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Abstract
Brain tumors are a leading cause of death in humans of various ages, making early detec-
tion and treatment crucial for improving patient outcomes. It is important to accurately 
determine the precise location, size, and dimensions of the tumor for successful radio-
therapy. One reliable method for diagnosing brain tumors is Magnetic Resonance Imag-
ing (MRI), as it can detect small, non-invasive lesions in the brain with great clarity and 
contrast. However, manual segmentation of tumors on MRI images is time-consuming, 
despite its accuracy. To address this challenge, computerized techniques can provide 
more precise and extensive results in less time. In this article, we propose a three-part 
method for segmenting tumors on MRI images. In the pre-processing stage, the contrast 
of the image is improved by matching the histogram, removing noise, and sharpening 
the image. In the next step, the tumor-related cluster is identified using fuzzy cluster-
ing. In the post-processing stage, the tumor areas are delineated using morphological 
reconstruction and active contour techniques. The proposed approach is evaluated on the 
training portions of two datasets: BraTS 2012 and BraTS 2013. This approach has shown 
robustness against noise, and intensity non-uniformity in experiments. Additionally, it is 
quick and more precise than other state-of-the-art segmentation methods, with an aver-
age running time of 2.33 s. Additionally, the average segmentation Sensitivity, Dice, 
Precision, Accuracy, Jaccard, and Hausdorff distance are 92.10%, 0.92, 92.05%, and 
99.06%, 0.86, 3.60, respectively. The proposed method demonstrates satisfactory results 
for Glioma brain tumor segmentation due to fuzzy c-means clustering, morphological 
reconstruction, and active contour accurate segmentation results and short time. Since 
most medical images suffer from these issues, this method has the potential to be more 
effective in the segmentation of complex medical images.
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1 Introduction

Brain tumor segmentation from brain MRI is critical work in medical image processing. 
Image segmentation is a challenging operation that involves dividing a digital image into 
various sections The purpose of image segmentation is to ease the analysis process and 
determine the position of objects and boundaries in images [1, 2]. Early recognition and 
treatment of brain tumors are one of the most critical factors in the recovery process and 
immensely increase patient survival rate [3].

MRI images are more acceptable among doctors due to their sensitivity in contrast and 
the possibility of revealing very small, non-invasive lesions. Without causing radiation 
exposure to other regions of the brain and causing damage to the patient’s skull artifacts, 
MR imaging is helpful in the identification and treatment of brain cancers [4]. Therefore, 
there is a demand for an effective approach to segmenting medical images that have several 
favored characteristics, such as minimal interaction with the user, precise outcomes, rapid 
calculation, and reliable segmentation outcomes [5].

The segmentation method is based on dividing the processed image according to inten-
sity variation, such as edges and corners. The second method is based on dividing an image into 
sections based on a set of specified criteria that are similar. As a result, numerous segmentation 
techniques can be widely applied, including histogram-based techniques, edge-based techniques, 
artificial neural network-based segmentation methods, physical model-based approaches, tech-
niques for dividing, expanding, and merging areas, as well as clustering techniques such as Fuzzy 
c-means clustering, K-means clustering, Partition Clustering, and Mean Shift [6].

A clustering method determines which pixels in an image integrate the best. There are 
two clustering methods: either by partitioning or by grouping pixels. Partitioning starts 
with the entire image and splits it into increasingly smaller clusters. In contrast, the group-
ing type starts by identifying each item as a separate cluster and then merging the single 
clusters to form bigger ones [7]. Fuzzy c-means is an important and popular unsupervised 
partitioning algorithm that is used in this study.

Morphology is one of the methods of image analysis, the output of this method describes 
the contents of the image. Morphology is based on a set of mathematical tools that extract 
a specific feature from the image furthermore removing unnecessary details and is there-
fore widely used in histology [8]. This method displays the edges of elements more promi-
nently than other points and its purpose is to change or correct the elements inside a binary 
image. This operation is usually performed one step before the final processing operation. 
The final operation means the operation in which information is extracted from the image. 
For example, the perimeter or area of the image components is calculated. The mathemati-
cal morphological approach is the most effective in extracting tumor areas more precisely 
in the shortest amount of time [9]. A morphological reconstruction is proposed in order to 
improve the accuracy and reduce the computation time.

The proposed method utilizes image segmentation techniques based on clustering to iden-
tify the brain tumor and compute the tumor region. We introduce a new method for segment-
ing abnormal MRI images, named FCM + MR + AC. In the pre-processing stage, it improves 
the contrast of the images using histogram matching, and after removing the noise with the 
median filter, it sharpens the image with unsharp masking. In the next step, it uses the Fuzzy 
c-means algorithm to segment the brain image. After the clustering stage, in the post-pro-
cessing stage, it extracts the tumor automatically by combining morphological reconstruction 
with the active contour. This integrated approach leverages the advantages of both techniques 
to achieve accurate boundary detection, precise measurements, noise reduction, and time 
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efficiency. It gives an accurate result compared to the Fuzzy c-means algorithm. The original 
Fuzzy c-means algorithm works well for images without noise. By removing noise from input 
data in pre-processing, it can improve FCM convergence and create more accurate clusters. As 
a result, our method gains from combining these algorithms to lower the number of iterations, 
which influences execution time and provides an accurate result in tumor detection.

The remainder of the paper is organized as follows: Section 2 discusses the related work, 
Section 3 presents the proposed technique, Section 4 presents experimental research, Section 5 
provides the comparative analysis, while Section 6 includes the conclusion and future work.

2  Related work

This section contains relevant research on brain tumor detection using MRI of the brain as well 
as analysis of previous algorithms used for brain tumor segmentation using MRI of the brain. 
The technique of grouping similar regions or segments of an image is known as image segmen-
tation. Image segmentation is commonly used to find objects and boundaries in images. More 
precisely, brain digital image segmentation is the process of assigning a label to every pixel in 
an image that distinguishes a malignant component from a non-cancerous part. Maksoud et al. 
[10] proposed a methodology for brain tumor segmentation based on a hybrid-type approach, 
using the K-means clustering approach in combination with the Fuzzy c-means algorithm. The 
K-Means algorithm takes less time to compute than the Fuzzy c-means technique but the latter 
can predict tumor cells faster and more accurately. Melegy et al. [11] used the fuzzy technique 
to segment brain tumors. This method was developed using the FCM methodology. The sug-
gested PIGFCM algorithm divides the brain MRI volume into basic tissues. The main tissues 
include the following parts: cerebrospinal fluid (CSF), white matter (WM), gray matter (GM), 
and background. Previous knowledge-based information improved the segmentation accuracy 
of brain tissues and accelerated the algorithm to the correct result. This approach dramatically 
improved segmentation accuracy, noise resiliency, and reaction time. Makropoulos et al. [12], 
suggested an algorithm for precise segmentation based on the intensity of the developing brains 
of infants that simulates the intensities throughout the brain. This method was exact and reliable 
throughout a wide variety of fetal ages. Hamamci et al. [13], proposed a seeded tumor segmen-
tation approach based on cellular automata. The cellular automata technique has been presented 
to find the smallest path in graph theory. Validations were conducted using both clinical and 
artificial datasets. The tumor-cut method was used to further divide tumor tissue into necrotic 
and augmenting sections. The suggested technique highlighted the reduction in the method’s 
sensitivity to initialization, robustness to diverse and heterogeneous tumor categories, and 
computational performance. Wilson and Dhas [14] used K-means and Fuzzy c-means to rec-
ognize the iron in brain SWI. The SWI for brain iron is compared using the K-means and FCM 
approaches. Experiments performed on Fuzzy c-means showed that the iron areas are more 
obvious than the result of the K-means method on the image. The main problem with this strat-
egy was that the two procedures are not combined to gain the benefits of both. Sheela and Sug-
anthi [15] introduced Greedy Snake Model and Fuzzy c-means optimization in their research 
in order to provide an effective automated brain tumor segmentation method. This method first 
explored the approximate region of interest (ROI) using two-level morphological reconstruction 
such as dilation and erosion to remove the non-tumor section. In the Greedy Snake approach, 
a mask was produced and degraded to enhance segmentation precision. The greedy snake 
model calculates new tumor borders by utilizing the mask border as the snake’s primary con-
tour. These limitations were more precise in areas with sharp edges and less accurate in areas 
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with ramp edges. The Fuzzy c-means technique is used to improve the incorrect borders and 
generate the correct segmentation result. Fuzzy C means clustering, created by Patil et al. [16], 
firstly uses contrast enhancement in order to enhance the quality of the brain MRI image, and 
morphological operations are provided for removing the skull. Secondly, the result is entered 
into the Fuzzy c-means clustering, then a feature extraction approach combining GLRLM and 
GLCM is presented. The SVM classifier separates tumor and normal brain images based on 
retrieved features. The suggested approach detects tumor and non-tumor images. C. Narmatha 
et al. [17] proposed a fuzzy brainstorm optimization approach toward classifying MRI images. 
This approach combined both fuzzy and brainstorm algorithms. Brainstorm optimization 
focused on cluster centers and gave them the most priority. This approach might slip into the 
local optimum, similar to any other swarm approach. The fuzzy executed numerous iterations to 
offer an ideal network topology, and the brainstorm optimization delivered satisfactory results. 
In this research, they used BraTS 2018 dataset. Zahra Shahvaran et al. [18] used k-means clus-
tering to detect brain tumors, then the active contour model based on morphological areas was 
employed for tumor detection, using a primary contour determined according to the border of 
the observed brain tumor areas. Morphological operators are used sequentially to evolve the 
contour. Local image intensities are modeled using a Gaussian distribution. BraTS 2013 was 
used to evaluate this approach. This method had better performance for tumor detection com-
pared to other contour-based techniques.

Sajid et al. [19] proposed a fully automated deep learning method for brain tumor segmen-
tation. They created a hybrid model that combined the effectiveness of a two-stream parallel 
network with a three-path network. and efficient. This model was designed to take into con-
sideration both contextual and local data in order to address the problem of unbalanced data. 
To achieve this, a two-phase training process was used. Ma et al. [20] proposed a new method 
for automated brain tumor segmentation of MR images. In this approach, a multiscale patch-
driven active contour model is combined with concatenated and connected random forests.

Lankton et  al. [21] suggested a reformulation of the Chan-Vese model and the Yezzi 
model [22]. Instead of relying on global image information, this approach focused on local-
ized methods for more effective contour localization. A Local Binary Fitting (LBF) model 
was developed by Li et al. [23] that utilized a kernel function to incorporate local intensity 
image details. This method involved implicit active contours driven by the energy derived 
from local binary fitting. A Local Gaussian Distribution Fitting (LGDF) was developed 
by Wang et al. [24] in order to separate the regions based on mean intensity and variance, 
the approach used a Gaussian distribution to define the local neighborhood. LGDF was 
employed in region-based Active Contour Models (ACMs) and was widely used in many 
fields, including medicine. Ilunga-Mbuyamba et al. [25] presented a localized active con-
tour model with background intensity compensation for automatic MR brain tumor seg-
mentation. The method effectively handled variations in background intensity and fore-
ground objects in medical images. Compared to the traditional localized mean separation 
active contour model, this approach improved accuracy and reduced computation time.

In this work, we propose a novel approach that combines the power of morphological recon-
struction with an active contour algorithm to achieve enhanced object analysis in post-process-
ing. This integrated approach leverages the advantages of both techniques to achieve enhanced 
object representation, accurate boundary detection, precise measurements, noise reduction, 
adaptability, and time efficiency. Additionally, Fuzzy c-means clustering has been used to 
enhance the accuracy of brain tumor segmentation. Median filtering is also applied to remove 
noise from input data, which helps FCM provide results in a short time. We demonstrate the 
effectiveness of our approach on various datasets of brain tumor images and show that it outper-
forms traditional post-processing methods in terms of accuracy, time efficiency, and reliability.
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3  Proposed algorithm

The K-means technique is used by several medical image segmentation systems to detect 
a brain mass tumor [52].   On large datasets, the K-means algorithm runs quickly, how-
ever, it suffers from insufficient tumor detection, mainly if the tumor is malignant. In 
contrast, other methods use the Fuzzy c-means algorithm since it maintains more details 
from the main image in favor of finding aggressive tumor cells more reliably than the 
K-means method [53].

The Fuzzy c-means algorithm is useful in our suggested medical segmentation system. 
Algorithm 1 shows the pseudo-code for identifying tumors in the brain from MR images. 
Furthermore, As shown in Fig. 1, our method consists of three stages: 1) pre-processing, 2) 
clustering, and 3) post-processing.

Algorithm 1  The pseudo-code for brain tumor detection from MR images
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3.1  Pre‑processing stage

This stage is executed by performing several preliminary pre-processing steps on the image 
before any particular processing. Image pre-processing decreases noise and improves the 
brain’s MR image for further processing. Since brain images are more vulnerable; they 
should preferably have minimum noise and the highest possible quality. Therefore, this 
process consists of several steps:

Pre-Processing Image

Clustering Image

Post-Processing Image

Start

Tumor region

end

histogram matching

median filter

Unsharp masking

Morphological 
reconstruction

Subtract the input image 
from the reconstructed 
morphological image

Fill regions and use 
binary image in active 

contour

Fuzzy c-means

Selection of clusters with 
the highest mean gray 

levels as tumor clusters

Fig. 1  Flowchart of the proposed method for tumor detection
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3.1.1  Histogram matching

In image processing, histogram matching is a technique used to change an image so that its 
histogram matches a pre-determined histogram [51]. To do this, an image with appropriate 
contrast is selected as a reference, and the histogram of the input image is then matched 
to it. In the context of detecting tumors in medical images, the reference image used must 
have enough contrast to clearly identify the tumor area in the input image.

3.1.2  Median filtering

The most often used filtering technique is median filtering, which filters distortion and arti-
facts without sacrificing key properties such as edge information. Nonlinear median filters 
are used to effectively remove noise while maintaining edges. The median filter approach 
shown in Eq. 1 is based on replacing each pixel’s gray-level with the median of the pixels 
in the adjacent neighborhood.

where k is a neighborhood chosen by the user and centered on the image’s position [x,y]. 
The "window" refers to the order of neighbors, and it moves across the entire image pixel 
by pixel. The median is calculated by first numerically ordering all of the pixel values in 
the window, then, the desired pixel is replaced with the median pixel.

3.1.3  Unsharp masking

A way to create an image with well-defined edges is through the use of non-sharp filters. 
This method involves applying a smoothing filter to the main image and then subtracting 
the smoothed image from the original image. The result is an image with sharp edges, 
which is then added back to the original image. The specific smoothing filter affects the 
final result. For example, the result of using the Gaussian filter is better than the box filter, 
but the result of both amplifies the noise. Another leading challenge is what coefficient of 
high-frequency information (this image is obtained by reducing the smoothed version of 
the original image known as a mask) should be added to the original image. This amount 
is different depending on the images. Another issue is the effect of kernel size in filters 
such as box and median, which adds more noise to the image by increasing the size. An 
additional method of sharpening the edges is the direct approach of finding high-frequency 
information and adding it to the image. Applying the Laplacian operator to the image 
results in obtaining high-frequency information, and subtracting (adding) it to the image 
leads to the sharpening of the edges.

3.2  Clustering

One of the most well-known algorithms, FCM, develops an optimal cluster pattern through 
iteration by minimizing an objective function based on cluster center positions and mem-
bership. It enables the division of available sets of points of power (n) by a given num-
ber of fuzzy groups. A distinguishing aspect of the technique is the calculation of a fuzzy 
membership matrix, W = {wik}, made up of the membership grade of the pattern xk to each 

(1)Iout [x, y] = median
{
Iin[i, j], (i, j) ∈ k

}
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cluster (i). Therefore, points at the cluster’s edge with lower membership degrees may be 
included in the cluster to a smaller extent than points in the cluster’s center. Considering a 
set of clusters (c), FCM separates the info X = {x1,  x2, …,  xn} into C-fuzzy clusters includ-
ing centroids  that are  consistent  with V =  (v1,  v2, …,  vc) which minimizes the objective 
function’s value with Eq. 2.

where the parameter m shows the fuzzy exponent and m ∈ (1, ∞) and ‖‖x� − vi
‖‖ is the 

Euclidean norm between �k and �i , �i is the center of the ith cluster, each element of wi,k , 
defines the degree to which element, �k , belongs to a cluster, �i.

Every time the FCM clustering iterates, matrix W is created using Eq. 3, and Eq. 4 com-
putes the related cluster centers. The square error in Eq. 1 is then calculated. The algorithm 
terminates when either the error or the tolerance value is reached. The performance index’s 
membership grades are controlled by the number m. The partition grows fuzzier as m 
increases and if m → the degree of membership for each object in each cluster is the same.

Considering that the number of clusters must be determined using the number of white 
matter, gray matter, cerebrospinal fluid, and tumor areas, the number of areas has been 
considered four. After calculating the degree of belonging of each pixel, it is related to the 
cluster that has the highest degree of membership. To find the area related to the tumor, 
considering that this area has the highest brightness, the average gray levels of each cluster 
are calculated, and the cluster with the highest value is considered the tumor cluster. The 
rest of the clusters are attributed to other parts of the brain according to the volume of the 
samples inside them.

3.3  Morphological reconstruction

Morphological operation is a broad category of image processing procedures that process 
images depending on their size and shape. A morphological operation adjusts each pixel 
in an image depending on the values of neighboring pixels. By selecting the local size and 
shape, a morphology operation sensitive to specific shapes in the input image can be cre-
ated. The most basic morphological operations are dilation and erosion, which aid in per-
forming various operations in image processing [54]. The morphological operation of the 
binary image A by the structuring element B is defined in Table 1.

An opening operation is described as an erosion followed by dilation, and a closing 
operation is an opening performed in reverse using the same structuring element. Mor-
phological reconstruction aims not only to reduce false positives but also to increase true 
positives. For this purpose, we first remove the small non-tumor areas in the image related 
to the tumor cluster with the opening operator and then use the closing operator to elimi-
nate the effect of the opening operator on the tumor area. Morphological reconstruction 

(2)F(W,V) =
∑c

i=1

∑n

k=1

�
Wik

�m
⋅
��xk − vi

��
2
,wk ∈ [0, 1], i = 1, c,k = 1, n,1 ≤ m < ∞

(3)wik =

�
∑c

j=1

�‖xk−vi‖
‖xk−vj‖

�2⋅ (m−1)
�−1

,
∑c

i=1
wik = 1

(4)�i =

∑n

k=1

�
wik

�m
⋅ �k

∑n

k=1

�
wik

�m
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operations require two images which are marker and mask images. The mask image is 
selected as the initial image. The marker image is obtained by performing morphological 
opening and closing operations on the candidate regions acquired in the previous step and 
subtracting them from the initial image. The difference between the reconstructed image 
and the initial image is considered the tumor regions.

3.4  Fill regions and use the binary image in active contour

In recent research, active contour models (ACM) have been used for image segmentation. 
Active contour models are based on the surface evolution theory and geometric flows. 
Snakes are known as active control and are initially made available in 1987 by Kass et al. 
[26]. Active contour models are used for edge detection, shape modelling, motion tracking, 
medical image analysis, and especially the segmentation of objects [27, 28].

In the active contour method, the contours of an image are changed based on an energy 
function derived from the image data to minimize energy and accurately place them on the 
object’s boundary. The energy function is related to a curve, the goal is to find the object’s 
boundary by minimizing the energy function. The active contour models work by evolving 
the curve to identify objects within the image. The contours change shape according to the 
features present in the image [29].

In general, active contour models can be divided into two groups: a) edge-based mod-
els and b) region-based models. Each of these strategies has advantages and limitations. 
Region-based active contour models use statistical data of the image in curve evolution but 
edge-based active contour models use image edge and gradient data. Region-based active 
contour models have more advantages than edge-based models. One of the most famous 
region-based models is the ChanVese model [30], which has been used in this study.

4  Experimental results

Implementation of all steps is done using MATLAB 2018. We run our experiments on a 
PC (Intel Core i7) with 16 GB of RAM and an NVIDIA/(1 GB VRAM) VGA card.

4.1  Data sets

The BraTS 2012 and 2013 dataset is a collection of multimodal brain tumor images from 
synthetic and real patients. The training and testing sets are different for the BraTS 2012 
and 2013 datasets. For the BraTS 2012 dataset, the training set consists of 30 patients 

Table 1  Morphological operation

operation Formula Description

Dilate A⊕ B =
⋃

b∈BAb
where  Ab is the translation of A by b and A is a binary image in E

Erode A⊖ B = {z ∈ E|Bz ⊆ A} where  Bz is the translation of B by the vector z and B is a struc-
turing element and E is a Euclidean space or an integer grid

Opening A◦B = (A⊖ B)⊕ B where ⊕ and ⊖ denote the dilation and erosion, respectively
Closing A ∙ B = (A⊕ B)⊖ B where ⊕ and ⊖ denote the dilation and erosion, respectively
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with HG and LG and includes the ground truth segmentations. The testing set consists 
of 15 real patients with HG and LG and does not include the ground truth segmentations. 
For the BraTS 2013 dataset, the training set consists of 10 real patients and includes the 
ground truth segmentations. The testing set consists of 10 real patients with HG and LG 
and does not include the ground truth segmentations. The testing set is used for ranking the 
algorithms on the BraTS website. The dataset also provides manual segmentations of the 
tumor regions for each image. The segmentations have four labels: necrosis (1), edema (2), 
non-enhancing tumor (3), and enhancing tumor (4). The segmentations are used as ground 
truths for evaluating the performance of brain tumor segmentation algorithms. Figure  2 
shows some sample images from the dataset with different modalities and tumor types.

4.2  Evaluation

A valid evaluation method provides quantitative and comparative information necessary 
for performance evaluation. The criteria of Sensitivity, Dice score, Accuracy, and Precision 
have been used in the proposed algorithm. These factors are mainly relying on the value of 
TP, TN, FP, and FN.

Where TP, TN, FP, and FN can be described as follows:

 (i) TP is a tumor that is real and has been properly identified.
 (ii) TN is a tumor that does not exist and cannot be found.
 (iii) FP is a tumor that is not present but is detected.
 (iv) FN is a tumor that is present but not found.

(5)Dice =
2TP

2TP + FP + FN

(6)Sensitivity =
TP

TP + FN

(7)Accuracy =
TP + TN

TP + FP + TN + FN

Fig. 2  The image patches show tumor structures in different MRI modalities: FLAIR (A), T2 (B), and T1c 
(C). The segmentations are combined to generate the final labels for the dataset (D): edema (yellow), non-
enhancing solid core (red), necrotic/cystic core (green), and enhancing core(blue) [31]
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The Dice score is used to calculate the overlap between manually created ground truth 
masks and automatically segmented tumors in medical imaging. It is expressed as Eq. (5). 
Its main application is in the evaluation of segmentation models. Sensitivity is another 
metric used to predict real positive cases that are predicted as positive. It is also known as 
recall and can be expressed as Eq. (6). Accuracy is a statistical measure that indicates how 
well the predicted value matches the actual value. It is used in the method of analyzing the 
system’s performance. It is expressed as Eq.  (7). In addition, the most common method 
of evaluation is the accuracy of the tumor diagnosis. A high level of accuracy indicates 
that the classification of MRI images is accurate and therefore, the proposed algorithm is 
effective. Precision is a measure of how well a model can identify true positive pixels that 
belong to a cluster compared to all the pixels that the model predicted as positive which is 
shown in Eq. (8). The results of each technique are recorded in Tables 2 and 3 according to 
Precision, Sensitivity, Accuracy, and Dice that are mentioned before and represented. The 
Hausdorff distance can be calculated using Eq. (9), where A and B are two sets of points, 
h(a, B) is the minimum distance between a and B, and d(a, b) is the Euclidean distance 
between points a and b. In the context of brain tumor segmentation, the Hausdorff distance 
metric measures how well the boundary voxels of the segmented regions match between 
the ground truth and the results of the algorithms used for brain tumor segmentation. Fur-
thermore, we used the Jaccard coefficient. It is a measure of similarity between two sets of 
data and can be expressed as Eq. (10).

4.3  Results and discussion

The output results of the figure are discussed in this section. The proposed tumor seg-
mentation method is validated by performance parameters such as accuracy, specificity, 
sensitivity, and dice. In this technique, Image preprocessing reduces noise and increases 
the image’s clarity. FCM clustering is used to initially identify the tumor areas. Also, 
morphology operators based on reconstruction are used to properly refine the appeared 
frills in the images. Finally, by applying active contour, the boundaries of the tumor 
became more precise. The results in Table 2 demonstrate the reliability and accuracy of 
our method. We discuss the proposed method in the following.

In the pre-processing step, the images used in the study are 16 bits, and no reduc-
tion in gray levelshave been made to prevent information loss. Figure  3a shows the 
image considered as a reference in the histogram matching step. Figure  3c shows the 
result of histogram matching on the input image. The tumor region is completely uni-
form and includes all the tumor regions that are shown in the ground truth. In the next 
step, Fig. 3d and e illustrate the noise removal and contrast improvement utilized for the 
image. MRI is often affected by noise and artifacts that need to be removed before the 
image can be processed to determine whether or not it has a tumor. The median filter is 

(8)Precision =
TP

TP + FP

(9)Hausdroff Distance(A,B) = max{h(a,B)} = max{min{d(a, b)}}

(10)Jaccard(A,B) =
TP

TP + FP + FN
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the preferred tool for filtering noise in MRI brain images [32]. Unlike other filters, this 
one doesn’t blur or smooth out the image’s edges, maintaining the image’s sharpness.

In the clustering step, the FCM clustering algorithm assigns membership to each data 
depending on its distance from the cluster’s center. If there is less distance between the 
cluster’s center and the data point, the data point is more likely to be a member of that 
cluster. The number of clusters must be determined using the number of white mat-
ter, gray matter, cerebrospinal fluid, and tumor areas; therefore, the number of clusters 
has been considered 4. For better understanding, in Fig.  4d, the pixels whose degree 
of membership is less than 0.6, which may belong to several categories, are shown in 
yellow. These pixels represent the regions where the segmentation is uncertain, and 
where different tumor structures may overlap or coexist with other brain tissues, such 
as white matter, gray matter, and cerebrospinal fluid. In Fig. 5, the clusters are deter-
mined according to the average gray levels and the number of pixels in each category. 
The order of the clusters based on the average of pixels gray level follows this sequence: 
tumor, white matter, gray matter, and cerebrospinal fluid, which means that the brightest 
cluster is considered a tumor. The tumor cluster has a much higher gray level than the 
other clusters, indicating its high intensity and contrast in the MRI images. Figure 5e 
also shows that the tumor cluster has a lower pixel count than the other clusters, indicat-
ing its small size and shape.

According to Fig. 6, the tumor cluster includes non-tumor areas in addition to the tumor 
area. To partially remove the above-mentioned areas, firstly, the opening operator is applied 
to the image. Then, the closing operator is applied to the image to cause the remaining 
areas to completely cover the tumor.

Figure 7 illustrates the steps of morphological reconstruction and the difference between 
the reconstructed image and the original image is considered a tumor area. After mor-
phological reconstruction, the issue is that the border of the tumor areas is not accurate 
enough. As shown in Fig. 7d, the boundaries of the tumor are still not exact. To improve 
the tumor boundaries, after filling the empty areas, the boundaries of the tumor are pre-
ceded by active contour. As the output of this step is shown in Fig.  7e, the boundaries 

Table 2  Comparison of the average computation time among proposed methods and other methods using 
the BraTS dataset

Average of computation time in (s)

Measures Time/patient Time/image comment

LBF [33] 849.8082 29.9610 Training MICCAI 2012
LGDF [24] 781.5818 27.5558 Training MICCAI 2012
C-V [21] 455.7580 16.0684 Training MICCAI 2012
LMS [21] 485.5883 17.1201 Training MICCAI 2012
LACM-BIC [25] 448.5725 15.8150 Training MICCAI 2012
Multi-Cascaded [34] 261 - BRATS 2018
Cascaded random forests [35] 314 - BRATS 2018
Cross-modality [36] 208 - BRATS 2018
Task Structure [37] 193 - BRATS 2018
One-Pass Multi-Task [38] 277 - BRATS 2018
DWA [55] 84 - BRATS 2018
Our method 66.2491 2.3357 BRATS 2012, 2013
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a

b

c d e

Fig. 3  Results of pre-processing steps: (a) reference image for histogram matching (b) input image (c) his-
togram matching (d) noise removing (e) unsharp masking

a

b

c d e

Fig. 4  The steps of Fuzzy c-means: (a) unsharp masking (b) Mask (c) the multiple of the unsharp masked 
image by the mask (d) Fuzzy c-means results (e) the multiple of the Fuzzy c-means results by the mask
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obtained by the active contour method have been improved. In the following, the output of 
the proposed approach is shown in detail in Fig. 8.

The proposed technique was used to produce the experimental results for the segmented 
regions for the three classes of WM, GM, and CSF, and for the extracted tumor region are 
given in Fig. 8. The figure shows the different steps and outputs of the proposed technique 
applied to a brain MR image. Figure  8a shows the input image, and Fig.  8b shows the 
ground truth segmentation. Figure 8c shows the result of removing noise from the input 
image using a median filter. Figure 8d shows the result of enhancing the edges and details 
of the image using unsharp masking. Figure 8e shows the result of computing the degree of 
membership for each pixel using a Fuzzy c-means. Figure 8f shows the result of clustering 
the pixels into four groups using the Fuzzy c-means algorithm. Figure 8g, h, and i show the 
result of extracting the WM, GM, and CSF regions from the clustered image, respectively. 

a

b c d e

Fig. 5  Fuzzy c-means clusters: (a) all clusters (b) white matter (c) gray matter (d) cerebrospinal fluid (e) 
tumors

Fig. 6  Result of morphological opening and closing on the tumor
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ba c

d e f

Fig. 7  The results of the morphology reconstruction: (a) input (b) marker (c) morphological reconstruction 
(d) imprecise boundaries (e) active contour (f) ground truth

a b c d e

f g h i j

Fig. 8  The segmented and area-extracted result of a brain MR image from BraTS 2012: (a) input (b) 
ground truth (c) remove noise (d) unsharp masking (e) membership (f) Fuzzy c-means (g) white matter (h) 
gray matter (i) cerebrospinal fluid (j) tumor
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Figure 8j shows the result of extracting the tumor region from the clustered image using 
a morphological reconstruction and active contour. The figure demonstrates that the pro-
posed technique can effectively segment and extract brain tissues and tumors from a noisy 
and low-contrast image. In addition, the other images from BraTS 2013 that are shown in 
Figs. 9, 10, and 11 are added.

4.4  Computation time

As shown in Table 2, it is important to notice that the FCM + MR + AC technique has the 
lowest computation time compared to previous methods for performing brain tumor seg-
mentation. This method achieves more promising results and reduces the running time by 
using a combination of fuzzy c-means, morphological reconstruction, median filtering, 
and active contour. The proposed method exhibits a considerable reduction in computation 
time as compared to the LACM-BIC solution, with a speed advantage of approximately six 
times.

The median filter for pre-processing is a tool of choice for filtering noise in MRI brain 
images. By removing noise from the input data, median filtering can help FCM converge 
faster and produce more accurate clusters. The reason behind this significant difference can 
be attributed to the iterative nature of the Fuzzy c-means solution which leads to compu-
tationally expensive processing whereas by using fewer clusters and a quicker termination 
condition, it can speed up the image processing for brain tumor segmentation. Conversely, 
the proposed method employs a non-iterative and quick-to-compute morphological step, 
resulting in reduced computational overhead. These findings also hold true for brain tumor 
images of varying types. Using region-based active contours, also known as Chan-Vese 
models, can reduce computation time by exploiting global information about the image.

a b c d e

f g h i j

Fig. 9  The segmented and area-extracted result of a brain MR image from BraTS 2013: (a) input (b) 
ground truth (c) remove noise (d) unsharp masking (e) membership (f) Fuzzy c-means (g) white matter (h) 
gray matter (i) cerebrospinal fluid (j) tumor
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a b c d e

f g h i j

Fig. 10  The segmented and area-extracted result of a brain MR image from BraTS 2013: (a) input (b) 
ground truth (c) remove noise (d) unsharp masking (e) membership (f) Fuzzy c-means (g) white matter (h) 
gray matter (i) cerebrospinal fluid (j) tumor

a b c d e

f g h i j

Fig. 11  The segmented and area-extracted result of a brain MR image from BraTS 2013: (a) input (b) 
ground truth (c) remove noise (d) unsharp masking (e) membership (f) Fuzzy c-means (g) white matter (h) 
gray matter (i) cerebrospinal fluid (j) tumor
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Table 4  Comparison of Dice 
score for BraTS 2012 dataset 
(30 scans) using SVM and ERT 
methods and FCM + MR + AC

Case no Grade/ID Dice

SVM ERT FCM + MR + AC

1 LG-01 0.85 0.89 0.92
2 LG-02 0.93 0.95 0.94
3 LG-04 0.78 0.87 0.96
4 LG-06 0.84 0.91 0.93
5 LG-08 0.88 0.92 0.93
6 LG-11 0.86 0.89 0.96
7 LG-12 0.88 0.92 0.95
8 LG-13 0.75 0.81 0.89
9 LG-14 0.80 0.84 0.89
10 LG-15 0.78 0.88 0.83
11 HG-01 0.89 0.92 0.93
12 HG-02 0.83 0.88 0.94
13 HG-03 0.82 0.91 0.92
14 HG-04 0.90 0.92 0.95
15 HG-05 0.74 0.78 0.88
16 HG-06 0.79 0.91 0.93
17 HG-07 0.78 0.85 0.94
18 HG-08 0.89 0.91 0.95
19 HG-09 0.86 0.89 0.93
20 HG-10 0.65 0.71 0.92
21 HG-11 0.87 0.92 0.95
22 HG-12 0.88 0.91 0.93
23 HG-13 0.81 0.89 0.94
24 HG-14 0.86 0.90 0.94
25 HG-15 0.78 0.91 0.88
26 HG-22 0.84 0.88 0.92
27 HG-24 0.85 0.89 0.87
28 HG-25 0.84 0.90 0.98
29 HG-26 0.75 0.79 0.82
30 HG-27 0.81 0.91 0.89
Mean All 0.83 0.88 0.92

Table 5  Comparison of the proposed method with several other related methods using the BraTS dataset 
2012

Method Description Comment Whole 
tumor(dice)

SoltaniNezhad et al. [39] ERT + super voxels Training MICCAI 2012 0.88
Ujjwal Baid et al. [41] K-Means Training MICCAI 2012 0.69
Ujjwal Baid et al. [41] Fuzzy c- means Training MICCAI 2012 0.75
Our method FCM + MR + AC BRATS 2012 0.92
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Fig. 12  Comparison of Dice, Sensitivity, and Precision for the proposed method, SVM, and ERT method
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Fig. 14  Comparison of the Dice score of the proposed method with other methods on BraTS 2013



42995Multimedia Tools and Applications (2024) 83:42973–42998 

1 3

4.5  Experimental results

Table  3 shows the results for complete tumor detection on the BraTS 2012 dataset. 30 
images from the training dataset are utilized to test the suggested approach. The pro-
posed method is compared with SVM and ERT methods [39]. Results present the eval-
uation measures for SVM, ERT, and FCM + MR + AC, respectively. It is clear that 
FCM + MR + AC results in a slightly improved performance, compared to that of SVM and 
ERT, with an overall classification Precision of 89.09%, Sensitivity of 88.09%, and Dice 
0.88% for ERT, Accuracy of 83.79, the Sensitivity of 82.72 and Dice 0.83% for SVM and 
92.05%, 92.10% and 0.92 for FCM + MR + AC, respectively. Furthermore, we use the Jac-
card coefficient and Hausdorff distance that averages are 0.86 and 3.60 respectively. The 
dice score of ERT, SVM classifiers, and FCM + MR + AC for the BraTS dataset is pre-
sented in Table 4. It can be seen that result for FCM + MR + AC is more accurate than that 
of SVM-based and ERT-based. In addition, the proposed algorithm is evaluated on BraTS 
2013 and achieves excellent results in terms of commonly used metrics such as Sensitiv-
ity, Accuracy, Dice score, Jaccard, and Hausdorff distance with values of 93.15%, 99.56%, 
0.93, 0.87, and 3.21, respectively.

4.6  Comparative analysis

Regarding all the evaluations in Tables 5 and 6, it can be seen that the performance of the 
FCM + MR + AC method is superior to other algorithms, and a similar value is obtained 
only in Reza’s method [40].

In Fig. 12, it can be seen that all evaluation parameters of our method are much higher 
than that of SVM-based and ERT-based. Figures 13 and 14 show the bar graph comparing 
different Dice methods.

We emphasize the significance of the pre-processing stage in our study, which is MRI 
histogram matching. This is especially crucial when using the BraTS dataset, which con-
tains data from multiple scanners and multicenter [39]. With the purpose of brain tumor 
segmentation and the regionalization of brain tumor segments in this study, FCM fuzzy 
clustering has been used to identify and extract the tumor region. Morphology reconstruc-
tion has also been used to reduce the areas that are wrongly placed in the tumor cluster, 
which resulted in a positive effect. In the last step, the use of active contour has resulted in 
obtaining better boundaries for the tumor area.

5  Conclusion and future work

This study proposes a novel algorithm for the automatic detection and segmentation 
of brain tumors from MRI images. The algorithm combines Fuzzy c-means cluster-
ing and morphological reconstruction to achieve fast and accurate tumor segmentation. 
The Fuzzy c-means clustering is used to partition the image into clusters based on the 
intensity values, and the morphological reconstruction is used to refine the tumor cluster 
by removing the non-tumor regions. The algorithm is applied to the BraTS 2012 and 
BraTS 2013 data sets, which contains multimodal MRI images of brain tumors with dif-
ferent grades and types. The proposed algorithm is effective and robust, as demonstrated 
by its excellent performance in terms of commonly used metrics such as Sensitivity, 
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Accuracy, Dice score, Jaccard, and Hausdorff distance for BraTS 2012, 92.10%, 99.06%, 
0.92, 0.86, and 3.60 and BraTS 2013, 93.15%, 99.56%, 0.93, 0.87, and 3.21. The diag-
nosis can be improved by using the proposed algorithm which provides valuable infor-
mation and treatment of brain tumors, which are among the most serious and challeng-
ing diseases.

In future work, we plan to use U-net [50], a state-of-the-art deep learning network for 
brain tumor segmentation that can learn complex features from MRI images and perform 
end-to-end segmentation with high accuracy and robustness. We will compare the perfor-
mance of U-net with our proposed method and investigate how to improve it further with 
data augmentation, transfer learning, or self-supervised learning techniques.
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