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Abstract
Image-based hand gesture recognition is a very challenging problem as the hand is a 
smaller object with complex articulations compared to the entire human body. It occu-
pies a little portion in the image and is more easily affected by segmentation errors, and 
hence needs delicate description. This paper suggests a new weighted multi-scale feature 
descriptor (WMD) along the contour of the hand for robust hand gesture recognition using 
depth images. Firstly, the weight factor is estimated for each contour point by 2D Gauss-
ian smoothing function and Prewitt operator to relate it with its neighbors and highlight 
its importance. Then the WMD descriptor is constructed via 1D left-side and right-side 
Gaussian smoothing considering the contour points are more sensitive than those inner 
points of the hand and depend on each other when used to recognize the gestures. Granu-
larity of the descriptor is characterized by multiple scales with different standard deviations 
of the Gaussian function. And its invariants to translation, rotation and scaling transforma-
tions are proved theoretically and validated experimentally. Finally, extensive experiments 
on our self-established ten-gesture dataset and two public datasets have been carried out 
by comparing the proposed algorithm with three distance-based and two CNN-based hand 
gesture recognition methods. The encouraging results demonstrate that our method outper-
forms the others and achieves a good combination of accuracy (more than 95%) and com-
putational efficiency (averaging 0.054s per frame).

Keywords Gaussian smoothing · Prewitt operator · WMD descriptor · Hand gesture recognition

1 Introduction

Human behavior analysis has attracted more and more interests in the field of artifi-
cial intelligence and machine learning in recent years. Generally, it can be classified 
into several categories including hand gesture recognition, human action analysis and 
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facial expression analysis. As an active research topic, the hand gesture recognition 
aims to identify the most perceptually similar hand gesture from its predefined hand 
gesture dataset. It has found many practical applications, such as augmentation real-
ity, human computer interaction, automatic surveillance and some quietness-required 
environments [1–3], etc. One typical application is to use the recognized gesture as an 
efficient way to retrieve further information regarding the hand gesture. Each gesture 
in the dataset can have additional features such as its skeleton information and 3D 
shape, which can be associated with the query hand gesture and retrieved in real-time. 
This process eliminates the requirement of calculating those details from scratch and 
relaxes large amount of computational resources, especially in case of mobile phones.

Motivated by the widely possible application areas, many efforts have been devoted 
to the advances of hand gesture recognition. The reported work can be classified into 
different categories from different perspectives. According to the involved sensors, 
there are 2D RGB camera-based, wearable device-based and depth-sensor-based algo-
rithms. As the RGB camera provides three basic color components of the video, the 
algorithms in the first category are typically affected by external environments such 
as illumination, skin color and cluttered background [4]. To overcome the problem 
of possible skin-like objects and avoid sensitivity to lighting conditions, Dardas et al. 
[5] described a module of skin detection and contour comparison algorithm for hand 
detection. The major limitations of this type of algorithms are the absence of 3D struc-
ture information and sensitive to color variations of human clothing or background, 
which obviously decreases their robustness and accuracy during ROI detection and 
segmentation. In the second category, the wearable devices such as accelerometers, 
magnetic trackers and data gloves, are involved in obtaining three-dimensional move-
ment information at the granularity of the fingers for gesture recognition. For exam-
ple, the dataset of the hand movements were captured by two DG5-VHand data gloves 
while data labeling was implemented with a camera to synchronize hand motion with 
their corresponding sign language words in [6]. And a comprehensive review work was 
provided in [7] where a variety of wearable sensing modalities for activity classifica-
tion were investigated. In general, the merits in these strategies are low-complexity of 
data preprocessing and feature extraction while the demerits lie in that they are only 
suitable for handling some simple gestures. When the gesture becomes a bit complex, 
its recognition accuracy will be obviously reduced. What’s more, the invisibility of the 
interface for the users is impeded which brings lots of inconvenience and cumbersome 
as lots of cables may be involved in some cases.

In the last category, an inexpensive depth camera e.g. the Kinect sensor or Intel 
RealSense, is usually used to collect visual information for the input of the algorithms 
for human activity recognition. Compared with RGB image, independent objects with 
depth data could be detected and segmented easily, and their shape structure could be 
estimated ignoring disturbance of complex background on the platform of Kinect sen-
sor. Instead of wearing data gloves or any other auxiliary equipment, this type of algo-
rithm enables a natural and uninvaded fashion of interaction during working. In this 
sense, the third category possesses the advantages of the other two. Therefore, more 
and more researches pay attention to this platform in recent years and the authors can 
be referred to [8–10] for a comprehensive review work. Based on the above analysis, 
this paper will employ the Kinect sensor to capture depth data as input for the sug-
gested hand gesture recognition system.
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2  Related work

Practical applications of Human behavior analysis have to meet some requirements includ-
ing real-time performance, high recognition accuracy and robustness, etc. In the literature, 
researchers try to reach acceptable balance among those issues. Depending on different 
kinds of input data, the reported algorithms can be divided into skeleton-based algorithms 
and depth-based algorithms. The former uses 3D coordinates of the joints to represent 
the model of human full body and is suitable for human activity recognition. In Thanh 
and Chen [11], the discriminative pattern of skeleton data was extracted as local features 
and the key frames were constructed based on skeleton histogram to classify skeleton 
sequences in human action recognition. To improve the stability and recognition accuracy, 
the spatial-temporal descriptions from Kinect skeleton data are employed, e.g. the angular 
representation [12] and skeletal shape trajectories [13]. It is known that the skeleton infor-
mation carries highly concise details and is more suitable for human body tracking. For 
a small object, such as a human hand which occupies a very small portion of the image 
with complex articulations, it is difficult to detect and segment as pointed out in [14]. In 
practice, this type of work also suffers from contour distortions since little noise or slight 
variations in the contour would severely perturb the topology of its skeletal representation. 
In this sense, the depth-based algorithms with more detailed depth information manifest 
its advantages in many situations. As human activity recognition depends on whole body 
parts, the hand gesture recognition is more computationally efficient with only data around 
the hand need to be handled.

According to the involved classifier, the reported algorithms mainly include distance-
based algorithm, probability-based algorithm and CNN-based algorithm. The distance-
based algorithm is early employed for human behavior analysis and dynamic time warping 
is the most used technique [15]. Another approach is to use SVM and multiclass SVM 
as shown in [16]. The probability-based algorithm is a statistical model and the classifier 
of HMM with Markov assumption is often used as in [17, 18]. However, it is difficult to 
define proper hidden and observing states for those gestures as they are formed by a com-
plex intersection of different features or joints. Lastly, CNN-based algorithm essentially is 
a machine learning technique such as convolutional neural network and Recurrent Neural 
Network [19–22]. The advantage of the machine learning technique lies in that it is able to 
extract hierarchical features automatically via convolution and pooling operation to hold 
more abstract knowledge. This avoids the process of delicate feature engineering. The dis-
advantage is that the extracted features lack of specific physical meaning, so it is difficult to 
visualize and analyze their characteristics. During training the deep network, carefully tun-
ing the hyper-parameters is needed as well as the decision of number of hidden layers, the 
right number of neurons to use in the hidden layers, and strategy for preventing overfitting. 
In addition, the computational complexity is high which limits its real-life applications. For 
small human action recognition datasets, the machine learning methods may not provide 
satisfactory performance.

It is known that the semantic meaning of a hand gesture is delivered by its movement 
or shape. Different hand gestures are mainly differentiated by relative postures of the hand 
and fingers as well as their contour shapes. Ren et al. in [23] estimated the contour as time 
series curve to characterize the Euclidean distances between the hand contour and the palm 
center, where the key issue is to choose a starting and ending point of the curve. Since then, 
various physical features for the gesturing hand have been suggested ( [24–27] to site a few), 
among which He et al. [26] proposed an improved local sparse representation algorithm and 
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Wang [27] constructed the features for gesture recognition with peak values as well as valley 
values from the trend of slope difference distribution of the contour points. As showed by 
Wang, the stability and accuracy for calculating the peak and valley values depend heavily 
on the quality of the contour since the first and second derivative operation are involved.

The feature engineering is a key step towards human behavior analysis and different 
kinds of features have been reported including physical features and statistical features. 
Kim et al. [28] proposed an adaptive local binary pattern from depth images for hand track-
ing. In [29], the finger-lets, stroke-lets or other characteristics were extracted from its depth 
information. Calado et  al. [30] suggested a geometric model-based approach to gesture 
recognition which supports the visualization and physical interpretation of the recognition 
process. As a statistical tool, the 3D histograms of textures from a sequence of depth maps 
were computed for gesturing hand descriptor in Zhang and Yang et al. [31]. In their work, 
the depth sequences were first projected onto three orthogonal Cartesian plane to form 
three projected maps, then the sign-based, magnitude-based and center-based descriptor 
salient information were extracted respectively. Similarly in Reza et al. [32], the weighted 
depth motion map was proposed to extract the spatiotemporal information by an accumu-
lated weighted absolute difference of consecutive frames and the histogram of gradient and 
local binary pattern were exploited for the feature descriptor.

Imported from SIFT in computer vision which helps in reliable matching between dif-
ferent views of the same object, the concept of multi-scale features for gesturing hand is 
employed recently [33–36]. Huang and Yang in [34] suggested a multi-scale descriptor 
considering the area of major zone, length of major segment and central distance within 
different sizes of circles along the contour points. In their method, it is important to choose 
a proper scaling number and a starting point to align all points on the shape contour. The 
redundancy exists severely between different scales of features as the group of circles over-
lap with each other. Instead of employing multiple circles, the Euclidean distance between 
the centroid of the shape and the furthest point on the contour of the shape was used as 
the radius of the minimum circumscribed circle and then the circle region was partitioned 
into several bins using concentric circles and equal angle intervals in Lazarou et al. [35]. 
Another kind of feature descriptor is proposed in Sahana et al. [36] which calculated the 
number of peaks for each circular signature considering the ROI centroid as the center 
of those multi-radii circles. Obviously, this type of feature is sensitive to viewpoints of 
the sensor as the estimated area of the hand region as well as length value vary abruptly 
for some viewpoints and the computational complexity is considerably high which will 
weaken the performance of subsequent hand gesture classifier.

In this work, we will aim at a comprehensive, robust and discriminative feature for hand 
gesture recognition. Here a new weighted multi-scale feature descriptor (WMD) is sug-
gested considering both 2D neighborhood and 1D contour curve within the depth image. 
With the segmented hand ROI region, the weight factor is estimated for each contour point 
by 2D Gaussian smoothing function and Prewitt operator to relate it with its neighbors 
and highlight its importance. Then the feature descriptor is constructed via 1D Gaussian 
smoothing considering the contour points in the hand should not be independent from 
each other when used to recognize the gestures. Granularity of the descriptor is character-
ized by multiple scales with different standard deviations of the Gaussian function. And 
its invariants to translation, rotation and scaling transformations are proved theoretically 
and validated experimentally. Compared with those descriptors reported in the literature, 
the WMD descriptor is a contour-emphasized descriptor. Extensively experiments on our 
ten-gesture dataset and two public dataset have been carried out comparing the proposed 
algorithm with three feature-based and two CNN-based hand gesture recognition methods. 



43329Multimedia Tools and Applications (2024) 83:43325–43347 

1 3

The results show that our method outperforms the other methods and provides a good com-
bination of accuracy and computational efficiency for real-time applications.

The remainder paper is structured as follows. The framework for the hand gesture recog-
nition is introduced in Section 3. Section 4 elaborates the WMD descriptor and its invari-
ants. Section 5 presents some experimental results and analysis for both the WMD descrip-
tor and the recognition framework. Finally, this work is concluded briefly in Section 6.

3  System framework

The system framework for the hand gesture recognition system on the whole can be separated 
into three components: image preprocessing, feature extraction and pattern recognition. The 
Kinect sensor is employed to capture depth images as input for the system, which visualizes 
depth information from the sensor to the concerned gesturing hand. For each depth image, 
the ROI of gesturing hand and its contour points are supposed to have been segmented and 
extracted by the solution suggested in Dominio et  al. [37]. Then the weighted multi-scale 
feature descriptor is constructed with the weights of contour points and ratios of Gaussian 
smoothing along the contour points. To test the performance of the WMD descriptor, the 
classification modules with Hausdorff Distance, Dynamic Timing Warping (DTW) distance 
and SVM model are respectively trained and employed to recognize hand gestures with the 
descriptor as input data. The framework of the proposed system is briefly shown in Fig. 1.

4  Construction of WMD descriptors

4.1  Gaussian scale space

The scale-space theory has been established as a well-founded and promising multiresolu-
tion technique in image structure analysis for 2D, 3D and time series. The basic idea is to 
embed the original signal into a one-parameter family of gradually smoothed signals, in 
which the fine scale details are successively suppressed with increasing scales, just as what 
the SIFT algorithm does. The multiresolution technique agrees with what human’s eyes 
do when identifying an object from far away to near. Therefore, constructing a multi-scale 
descriptor for the recognition of the object is an important tool for global and local feature 
extraction in the field of computer vision.

Fig. 1  Framework of the hand gesture recognition system
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In this work, a multi-scale descriptor is constructed for the depth image of the gestur-
ing hand via Gaussian smoothing operation with different standard deviations since it is 
a scale-invariant kernel function. The original depth image has the most detailed infor-
mation and its features will be anti-pyramidally encoded less and less with the increase 
of standard deviations to simulate large-scale global characteristics. In other words, the 
coarse feature is extracted when large standard deviation is used as the curve of the Gauss-
ian function becomes smooth and fine feature is obtained corresponding to a small devia-
tion. Considering different types of hand gestures exhibit different poses and they may exist 
some degree of similarity, the range of standard deviation is set as σ ∈ (0, 0.5] and n scales 
as σ1 = 2−1, σ2 = 2−2,⋯ , σn = 2−n.

4.2  Weights of contour points

It is known that the extracted contour points play an important role in hand gesture recog-
nition and their discriminant information can be checked by considering their neighbors. 
The nearer the neighbors are, the higher influences they have. This phenomenon can be 
pictured by difference of Gaussian smoothing with the contour point as its center. Next, 
we will analyze the information of a contour point in two-dimensional space and assign its 
weight via sigmoid function.

Assuming the sequence of contour points makes up a closed curve, and it can be param-
eterized in complex domain as

where i =
√
−1 and t ∈ [0, 1) is its normalized index.

According to the definition of Prewitt operator, two m ×m masks denoted by Px(m) and 
Py(m) , can be generated along x-axis and y-axis whose elements at r-th row and c-th col-
umn be formulated as

Let G�(m) be a m ×m matrix generated by 2D Gaussian function with α standard devia-
tion. Then two kernel templates can be respectively defined as

and

where ∗ represents the convolution operation.
Given an arbitrary contour point s(t) , from the depth image, it is easy to construct the 

s(t)-centered block with size m ×m . Let it be B(x, y) . We have

(1)s(t) = x(t) + i ⋅ y(t)

(2)Px,r,c(m) =

⎧
⎪⎨⎪⎩

1c < m∕2

0c = m∕2

−1c > m∕2

and Py,r,c(m) =

⎧
⎪⎨⎪⎩

1r < m∕2

0r = m∕2

−1r > m∕2

(3)Kx(m) = G�(m) ∗ Px(m)

(4)Ky(m) = G�(m) ∗ Py(m)

(5)dx = Kx(m) ∗ B(x, y)
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and

In Eqs. (5) and (6), the Gaussian function acts as a weighted smoothing operation and 
the Prewitt operator as a derivative operation with the value of m is set as 3 in this work. 
Therefore, dx and dy carry the information of the contour point along x-axis and y-axis. We 
can define its weight factor via sigmoid function as

where A =
√

d2
x
+ d2

y
 is the amplitude value. In general, the larger the difference of the 

contour point and its neighbors, the more information it provides and hence the heavier its 
weight factor is. Equation (7) agrees with this observation.

4.3  Invariant of ratio gaussian smooth function

This section talks about Gaussian smoothing operation along the curve of contour points in 
one-dimensional Gaussian space and shows its invariant to affine transformation.

For an arbitrary contour point s(t) , its left-side and right-side neighbors with w as the 
window size can be represented by

and

Taking s(t) as the starting point, its left and right sequences of vectors can be constructed 
with those points in SL and SR as the ending points, i.e. s(t + l) − s(t) . The sequences of 
vectors would illustrate the shape variation along the contour of the gesturing hand. It is 
obviously different for different hand gestures or different contour point. Compactly, their 
intersection angles can be used to depict the shapes of hand gestures in a geometric mean-
ing. We will next construct a robust feature descriptor with these vectors.

Let g�(w) be one-dimensional w-length vector generated by Gaussian function with 
standard deviation � . We obtain

where �L(t, �) and �R(t, �) respectively represent the left and right Gaussian-weighted mean 
vectors at the contour point s(t) under Gaussian function with standard deviation �.

With the consecutive value of t , the above two equations smooth the left and right in 
the sliding windows by Gaussian function. This operation agrees with the fact that different 
neighbors have different effects on the results and suppresses Gaussian noise in the data at the 
same time. From Eq. (1), they are expressed in the complex space consisting of real part and 

(6)dy = Ky(m) ∗ B(x, y)

(7)W(t) =
1

1 + e−A

(8)SL = {s(t + l)| − w ≤ l < 0}

(9)SR = {s(t + l)|0 < l ≤ w}

(10)𝛿L(t, 𝜎) =
∑

−w≤l<0
g𝜎(l)(s(t + l) − s(t))

(11)𝛿R(t, 𝜎) =
∑

0<l≤w
g𝜎(l)(s(t + l) − s(t))
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imaginary part. The real part of normalized �L(t, �) carries its amplitude and so does �R(t, �) . 
From Eqs. (10) and (11), their ratio is defined as

Property 1  The equation in (12) is invariant to scaling, translation and rotation 
transformation.

Proof Let, T, and R respectively denote the scaling, translation and rotation transformation. 
Without loss of generality, let and. Let be the transformed version of. Next, we will show 
that the value of Eq. (12) is equal to each other before and after the above transformation.

From (10), we have

Similarly,

Then we have

Therefore, we reach the conclusion that the equation in (12) is invariant to scaling, transla-
tion and rotation transformation.

4.4  Weighted multi‑scale descriptor

In Eq. (12), the amplitude of z(t, σ) is equal to the intersection angle between δL(t, σ) and 
δR(t, σ) , which can be calculated by inverse cosine function of its real part as what follows

Equation (13) compactly visualizes the geometric relationship between the left and right 
sequences of vectors ats(t) . With consecutive values of t , it reveals the evolution of the shapes 
and curvatures along the contour points corresponding with different scales. Therefore, it can 
be used as a description for the gesturing hand. To limit the ranges, the cosine value of θ(t, �) 
is employed for constructing the descriptor. Considering the weight for each contour point 
given in Section 4.2, we can define

(12)z(t, �) =
�L(t, �)

�R(t, �)

𝛿�
L
(t, 𝜎) =

∑
−w≤l<0

g𝜎(l)
(
s�(t + l) − s�(t)

)

=
∑

−w≤l<0
g𝜎(l)(𝜆(Rs(t + l) + T) − 𝜆(Rs(t) + T))

= 𝜆R
∑

−w≤l<0
g𝜎(l)(s(t + l) − s(t)) = 𝜆R𝛿L(t, 𝜎)

𝛿�
R
(t, 𝜎) =

∑
0<l≤w

g𝜎(l)(s
�(t + l) − s�(t))

= 𝜆R𝛿R(t, 𝜎)

z�(t, �) =
��
L
(t, �)

��
R
(t, �)

=
�R�L(t, �)

�R�R(t, �)
=

�L(t, �)

�R(t, �)
= z(t, �)

(13)θ(t, �) = acos(real(z(t, �)))

(14)f (t) = W(t) ∗
[
real

(
z
(
t, �j

))]
j = 1,2,⋯ , n
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where f (t) collects the weighted feature values in the scale space. Finally, for all the con-
tour points, we have

Equation (15) gives the weighted multi-scale descriptor (WMD) for a gesturing hand. 
For a hand depth image with contour points of number N, the dimension of its stacked 
descriptor is N ∗ n . From the Property 1 given in subsection 4.3, it is invariant to scaling, 
translation and rotation transformation while encodes all information for the contour points 
extracted together with their 1D and 2D neighbors.

4.5  Algorithm for hand gesture recognition

The major parts in the algorithm of hand gesture recognition consist of the estimation 
of weights of contour points and then construction of the weighted multi-scale descrip-
tor. To test the performance of the descriptor, three tools of similarity measurements, i.e. 
dynamic time warping (DTW), Support Vector Machine (SVM) and Hausdorff distance, 
are involved and compared as the recognition engine. Summarily, the suggested algorithm 
is shown in algorithm 1 where the functions of GetWeight and GetWMDescriptor respec-
tively represent the procedure of estimating the weights and weighted multi-scale descrip-
tors given in subsection 4.2 and subsection 4.4.

5  Experiments and analysis

In this section, we validate the performance of the proposed WMD descriptor and hand 
gesture recognition system in three aspects: (1) demonstrating the robustness of our 
descriptor to affine transformations; (2) showing the influences of different scales and dif-
ferent number of contour points on the descriptors; (3) testing the accuracy of hand gesture 
recognition with the descriptor and compared with state-of-the-art methods under three 
different datasets.

(15)F =
[
f (t)

]
0 ≤ t < 1

Algorithm 1  Hand gesture recognition procedure
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5.1  Experimental datasets

Self‑established dataset Fig. 2 shows the 10 kinds of hand gestures to be recognized 
in this work, respectively represent the ten digital numbers ranging from zero to nine, 
from left to right and up to down. Ten students were invited to perform these gestures 
before the Kinect sensor to collect their depth images. To promote the variety and rep-
resentative of those samples, the students stood at about three different positions, say 
80 cm, 120 and 150 cm considering the effective range of the sensor. Their hands were 
suggested to be placed in the front of their body for the ease of visualization of the sen-
sor and hand region segmentation. Each kind of hand gestures was repeated 20 times by 
one person. In this way, the experimental dataset contained a total of 2000 samples for 
both training and testing. It should be noted that the last row in Fig. 2 gives their seg-
mented hand region.

NTU dataset For comparison, we use the challenging public NTU hand gesture data-
set where the hand gestures are collected by Kinect sensors. This dataset was col-
lected from 10 subjects and includes 10 gesture classes. Each subject performed the 
same gesture in 10 different poses, thus the dataset had 10(people) × 10(gestures) × 
10(poses) = 1000 samples. This is a very challenging real-life dataset with cluttered 
backgrounds. Moreover, the samples of the same gesture class had variations in hand 
orientation, scale, articulation, etc. The 10 kinds of hand gestures with corresponding 
shape samples are shown in Fig. 3.

Senz3D dataset The Creative Senz3D dataset is performed by four different people and 
each with 11 different gestures repeated 30 times. A group of samples for those gestures 
defined from G1 to G11 are given in Fig.  4. In total, it contains 1320 gesture samples. 
For each sample, color, depth, and confidence frames are available with the resolutions of 
640 × 480, 320 × 240 (short 16 bit) and 320 × 240 (short 16 bit) respectively.

Fig. 2  One group of depth images for ten types of gestures with extracted Hand Regions given in the last row
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5.2  Alignment of starting point

A stable starting point chosen from the sequence of contour points is crucial for the perfor-
mance of the WMD descriptor since the classifier needs an aligned version. In general, the 
farthest point to the centroid of the hand ROI is used as the starting point. But it is sensitive 
to the rotation transformation of the ROI. There are some researchers employ auxiliary 
equipment, e.g. wearing a black belt on the wrist, to provide landmark information. In this 
work, we take a natural and uninvaded way for determining the starting point. Firstly, the 
major orientation of ROI is estimated as

where �11 , �20 and �02 denote the 2nd order central moments. Then the starting point can 
be defined as the intersection point of the orientation line with the contour points. Figure 5 
showed the estimated orientation denoted by the red arrowed lines. To show their invari-
ance to rotation transformation, the orientations were re-estimated with the rotated hand 
images. The original images together with 10-degree, 20-degree and 30-degree versions 
were presented from left to right in Fig. 5. It can be seen that the estimation of orientations 
is considerably stable and the intersection points are located at the same positions.

5.3  Invariances of WMD descriptor

 A well-behaved shape descriptor should have the tolerance of rotation, translation, 
scaling, noise and small degrees of deformation of the shape. It is known that the 

(16)�o =
1

2
atan

(
2�11

�20 − �02

)

Fig. 3  Samples from the public NTU hand gesture dataset

Fig. 4  Samples from the public Senz3D dataset
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translation transformation has no influence on the pose and relative positions of the 
gesturing hand as well as those contour points since it is just a pure shift of differ-
ent regions in the depth images. The corresponding descriptors are obviously invariant 
to translation transformation. Therefore, this experiment is carried out to validate the 
invariant of rotation and scaling transformation. For clear demonstration, Fig.  6 gave 
the weighted multi-scale descriptors in three different standard deviations of Gaussian 
smoothing under four scaling-transformations (including the original one), where the 
first column represented the same hand gesture in different transformations and the sec-
ond column illustrated their WMD descriptors. In these figures, the lines in red, green 
and blue were from the cases of n=-6, n=-5 and n=-3. Although the gesturing hand was 
heavily zoomed, strong similarities were observed among the corresponding plots in 
each column, which verified the robustness and invariants of the suggested descriptor. 

Fig. 5  Major orientation estimated (denoted by Red arrowed lines) with hand ROI for the original and 
rotated images

Fig. 6  WMD descriptors) under scaling transformations (The lines in different colors are from different 
standard deviation of Gaussian functions)
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The lines from the first two scales (in red and green) were close to each other, and the 
third one ( in blue) was a bit more distorted since it came from a larger standard devia-
tion for Gaussian smoothing operation with less difference of weights in the neighbors. 
The quantitative evaluation was implemented as well and the KL-divergence values 
calculated between the transformed version and the original one were summarized in 
Table  1. From this table, we can find that the values of KL-divergence between the 
corresponding plots of are all very small numbers which quantitatively verifies that the 
descriptor is invariant to this transformation.

 As to the rotation transformation, four different rotation angles, i.e. ± 15 and ± 30 degrees , 
were respectively applied to the original image as shown in the first column of Fig. 7, where 
the WMD descriptor was extracted for each image and illustrated in the second column. It 
can be seen that there exist high correlations among these figures. Similarly, the quantitative 
evaluation was implemented as well and the KL-divergence values summarized in Table 2. It 
is observed that the KL-divergence between the corresponding plots falls in a very small range 
which quantitatively verifies that the descriptors are invariant to these rotation transformations.

Table 1  KL-divergence for the scaling transformations

Scales Resize 50% Resize 75% Resize 150% Resize 200%

Scale n=-6( Red) 0.0834 0.0571 0.0926 0.1047
Scale n=-5(Green) 0.0902 0.1004 0.0639 0.0836
Scale n=-3(Blue) 0.0963 0.1108 0.0858 0.0772

Fig. 7  WMD descriptors under rotation transformations (The lines in different colors are from different 
standard deviation of Gaussian functions)

Table 2  KL-divergence for the rotation transformations

Scales Rotation  15o Rotation  30o Rotation −  15o Rotation −  30o

Scale n=-6( Red) 0.1014 0.0462 0.0876 0.0981
Scale n=-5(Green) 0.1242 0.0819 0.0750 0.1004
Scale n=-3(Blue) 0.0754 0.0971 0.0864 0.1358
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 For further quantitative validation of the robustness of WMD descriptors, the simi-
larities between the descriptor of transformed gesturing hand and those from the training 
dataset were estimated by dynamic time warping. The averaged values of the accumu-
lated distances for scaling and rotation transformations were illustrated respectively in 
Figs. 8 and 9, where five scales in the scale space were taken here and different colors 
represented different transformations as given in the legend of each figure. It is observed 
that highly similar results are obtained in each group of transformation and obviously 
different from each other for different scales. This demonstrates that the suggested WMD 

Fig. 8  DTW avg. distance VS scaling transformation (The values are close to each other for the same scale 
and vice versa)
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Fig. 9  DTW avg. distance VS rotation transformation (The values are close to each other for the same scale 
and vice versa)
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descriptor is also robust and invariant to those transformations in terms of DTW accumu-
lated distance and provides high discriminative capacity.

5.4  Effects of different scales and sliding windows

 Mathematically, the Gaussian function exhibits different shape for different standard devi-
ations. The larger the deviation is, the wider the curve and the lower its peak are. When 
performing Gaussian smoothing, the distribution of the weights will be approximately 
even. Therefore, the corresponding Gaussian smoothed image will become more and more 
blurred and lead to large-scale WMD descriptor finally. This is a simulation of observ-
ing an object from far away to capture its global features. To visualize its influence on the 
descriptors, their amplitudes were estimated following Eq. (13). The results were given in 
Fig. 10a and b corresponding to the cases of σ = 2−1 and σ = 2−4 where the arrowed green 
bold-line and red bold-line respectively represent the Gaussian-smoothed mean vectors for 
the left and right half parts given one contour point. On the whole, the amplitudes get 
smaller and smaller with the increase of standard deviations. This agrees with the phenom-
enon of human vision that the object seems to be big when near and small when far.

Similarly, Gaussian smoothing with the same standard deviation on different sizes of 
sliding windows will have different influence on the results of Gaussian-smoothed mean 
vectors as well as the WMD descriptor subsequently. The descriptor corresponding to 
smaller size of sliding windows is equivalent to observe it closely and focus on details of 
gesturing hand. Figure 11a and b presented the results with the sliding windows of 50-point 
and 100-point sizes under σ = 2−1 . It is observed that the amplitudes with shorter sliding 
windows are obviously larger than those with longer ones, which means that the curved 
surface is flattened and coincides with what we expect.

5.5  Parameter sensitivity

As showed above, different standard deviations and sizes of sliding windows will have dif-
ferent effects on the Gaussian-smoothed mean vectors and subsequently the WMD descrip-
tors as well as the performance of gesture recognition algorithms. Here, two experiments 
were carried out to find the optimal balance for those parameters, where half samples in our 
self-established dataset were randomly selected for training and the remainders for testing. 
Three different classifiers for the recognition of hand gestures, i.e. SVM, DTW and HSDF, 

(a)

(b)

Fig. 10  Gaussian-smoothed mean vectors in cases of a � = 2
−1 and b � = 2

−4 . The amplitudes in (a) are 
less than those in (b) corresponding to large-scale descriptor and vice versa
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were implemented with the suggested WMD descriptor. Each experiment was repeated fifty 
times and total average recognition accuracies were estimated. In the first experiment, the 
number of scales for one-dimensional Gaussian smoothing operation was ranged from one 
to ten with fixed size of sliding window and the result was shown in Fig. 12a. It is observed 
that the averaged accuracy increases rapidly with the increasing number of scales and 
becomes steady when the number is equal to or great than five. For example, around 70% of 
accuracy was obtained with the three classifiers when one scale was used, i.e. n = 1. The rea-
son is that the WMD descriptor only encodes the coarsest characteristic along the hand con-
tour and does not carry enough discriminative information. The accuracy is increased with 
more scales as both coarse and fine characteristics will be encoded by the descriptor and its 
discriminative capacity is enhanced. However, the fine characteristics are sensitive to the 
noise or disturbance introduced during ROI segmentation. As a result, the recognition accu-
racy oscillates in the range of 95 and 100%. Therefore, we take five scales as an optimal bal-
ance in the following experiments considering the accuracy and computational complexity.

In the second experiment, the size of sliding window was varied from 20 to 200 with 
fixed scales and the testing result was given in Fig. 12b. We can see that different sizes 
of sliding windows have different performance on the hand gesture recognition and the 

(a)

(b)

Fig. 11  Gaussian-smoothed mean vectors VS different sizes of windows: a w = 50 b w = 100. The ampli-
tudes in (a) are greater than those in (b) corresponding to small-scale descriptor and vice versa
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optimal range of size was between 80 and 120 points. The averaged accuracy was reduced 
outside this range. The WMD descriptor will concentrate on detailed information and be 
sensitive to noise and disturbance when size of sliding window is small. On the other hand, 
the descriptor with large size mainly captures global characteristic and ignore local infor-
mation, which will bring loss of information to some extends. As a conclusion, the optimal 
size of sliding window is set as 100 points based on this experiment.

5.6  Performance evaluation

This section focuses on detailed performance of the proposed WMD descriptor on hand 
gesture recognition. For comparison, we implement the proposed algorithm together with 
three most recent benchmark methods, including Huang et al. [34], Lazarou et al. [35] and 
Sahana et al. [36] respectively denoted by ALG1, ALG2 and ALG3, as they follow a simi-
lar mechanism. To be a fair game, all the experiments are carried out on the same dataset 
with the same platform. In ALG1, different scales of circle regions centered at each of the 
contour points were employed to extract the area, major segment and distance information 
as characteristics of the hand gesture. Basically, it is a multi-resolution analysis along the 
hand contour. The descriptor corresponding to larger size of circle encodes coarse infor-
mation and smaller size captures detailed information. In this sense, it is highly similar 
with the proposed WMD descriptor. The major difference lies in that the WMD descriptor 
is derived from ratio of Gaussian smoothing operation and invariant to scaling transfor-
mation. The main contribution in ALG2 is a new descriptor that is constructed via angu-
lar–radial bins within the concentric circles of the hand ROI. The multi-resolution analysis 
is achieved by using different angular widths and different number of concentric circles. 
On the other hand, the gesture descriptor in ALG3 is based on circular signal sampling and 
peak frequency. In summary, theoretical comparison of the above algorithms can be found 
in Table 3.

The first experiment was carried out on our self-established dataset by comparing the 
proposed algorithm with the three benchmark distance-based methods where the suggested 
WMD descriptor were used as input for Hausdorff distance, DTW algorithm and SVM 
model, respectively denoted by ALG6, ALG7 and ALG8. Besides, two CNN-based meth-
ods including the deep architecture proposed in [38] and YOLOv3, respectively denoted 
by ALG4 and ALG5, were implemented for further comparison in this experiment. The 
true positive rate for each category given in Table 4 and their confusion matrix in Fig. 13 

Table 4  Comparison of the proposed algorithm with Benchmark methods on self-established dataset (%)

Different Gestures 0 1 2 3 4 5 6 7 8 9 Mean/S.D.

ALG1 99 98 95 96 97 96 95 96 96 95 96.3 ± 1.34
ALG2 97 96 97 95 97 96 95 97 95 96 96.1 ± 0.88
ALG3 100 98 96 96 96 97 95 96 95 96 96.5 ± 1.51
ALG4 98 95 96 95 96 96 95 94 93 95 95.3 ± 1.34
ALG5 99 94 93 96 94 96 92 95 95 94 94.8 ± 1.93
ALG6 100 96 97 95 98 97 96 97 97 98 97.1 ± 1.37
ALG7 99 98 98 97 96 96 95 96 96 97 96.8 ± 1.22
ALG8 99 96 98 98 96 97 98 97 96 96 97.1 ± 1.10
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Results from ALG1 Results from ALG2

Results from ALG3 Results from ALG4

Results from ALG5 Results from ALG8

Fig. 13  Confusion matrices of recognition results for the six algorithms where the horizontal axis and verti-
cal axis respectively represent predicted gestures and true gestures
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were used as evaluation metrics to present an overall and detailed performance of those 
algorithms. It is observed from this table that the proposed algorithm generally gives the 
highest accuracy of 97.1% followed by ALG3 with 96.5% mean accuracy, ALG1 with 
96.3% mean accuracy and ALG2 with 96.1% mean accuracy. The standard deviations from 
WMD + DTW and WMD + SVM are 1.22 and 1.1 respectively, lower than those of ALG1 
and ALG3 but higher than that of ALG2. This is because all the pixels of the hand ROI are 
involved during feature engineering in ALG2. The inner points are obviously less sensitive 
to hand shapes and contribute less than those contour points. The two CNN-based methods 
output a bit poor accuracy because it is prone to over-fitting in case of a small dataset. As 
can be seen from the confusion matrices in Fig. 13, the hand gestures for six, seven, eight 
and nine are prone to be confused, among which the true positive rate for the six-gesture 
is the lowest since its little finger in this gesture is easily overlapped in some viewpoints. 
This may lead to confusion with seven-gesture or eight-gesture. Figure 14 shows four mis-
recognized samples in this experiment. The dominant parts in both Fig. 14a and b exhibit 
nearly circular shapes which would lead to misrecognition if the relative positions of the 
two fingers are similar to each other. Similarly, the dominant areas in Fig. 14c and d are 
close to each other which require more discriminative descriptor or optimal parameters in 
the classifier. On the whole, the proposed WMD + SVM overcomes the shortcomings of 
the Benchmark methods and outputs the best performance.

In another experiment, these algorithms were implemented on the public NTU hand 
gesture dataset, in which ten-fold cross validation mechanism was used. Table 5 gave the 
average recognition accuracy of the ten hand gestures for each algorithm. From this table, 
we find that there are some gestures provide higher accuracy e.g. Gesture 1, Gesture 5 and 
Gesture 6, in contrast to Gesture 2 and Gesture 9 as they exhibit similar poses. The pro-
posed algorithm achieves the best performance in terms of average accuracy, of which the 
WMD + SVM gives as high as 96.6 ± 1.3%. The average accuracy recorded from ALG1, 
ALG2 and ALG3 are respectively 95.8 ± 1.8%, 95.2 ± 1.4% and 95.9 ± 1.1%. This further 
verifies that the suggested WMD descriptor can be combined with different classifiers and 
present satisfactory performance for various applications.

In the final experiment, we implemented these algorithms on Senz3D dataset again with 
ten-fold cross validation. Here, six different scales were used to extract more information 
for the WMD descriptor in the proposed model and the parameters for ALG3 were set as 
12 signatures with 12 partitions. The obtained average accuracy was shown in Table 6. It 
is observed that all the algorithms provide satisfactory results with recognition accuracy 
above 93% and some gestures including Gesture 1, Gesture 5 and Gesture 8 give a very 
high accuracy. However, there exist some degree of similarity among Gesture 7, Gesture 
10 and Gesture 11 which decreases their recognition rate. As a whole, the WMD + SVM 
performs best with average accuracy of 96.2 ± 1.9% followed by ALG3 with 95.6 ± 1.9%.

(a) Gesture 6       (b) Gesture 8  (c) Gesture 7 (d) Gesture 9

Fig. 14  The misrecognized samples in the experiments. a Gesture 6 b Gesture 8 c Gesture 7 d Gesture 9
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6  Conclusion

We have talked about a new weighted multi-scale descriptor for hand gesture recognition 
algorithm based on the Kinect sensor, taking the recognition of ten digital gestures from 
zero to nine as an example. Firstly, the weight factor is estimated for each contour point 
by 2D Gaussian smoothing function and Prewitt operator to relate it with its neighbors 
and highlight its importance. Then the feature descriptor is constructed via 1D Gaussian 
smoothing considering the contour points in the hand should not be independent from each 
other when used to recognize the gestures. With a larger deviation, the peak of the Gauss-
ian function will be lower and the distribution of the weights will be approximately even, 
corresponding to large-scale WMD descriptor for coarse information. The fine informa-
tion of the gesturing hand will be encoded by Gaussian smoothing with a smaller devia-
tion. The invariances to translation, rotation and scaling transformations of the descriptor 
are proved theoretically and validated experimentally from different aspects. Extensively 
experiments on our ten-gesture dataset, NTU dataset and Senz3D dataset have been carried 
out comparing the proposed algorithm with three distance-based and two CNN-based hand 
gesture recognition methods. The results show that the proposed algorithm outperforms 
those algorithms with better robustness and higher recognition accuracy.

Although hand gesture recognition has witnessed significant advances, it still remains a 
challenging problem including environmental noise, user’s variability and identification of 
boundary between different gestures. So our future work is twofold. One is to explore more 
representative features in both spatial and temporal spaces and integrate them with the pro-
posed WMD descriptor for further improving the performance of the algorithm. The other 
is to develop some interesting HCI applications and deploy it on our mobile robot to under-
stand human’s intention and perform some routine housework.

Table 5  Comparison of the proposed algorithm with Benchmark methods on NTU dataset (%)

Different Gestures 1 2 3 4 5 6 7 8 9 10 Mean/S.D.

ALG1 100 96 94 94 96 96 94 96 96 96 95.8 ± 1.75
ALG2 96 94 94 96 96 98 94 94 94 96 95.2 ± 1.40
ALG3 98 95 95 96 97 97 95 96 95 95 95.9 ± 1.10
ALG6 98 96 96 96 96 96 96 94 96 98 96.2 ± 1.14
ALG7 98 94 94 98 96 96 94 94 96 96 95.6 ± 1.58
ALG8 99 96 96 96 98 98 96 95 96 96 96.6 ± 1.26

Table 6  Comparison of the proposed algorithm with Benchmark methods on Senz3D dataset (%)

Different Gestures 1 2 3 4 5 6 7 8 9 10 11 Mean/S.D.

ALG1 98 96 94 96 99 95 93 96 93 94 93 95.2 ± 2.04
ALG2 97 95 93 96 98 96 94 95 94 93 94 95.0 ± 1.61
ALG3 98 94 94 97 99 97 94 96 95 93 95 95.6 ± 1.91
ALG6 98 96 95 96 99 96 93 97 93 95 93 95.5 ± 2.01
ALG7 97 95 93 97 98 96 94 96 94 94 94 95.3 ± 1.61
ALG8 99 96 94 97 99 97 94 98 95 95 94 96.2 ± 1.94
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