (e-f) Blur information and segmented object using method in [10], (g-h) Blur
information and segmented object using method in [32], (i-j) Blur information and segmented object using
proposed method
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Fig. 11 (a) Input image: Rickshaw-640×450; (b) Ground truth, (c) Blur information and using method from
[18], (d) Segmented object [18], (e-f) Blur information and segmented object using method in [10], resp. (g-h)
Blur information and segmented object using [32] method, resp. (i-j) Blur information and segmented object
using proposed method, resp
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Fig. 12 Accuracy measures

blur information. The same can be observed in other test image displayed in Fig. 10(b).
To overcome this problem, we used a new blur estimator B̃(z) as mentioned in (8). This
is tested on both grayscale and colour images taken from datasets of [32], http://www.cse.
cuhk.edu.hk/~leojia/projects/dblurdetect/dataset. From Fig. 9(e), it is seen that the new blur
estimator in the proposed method produces uniform output in the non-blurred regions, unlike
the method proposed in [18]. The final segmentation result of proposed method is compared
with [10, 18, 32] along with ground truth results which is seen in Fig. 9(f-j). By subjective
observation, it can be seen that the outcomes from the proposed method is better than other
existing methods. Subsequently, quantitative analysis has been done by computing various
performance measures after segmentation. For segmentation, we have used Ostu’s method.
The results are discussed in Section 4.2.

Further, we have analysed weight functions k2(z) and k
′
2(z) for different scenarios. Here,

we observed that the geodesic distance based function is better in comparison to local variance
based function. Fig. 8(a) & (b) shows Jaccard’s similarity index for k2(z) and k

′
2(z) derived

over different window sizes ranging from 4×4 to 30×30 pixels. Here, we observed that any
window size in the range greater than 4×4 for the function k2(z) produces a desirable result
for the test image shown in Fig .9(a). Whereas for second test image shown in Fig. 10, the
window size greater than 10×10 produces a better result. This is due to the low contrast in
the image. The third weight function k

′′
2(z) mentioned in (13) is fully dependent on ε which

can differ from image to image as mentioned previously.
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Fig. 13 (a) Input image: Boy-640×426;(b) Ground truth, (c) Blur information and using method from [18],
(d) Segmented object [18], (e-f) Blur information and segmented object using method in [10], resp. (g-h) Blur
information and segmented object using [32] method, resp. (i-j) Blur information and segmented object using
proposed method, resp
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Table 1 Average of all accuracy measures

Methods Horse (Fig. 9) Bike (Fig. 10) Rickshaw (Fig. 11) Skater boy (Fig. 13)

M1 [32] 0.4722 0.5145 0.5772 0.4604

M2 [10] 0.7692 0.8323 0.7932 0.4222

M3 [18] 0.5737 0.5672 0.4966 0.3555

Proposed 0.8224 0.8296 0.7935 0.6670

4.2 Quantitative performance

Toassess the quantitative performance of ourmethod,we compare our approachwithM1,M2,
and M3 methods described in [10, 18, 32], respectively. Here, M1 means method from [32],
M2 means method from [10] and M3 means method from [18]. We determined various per-
formancemeasures like; Dice index, Jaccard index, Accuracy, Sensitivity (Recall), Precision,
Matthews Correlation Coefficient (MCC), and Specificity for three test images to find the
similarity between the segmented image and the ground truth mask provided with the dataset.
We have used a confusion matrix comprised of four values true positive (TP), true negative
(TN), false positive (FP) and false-negative (FN), to determine thesemeasures, and calculated
as follows:

Dice = 2TP

(2TP + FP + FN)
, Jaccard = TP

(TP + FP + FN)
,

Accuracy = TP + TN

(TP + TN + FP + FN)
,

Sensitivity = TP

(TP + FN)
,Precision = TP

(TP + FP)
, Specificity = TN

(TN + FP)
and

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

The values of these measures are closer to 1 indicates superior performance. The calculated
values for three images are shown in Fig. 12. For the test image shown in Fig. 9, 5 out
of 7 measures-accuracy, Jaccard, MCC, Dice, and sensitivity, are highest for the proposed
method among all methods, which can be seen from Fig. 12(a). Values of other measures for
the proposed method are also better. Though the M3 method gives the highest precision and
specificity. For the test image shown in Fig. 10, 4 out of 7 measures- accuracy, precision,
Jaccard, and Dice are highest for the proposed method, which can be seen from Fig. 12(b).

Table 2 Computation time (in seconds)

Methods Horse (Fig. 9) Bike (Fig. 10) Rickshaw (Fig. 11) Skater boy (Fig. 13)

M1 [32] 198 241 365 456

M2 [10] 100 113 181 275

M3 [18] 390 400 710 1085

Proposed 420 512 823 1095
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Table 3 The value of parameters for proposed method

Methods Horse (Fig. 9) Bike (Fig. 10) Rickshaw (Fig. 11) Skater boy (Fig. 13)

α 1 50 10 0 .1

β 100 100 100 100

εg 0.001 0.001 0.001 0.001

βg 1000 1000 1000 1000

M2 techniques are likewise delivering the most noteworthy estimations of MCC. At the same
time, theM1method produces the highest sensitivity, andM3produces the highest specificity.
For the test image shown in Fig. 11, 3 out of 7 measures- accuracy, Jaccard, and MCC are
highest for the proposedmethod,which can be seen fromFig. 12(a).WhereasDice are highest
in the M2 method, and sensitivity is highest from the M1 method. In contrast, precision and
specificity aremaximum in theM3method. From the test image displayed in Fig. 13, 5 out of 7
measures- accuracy, Dice, Jaccard, MCC, and precision are highest for the proposed method,
which can be seen from Fig. 12(d). Overall, the proposed method gives 80% (in 17 out of 21)
highest values across all measures in all test images. Averages performance of segmentation
measures for all test images is presented in Table 1 shows the superior performance of the
proposed method. The computational expense for all test images is recorded in Tables 2,
and 3 and the proposed method takes extra computational time compared to other existing
methods. The extra computational expense of the proposed method is because of LBAE,
which is a time-consuming operation. Moreover, geodesic distance-based weight function
k2(z) is also time taking operation. To reduce time complexity, other weight functions can
be used, but it will deteriorate blur/nonblur segmentation accuracy. However, clearly visible
that the performance of the proposed method is superior to other existing methods in terms
of segmentation accuracy. We have used MATLAB software to implement the algorithm on
a 2.0 GHz processor with 4GB RAM.

5 Conclusion

In this paper, a novel method to detect a partial blur region is proposedwhich facilitates object
restoration, information retrieval, blur increment, etc., by segmenting blurred / non-blurred
regions. In the proposed method, we have developed a new estimator with the help of the
Radon transform and Laplacian of Gaussian operators. This estimator comprises of LBAE
and R̃max (see, (10)) along with two new weight functions (see, (11)). The experimental
results carried out in this paper conclude the following: (i) As compared to other existing
methods, the method proposed here is effective in detection & segmentation of the blurred
region. (ii) Also, using various accuracy measures, the method proposed is better matched
quantitatively to the ground truth result. (iii) The two-weight functions play an essential role
in deciding the proportionality of index and maximum value of Radon transform. (iv) The
proposed method is helpful in segregating blurred and non-blurred regions effectively, which
further can be used as input for deblurring techniques. (v) It is more time-consuming than
other existing methods, and we will attempt to find approaches to reduce the computational
expense in the future.
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