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Abstract
Underwater robotics has a crucial significance in various domains including oceanography,
resource exploration, and marine engineering. However, the images captured by underwater
robots often suffer from degradation due to environmental factors like scattering and absorp-
tion. These factors result in color-cast and haze issues in an underwater image. Thus to deal
with different underwater issues, a novel feature transfer-based convolutional neural net-
work (F2UIE) is proposed, that aims to improve the overall quality. In the F2UIE approach,
two pre-processing methods are employed, namely white balancing and contrast-limited-
adaptive-histogram-equalization for resolving the color-cast and limited contrast issue. After
that, pre-processed images are then fed into a multi-stack CNN to learn end-to-end features.
This network extracts high-level representations from the input images. Finally, the outputs
of both the pre-processing phase and the multi-stack CNN are fused to obtain the enhanced
image. To evaluate the performance of F2UIE, qualitative and quantitative comparative anal-
ysis is conducted, considering factors such as image quality and visual improvement. Also,
a run-time analysis is presented to understand the F2UIE computational efficiency. The
experimental analysis demonstrates that F2UIE outperforms existing conventional as well
as learning-based methods in terms of enhancing underwater images. Through our work,
we emphasize the importance of effectively addressing the challenges posed by underwater
imaging, ultimately improving the accuracy and visual quality of underwater robot-generated
images.
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1 Introduction

Themajor portion of the earth’s surface is covered with water yet it remains the least explored
region by human beings. The captured underwater images will help in various fields such as
aquatic life monitoring as well as tracking. However, captured images degrade due to under-
water physical properties such as scattering, attenuation and low light. Thus, UIE methods
are employed to extract information by enhancing degraded underwater images.

The light transmitted from the underwater surface suffers from scattering due to particles
resulting in diminished underwater image quality [1]. In past, several UIE approaches have
been proposed for improving the degraded underwater images by using the physical under-
water image formation model (UIFM) [2, 3]. But, these methods fail to enhance different
types of underwater images because the UIFM-based methods did not consider the scattering
effect in the mathematical formulation.

Learning-based approaches have recently shown great performance in digital image pro-
cessing and vision-based applications. Underwater researchers have been attracted to the
advantages of learning-based approaches. Thus, they employed neural networks in the field
of enhancement. Cai et al. [4], introduced CURE-Net for obtaining attenuated color using
the three cascaded sub-networks. In contrast, Sun et al. [5], presented UMGAN based on
feedbackmechanisms and a noise reduction network. Fu et al. [6] introduced a learning-based
method that employs the global as well as local information of the input image for enhancing
color and contrast.

The above-discussed learning-based methods do not perform well for synthetic as well as
real underwater images. Also, the architecture of learning-based UIEmethods is complicated
and introduces artefacts after enhancement. Thus, to resolve these issues, F2UIE is proposed
that is based on a feature-based end-to-end convolution neural network. It is also a lightweight
training network due to easy training procedures.

Motivation:
The research in the underwater world with the help of UIE methods has various applica-

tions as follows [7]:

(a) Monitoring marine organisms, including flora and fauna.
(b) Analyzing sea-beds, sub-marine pipes and shipwrecks.
(c) Assess water quality for a healthy underwater environment.
(d) Surveillance marine activities with the help of AUV.

The existing UIE methods face issues in enhancing images due to low brightness, color-
cast, low contrast and haze that results in degraded performance of UIE methods. Due to
the attenuation and absorption phenomenon, low brightness and colour cast are observed
in captured image. The level of attenuation and absorption depends upon the wavelength.
Also, blurring occurs when light scatters between an object and the camera, resulting in low
contrast. Another problem is the haze effect observed in the image that is caused by undersea
particles.

There exist no UIE methods that perform well for diverse underwater images. Existing
approaches only partially remove color-cast and fail to obtain the attenuated red color. Thus
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a feature transfer-based CNN (F2UIE) method is proposed to deal with degraded underwater
images captured in different environmental conditions.

Moreover, learning-based methods proposed in the past did not train the model using real
as synthetic datasets. Thus, F2UIE is trained on both types of datasets. The neural network
must be precisely trained and optimized to get better results in terms of enhancement. To
achieve this, a loss function is introduced namely, the underwater image enhancement loss
(UIEL), for optimizing the F2UIE parameters.

The primary contributions of the paper are mentioned below:

• The F2UIE (Feature Transfer-based Convolution Neural Network) aims to perform "end-
to-end" feature extraction to obtain detailed information from underwater images. The
network generates two confidence maps by processing the input images using tech-
niques: White Balancing (WB) and Contrast Limited Adaptive Histogram Equalization
(CLAHE). Subsequently, the output of the neural network and the learning units are
combined to produce an enhanced underwater image, leveraging the extracted features
for improved visual quality.

• To optimize the training process of the F2UIE and address the challenges associated with
underwater image enhancement, an optimized UIEL (Underwater Image Enhancement
Loss) function is introduced. The UIEL loss function serves multiple purposes: first,
it enables the effective training of the F2UIE by minimizing the discrepancy between
the enhanced images and input images. Second, it facilitates the enhancement of pixel-
level information by encouraging the network to preserve important details during the
enhancement process. Lastly, the UIEL loss function helps to mitigate unwanted noise
artefacts that may arise as a result of the enhancement, ensuring that the final output is
visually appealing and noise-free.

2 Background study of UIE methods

The quality of captured underwater images relies on the level of absorption, scattering, depth
of water and refraction. The absorption ratio varies greatly with wavelength [8]. Figure 1,
shows that red color is absorbed in smaller depths whereas green, as well as blue color, travels
deeper. Due to this, the captured underwater images are usually blue and green. Figure 2
illustrated the process of image acquisition in the underwater world. The attenuation effect
is observed due to absorption. The scattering effect leads to limited contrast and visibility
[9, 10].

Underwater image enhancement is a challenging problem due to the underwater environ-
ment, including low visibility, color distortion, and poor contrast. Researchers have explored
various techniques to improve the quality of underwater images. In this literature review, we
categorize the methods into three main categories: neural network-based methods, conven-
tionalmethods, and fusion-basedmethods.Wepresent an overviewof the latest advancements
in each category, highlighting their principles, advantages, and limitations.

(i) Neural Network-based Methods: In recent years, there has been a growing focus on
improving the quality of underwater images through the use of learning-based methods,
which have shown promising results in solving various visual tasks [7, 11]. However,
one of the main challenges faced by these methods is the requirement for large-scale
pairs of clear-degraded underwater images for supervised training, which can be difficult
to obtain in complex underwater scenes.
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Fig. 1 The representation of the
effect of underwater color
absorption [7]

Li et al. [12] developed a two-stage CNN network called WaterGAN, which gener-
ated a synthetic underwater image training dataset by considering depth estimation
and color restoration. Li et al. [13] combined a physical model with the optical prop-
erties of underwater scenes to synthesize diverse water-type datasets. They trained a
lightweight underwater convolutional neural network (UWCNN) to enhance each scene-
type image.Li et al. [14] proposed aweakly supervisedunderwater color transfer network
that allowed for images to be captured from unknown locations. Ye et al. [15] intro-
duced an unsupervised adaptation network to address the joint problem of underwater

Fig. 2 The step-by-step process of underwater image formation based on different environmental factors [7]
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depth estimation and color correction from monocular underwater images. To improve
the generalization of the CNN, Li et al. [16] curated a real-world underwater images
benchmark (UIEB) dataset and developed an underwater image enhancement network
called Water-Net. Building upon the UIEB dataset, Li et al. [16, 17] proposed Ucolor,
a method that effectively improves the visual quality of underwater images through
medium transmission-guided multi-color space embedding. Lin et al. [18] introduced
a multiscale deformable convolution network with an attention mechanism for under-
water image enhancement. Fabbri et al. [19] utilized CycleGAN to create a training
set without paired data for enhancing underwater imagery, while Yu et al. [20] intro-
duced a conditional GAN with perceptual loss for underwater color correction. Chen
et al. [21] developed a unified network called HybridDetectionGAN, which consists of
an enhancement model and a detection preceptor in each branch to generate detection-
favoring images. However, these methods may struggle to handle extreme distortions in
underwater images when provided with a singular input.
In summary, the current state-of-the-art methods for underwater image enhancement
(UIE) suffer from limitations in their neural network training, resulting in suboptimal
image quality enhancement. Thesemethods have primarily been trained on similar types
of datasets, which restricts their effectiveness in handling diverse underwater scenes and
variations.
In contrast, our proposed F2UIE addresses this limitation by leveraging a diverse range
of datasets during the training process. By incorporating various types of underwater
images into our training pipeline, our F2UIEmodel becomes more versatile and capable
of effectively enhancing image quality across different underwater environments. This
broader training approach enhances the generalization and adaptability of our model,
enabling it to performmore effectively than existingmethods in terms of image enhance-
ment.

(ii) Conventional Methods: Conventional methods for UIE rely on physical scattering mod-
els andmanually crafted priors derived fromstatistical information to recover the original
pixel intensity. These priors-based methods such as underwater dark channel prior
(UDCP) [22], red-saturation prior [23], blurriness prior (BP) [24], minimum information
loss prior [25], haze-lines prior [26] and general dark channel prior [27] have shown
success in enhancing underwater images. However, these methods are often sensitive
to specific underwater scenes and lack robustness when dealing with severely degraded
real-world underwater images.
For example, the underwater dark channel prior (UDCP) fails when applied to white
scene objects, and the blurriness prior (BP) does not perform well on clear underwater
images.Moreover, the simple physicalmodels employed by thesemethodsmaynot cover
the full range of underwater scenes, and the quality of the enhancement results heavily
relies on the accuracyof the physicalmodel itself. To address these limitations,Akkaynak
et al. [28] have proposed revised underwater image formation models that consider
different scattered signal dependencies. Zhou et al. [29] introduced backscatter pixel
priors and color cast restoration methods to deal with blurriness and color degradation
issues.
In summary, conventional methods for UIE aim to address the scattering and absorption
parameters by incorporating additional constraints to compensate for information loss.
However, these hand-crafted priors may lack robustness and struggle to handle all chal-
lenging scenarios effectively. In contrast, our proposed F2UIE takes a different approach
by avoiding reliance on a physical model to compensate for information loss. Instead,
the F2UIE leverages its inherent learning capabilities to efficiently enhance underwater
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images across various scenarios, regardless of the level of degradation. By eliminat-
ing the dependency on explicit physical models, our F2UIE method exhibits improved
adaptability and effectiveness in handling diverse underwater conditions.

(iii) Fusion-based Methods: Fusion-based methods combines multiple input images or their
processed versions to improve the overall quality of underwater images [30]. These
methods aim to address challenges such as color distortion, contrast enhancement, and
preservation of information. Fusion can occur in different domains, including spatial and
frequency domains, and involves combining different components of the input images
to achieve the desired enhancement.
Li et al. [31], focused on minimum information loss and histogram distribution prior to
enhance contrast and correct color distortion. Fu et al. [32] employed a “two-step” strat-
egy to correct color-cast and enhance contrast, but this approach led to noisy results and
color cast issue. To overcome these limitations, Ancuti et al. [19] derived both a contrast-
enhanced version and a color-corrected version from the original input, blending them
using weights based on “Laplacian contrast,” “local contrast,” “saliency,” and “exposed-
ness” in a multi-scale fusion process. To address this, Ancuti et al. [33] proposed a new
fusion strategy that directly blended a sharpened version and a gamma-corrected version
derived from a color-corrected and white-balanced version of the original underwater
image. They utilized “Laplacian,” “saliency,” and “saturation” as weights for the fusion
process.
Another approach, L2uwe, introduced by Marques et al. [34], created two models to
generate processed versions of the input and employed a multi-scale fusion scheme
for underwater image enhancement. Zhuang et al. [35] developed a Bayesian retinex
algorithm to enhance the visual quality of underwater images. However, this approach
was unable to preserve information, particularly for images captured under artificial
illumination.
In summary, the existing fusion-based approaches for UIE have limitations including
the presence of artifacts, noisy outcomes, unrealistic color tones, and challenges in
maintaining detail information and addressing color distortion. To overcome these limi-
tations, this paper focuses on leveraging the strengths of both learning-basedmethods and
fusion-based methods to enhance the overall quality of degraded underwater images. By
combining the advantages of these approaches, we aim to develop a more effective and
robust method for underwater image enhancement. Through this integrated approach,
we seek to address the limitations and improve the visual quality of underwater images.

3 F2UIEmethodology

Existing underwater image enhancement methods often struggle to handle the wide range of
variations in the underwater environment and lighting conditions. However, the fusion-based
method [19] has shown promising results by incorporating multiple pre-processing steps and
a fusion technique. Despite the rapid development of UIE approaches, deep learning-based
algorithms still lag behind traditional techniques in terms of generalization, primarily due to
the scarcity of diverse training data and the need for well-designed network architectures.

In this research paper, an innovative approach is proposed, Feature Transfer based Con-
volutional Neural Network (F2UIE), which is inspired by the fusion approach and utilizes
a convolutional neural network (CNN). Figure 3, illustrates the comprehensive framework
of the proposed F2UIE method, showcasing its main phases: pre-processing, training, and
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Fig. 3 Schematic diagram of the F2UIE framework for image enhancement

testing. In the pre-processing phase, we divide the input dataset into training and testing sets.
For data augmentation, we apply operations such as rotation, color transformation, and shift-
ing to the training data, enhancing its diversity and robustness. In the training phase, we train
a Multi-Stack CNN using the pre-processed data and carefully selected hyper-parameters.
This enables the network to learn the underlying patterns and features specific to underwater
images. Finally, in the testing phase, we employ the trained Multi-Stack CNN model to gen-
erate enhanced images, effectively improving the visibility and overall quality of underwater
images.

By integrating the strengths of the fusion approach and feature-based CNN, the proposed
F2UIE method aims to address the limitations of existing UIE methods and offer a more
efficient and effective solution for enhancing underwater images.

3.1 Input dataset

F2UIE is trained using real and synthetic underwater datasets. After investigating a wide
range of underwater image datasets, four benchmark datasets are utilized for training the
network. The details of the datasets are mentioned below:

• Enhancement of underwater visual perception (EUVP) [36] The EUVP includes 12, 000
paired and 8, 000 unpaired images of degraded and high visual quality. The images were
obtained during the oceanic explorations in varied visibility circumstances. Real-world
images were degraded using an underwater distortion model based on CycleGAN to
generate the paired images.

• Underwater generative adversarial network (UWGAN) [37] The UWGAN is comprised
of 15, 000 degraded underwater images. The dataset is generated using the generative
adversarial network that generates synthetic images along with its ground truth. The
images include color-cast and haze properties of the underwater environment.
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• Real-world underwater image enhancement (RUIE) [38] The RUIE is collected from the
real-world underwater environment that shows the properties of the complex underwater
environment. The RUIE consists of 4,230 images. The dataset includes marine animals
(such as urchins, and scallops) and shows issues (such as color-cast, haze, and limited
lightning).

3.2 Pre-processing phase

During the pre-processing phase of our research on underwater image enhancement, the input
dataset is divided into training and testing datasets, with a ratio of 70:30. For the training
phase of the F2UIE, a set of 37,961 images are utilized, while the remaining 16,269 images
are reserved for evaluating the performance of the F2UIE model.

In addition, to enhance the diversity and robustness of the training data, various data
augmentation techniques are applied. These techniques involve resizing, flipping, and rotation
operations. Considering the limitations of memory resources, the training data is resized to
a dimension of 256 × 256 pixels.

By employing this pre-processing phase, we ensure a proper division of the dataset for
training and testing purposes. Moreover, the augmentation techniques applied to the training
data enhance its variability, thereby allowing the F2UIE model to learn and generalize bet-
ter. The resizing operation helps manage the memory constraints while still preserving the
essential visual information necessary for the subsequent stages of the F2UIE model.

3.3 Training phase

In the training phase, F2UIE employsmulti-stack CNN that is trained using the pre-processed
images, CLAHE and WB with their respective raw image resulting in predicted confidence
maps. The predicted confidence maps are the important features of the underwater image.
The outstanding results of fusion techniques [19] motivated us to employ a fusion-based
approach. Multi-stack CNN is a convolutional neural network that serves as a baseline model
and is based on a fusion approach. The hyper-parameter settings that are used to train the
Multi-stack CNN are mentioned in Table 1.

3.3.1 Data augmentation

Collecting a comprehensive and diverse underwater dataset poses significant challenges due
to the complex nature of underwater scenes and the degradation caused by ecological factors.
The inherent similarity among captured underwater images within a specific scene limits
the variability of the dataset. To address this limitation and improve the effectiveness of

Table 1 The values of parameters
used to train the Multi-stack CNN

S.No. Parameter Values

1 Batch size 10

2 Learning rate 0.0001

3 Epochs 10000

4 Training dataset EUVP, UWGAN, RUIE

5 Optimizer Adam
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underwater image enhancement algorithms, data augmentation techniques are employed to
enrich the dataset with additional data points generated through subtle modifications of the
existing samples.

Rotation, color transformation, and shift operations are utilized as augmentation tech-
niques. Rotation enables the modification of the orientation and perspective of the input
images, enhancing the diversity and richness of the dataset and is computed using (1). Color
transformations, on the other hand, allow for adjustments in brightness, contrast, and hue,
introducing different color patterns within the images and further augmenting the dataset.
Additionally, shift operations introduce slight spatialmodifications, contributing to the explo-
ration of various scene compositions.

Through data augmentation, the dimensionality of the underwater image dataset can be
effectively reduced, focusing on the essential information contained within the three color
channels (red, green, and blue). This reduction not only aids in mitigating the similarity issue
but also facilitates the development of more efficient and accurate algorithms for underwater
image enhancement.

Ixy = [
rxy, gxy, bxy

]
(1)

where rxy, gxy , and bxy are the eigenvalues of red, blue and green direction vectors respec-
tively. These values are computed using the (2)

rxy = mrλr ,

gxy = mgλg

bxy = mbλb (2)

where mr , mg and mb are the matrix of the red, blue and green color channels. Further, β is
used as a random variable where mean= 0 and variance=0.1 and added in the transformation
function as shown in (3).

Ixy = [
mr ,mg,mb

] [
βrλr , βgλg, βbλb

]T (3)

Then, rotation is performed as shown in (4)
{
X ′ = Xi cos θ1 − Yi sin θ1
Y ′ = Xi sin θ1 + Yi cos θ1

(4)

where
(
X ′, Y ′) are the coordinates that were rotated and transformed and θ1 is angle of

rotation.
Then, shift transformation is performed as shown in (4)

{
X ′ = Xi + Yi tan θ2
Y ′ = Xi tan θ2 + Yi

(5)

where θ2 is the angle of shifting.

3.3.2 Training input generation

The inputs for training the multi-stack CNN are generated using WB and CLAHE methods.
Thus, two inputs are generated: IW B and IC . Further, IW B , IC and IRAW are passed in
multi-stack CNN where IRAW is the degraded underwater image.

(i) White Balancing (WB)
The WB is used to resolve the color-cast issue and has been proven to be effective [19].
White balancing is a common image enhancement technique used to correct color cast
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and restore the true colors in an image. The step by step computation of WB is shown
below:
Step 1: Compute Color Channels- For an input image IRAW the red channel R(x, y),
green channel G(x, y), and blue channel B(x, y) are extracted.
Step 2: Compute Channel Averages- Calculate the average values of each color channel
over the entire image.

R̄ = 1

n

width∑

x=1

height∑

y=1

R(x, y) (6)

Ḡ = 1

n

width∑

x=1

height∑

y=1

G(x, y) (7)

B̄ = 1

n

width∑

x=1

height∑

y=1

B(x, y) (8)

where N is the total number of pixels of an image.
Step 3: Compute Scaling Factors- Normalize the average channel values to make the
average gray value equal for all channels.

V̄ = R̄ + Ḡ + B̄

3
(9)

Compute the scaling factors for each channel:

SR = V̄

R̄
(10)

SG = V̄

Ḡ
(11)

SB = V̄

B̄
(12)

Step 4: Adjust Color Channels- Multiply each channel by its respective scaling factor
to balance the colors.

R′ = SR · R(x, y) (13)

G ′ = SG · G(x, y) (14)

B ′ = SB · B(x, y) (15)

Step 5: Clamp Values- Ensure that the adjusted channel values are within the valid range
of intensity values, typically 0 to 255:

R′ = min(max(R′(x, y), 0), 255) (16)

G ′ = min(max(G ′(x, y), 0), 255) (17)

B ′ = min(max(B ′(x, y), 0), 255) (18)

Step 6: Merge Color Channels- Combine the adjusted red, green, and blue channels to
form the white-balanced image.

IWB = (R′,G ′, B ′) (19)
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(ii) CLAHE
The contrast-limited adaptive histogram equalization (CLAHE) is a widely used tech-
nique in image pre-processing that enhances the local contrast of an image while
maintaining the overall global contrast [39, 40]. It is particularly useful in applications
such as medical imaging, computer vision, and digital photography. CLAHE operates
on the concept of histogram equalization but with a contrast limiting mechanism to
prevent over-amplification of noise [41]. The CLAHE method to enhance the degraded
underwater image consists of the following steps:
Step 1: Image Partitioning- Divide the input image into non-overlapping tiles or patches
of equal size.
Step 2: Histogram Calculation- For each tile, compute the histogramH(i) that represents
the frequency of occurrence of pixel intensity i.
Step 3: Cumulative Distribution Function (CDF)- Calculate the CDF (C(i)) based on the
histogram, representing the cumulative probability of pixel intensities up to intensity i .

C(i) =
i∑

j=0

H( j) (20)

where
∑[H( j)] denotes the sum of histogram values from j = 0 to i.

Step 4: Contrast Enhancement- Enhance the contrast by mapping the original intensity
values to new enhanced values within each tile. Apply a contrast limiting function,
denoted as F(i), to the pixel values. The contrast limiting function prevents excessive
contrast enhancement.

F(i) = L · C(i) − Cmin

Cmax − Cmin
(21)

where L represents the desired intensity range, andCmin andCmax are the minimum and
maximum CDF values within the tile, respectively.
Step 5: Clip Excessive Intensities- Check if any enhanced pixel intensity exceeds the
intensity range [0, L]. If so, clip the intensity value to the range limits.
Step 6: Interpolation- Interpolate the enhanced tiles to create the final enhanced image.
This step ensures smooth transitions between adjacent tiles and maintains overall visual
consistency.

3.3.3 Architecture of multi-stack CNN

The Multi-Stack CNN is based on the convolutional neural network where the ReLU activa-
tion function is used. It is a fusion network that fuses the features of the input image and a
pre-processed image along with the estimated confidence maps resulting in image enhance-
ment.Multi-Stack CNN includes a learning unit, where raw images are fed to theMulti-Stack
CNN along with the images obtained using CLAHE and WB. The Multi-Stack CNN is uti-
lized to boost the performance and training of the F2UIE. The output of the learning unit is
estimated by confidence maps. At last, the output of the Multi-Stack CNN is the enhanced
images. Finally, the proposedUIEL function is described in detail that is used forMulti-Stack
CNN training. The total features extracted are shown in Table 2.

The input of the Multi-Stack CNN module is pre-processed images, IC , IW B , and raw
image IRAW that is used for feature extraction. The relationship between the convolution
map and activation maps is shown in (22)

X1 = Conv7×7(X), X2 = Conv3×3(X), X3 = Conv3×3(X),

123



50122 Multimedia Tools and Applications (2024) 83:50111–50132

Table 2 The summary of
trainable parameters in F2UIE

Name Stride Output shape Parameters

Input layer s=1 256*256*1 0

Conv7*7 s=2 256*256*64 3200

Conv3*3 s=2 256*256*128 73,856

Conv3*3 s=2 256*256*256 2,95,168

Conv3*3 s=2 256*256*128 2,95,040

Conv3*3 s=2 256*256*64 73,792

Conv7*7 s=2 256*256*3 1731

Total trainable parameters=7,42,787

X4 = Conv3×3(X), X5 = Conv3×3(X), X6 = Conv7×7(X) (22)

After that, 3 activation maps are then fused using the element-wise summation as shown
in (23)

X̂ = X1 + X2 + X3 + X4 + X5 + X6 (23)

Then X̂ is transformed into a channel-wise tensor by employing the global maximum
pooling (GMP) and two sequentially fully connected (FC) layers to obtain 3 activation maps
as shown in (24)

Ci = f ci (Gmax (X̂)) (24)

where Gmax is global maximum pooling, f ci are two FC layers for different activation maps
and i is the size of the convolution kernel. Finally, to predict the confidence maps, the two
obtained inputs IC andIW B, and the IRAW are fed to the F2UIE. At last, two confidence maps
are obtained CCandCWB .

To reduce the artefacts introduced using the WB and CLAHE algorithms, two learning
units are used. The learning unit includes 4 stacked convolutional layers. The total features
extracted in the learning unit are shown in Table 3. Each learning unit is fed with IRAW , IC
and IW B and the output is the modified images, nC and nW B . At last, the outputs of learning
units are multiplied with the predicted confidence maps as shown in (25).

I iep = nW B � CWB + nC � CC (25)

where I is the enhanced image; � is the multiplications of matrices; nW B and nC are the
output of pre-processing byWB and CLAHE algorithms, respectively; CWB and CC , are the
learned confidence maps (Fig. 4).

Table 3 The summary of
trainable parameters in Learning
Unit

Name Output shape Parameters

Input Layer 256*256*1 0

Conv7*7 256*256*64 3200

Conv3*3 256*256*64 36,928

Conv3*3 256*256*64 36,928

Conv1*1 256*256*3 195

Total Trainable parameters= 77,251
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Fig. 4 Step-by-Step workflow of the Multi-stack CNN model for enhancing an underwater image

3.3.4 Loss function

To make sure that the edges are sharp, the F2UIE is trained with a multi-term loss function
that takes into account the pixel-wise loss caused due to enhancement. The loss is computed
using two losses including VGG perceptual loss and mean square error (MSE) loss.

• MSE:
It calculates the total of squared differences between the enhanced image Ii and the
ground truth information I ∗

i as shown in (26).

LMSE = 1

N

N∑

i=1

(
Ii − I ∗

i

)2 (26)

• SSIM: It is used to evaluate the structural similarity between the predicted and ground
truth images during underwater image enhancement. This loss function considers aspects
such as luminance, contrast, and structural information present in the images [42]. The
SSIM ensures that the model captures and preserves important structural details and
characteristics, leading to a more visually accurate representation of the underwater
scene.

SSIM(x, y) = (2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2)
(27)

• VGG Perpetual Loss: It is based on the 19-layer VGG network that employs the ReLU
activation function. The feature representations are obtained by passing the enhanced
image and the ground truth image to the last convolutional layer of the pre-trained
network. To compute the perceptual loss the total distance between the feature repre-
sentations of the enhanced image, (Jc, and the ground truth image Ĵc is obtained as
shown in (28)

LPer

(
Jc, Ĵc

)
=|

(
VGG (Jc) − VGG

(
Ĵc

)
| (28)

where VGG is the pre-trained VGG network [43].
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• Underwater ImageEnhancement Loss (UIEL) Function: The proposedUIEL is computed
as the sum of VGG perceptual loss and MSE loss as shown in (29). It computes the
optimized value of the loss to reduce the loss

U I EL = α1LMSE + α2LPer (29)

where α1 and α2 are the scaling coefficients. They are used to adjust the loss components
and the values are set as hyper-parameters.

The algorithm of the Multi-Stack CNN is shown in Algorithm 1.

Algorithm 1 Algorithm of Multi-Stack CNN.
Input: Raw image IRAW , the output image by using CLAHE and WB
Output: Enhanced image I iep
Training and Feature Extraction:
for i = 1 to Iraw do

xic= Extract the feature by using CNN of IC
xia= Extract the feature by using CNN of IW B
Fusion of xic and xia with the enhance result of learning unit: NC , NWB
YC = nC × xic
YW B = nW B × xia
I iep = YW B + YC
return I iep

end for

4 Experimental analysis

The effectiveness of the F2UIE is tested on real and synthetic datasets including the RUIE,
EUVP, UWGAN on existing CLAHE, UCM, UWCNN,Water-Net, Shallow-Net and F2UIE
methods. The performance of the F2UIE method is analyzed using the natural image qual-
ity evaluator (NIQE) [44], UIQM [45], blind/reference-less image spatial quality evaluator
(BRISQUE) [46] evaluation metric. The experiments are implemented on an i7 processor,
Nvidia Quadro T2000 4GB Graphics and Windows 10 Professional Operating System.

4.1 Evaluationmetric

The evaluation of the F2UIE model was conducted using non-reference evaluation metrics,
due to non-availability of ground truth information in the RUIE dataset. Non-reference eval-
uation metrics rely on the enhanced image itself to estimate the quality of the input image. In
this study, three evaluationmetrics were employed: NIQE,UIQM, andBRISQUE to compute
the performance of F2UIE.

NIQE: It is inspired by human visual perception and plays an important role in assessing
image quality. It computes the total amount of noise and computes the natural scene statistics.
Further, use the Gaussian model and then calculates the mean and standard deviation of each
Gaussian. Finally, the distance between two Gaussian is estimated and that is considered
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as the final score. A lower NIQE value indicates superior image quality, reflecting a higher
degree of naturalness and reduced noise artefacts.

D (ν1, ν2, �1, �2) =√(
(ν1 − ν2)

T
(

�1+�2
2

)−1
(ν1 − ν2)

)
(30)

where ν1, ν2 are mean vectors, �1, �2 are co-variance matrices and the degraded image of
the multi-variance Gaussian model.

BRISQUE: It computes the level of distortion present in an image. It quantifies the loss
of naturalness exhibited by the input image by analyzing its natural scene statistics and
extracting relevant feature vectors. Subsequently, a support vector machine is utilized to
estimate the final BRISQUE score. A lowerBRISQUEvalue indicates superior image quality,
as it signifies a reduced level of distortion and a higher degree of naturalness.

Î (i, j) = I (i, j) − μ(i, j)

σ (i, j) + C
(31)

where, I (i, j) is the intensity of the input image, μ(i, j) is the mean, σ(i, j) is the standard
deviation and C is constant.

UIQM: The UIQM is derived from the perceptiveness of the human visual system. It
takes into account three crucial parameters: colorfulness, sharpness, and contrast measure of
underwater images. A higher UIQM value signifies superior image quality. By incorporating
these perceptual aspects, UIQM provides a comprehensive assessment of underwater image
quality, ensuring that the evaluation aligns with human visual perception.

U I QM = c1 ×U ICM + c2 ×U I SM + c3 ×U IConM (32)

where, c1, c2 and c3 are the weights.

4.2 Qualitative comparison

Underwater images exhibit distinct characteristics that differ from natural images. They are
characterized by low luminance and contrast. Consequently, it is crucial to evaluate the impact
of different image enhancement methods based on human visual perception. To gain a deeper
understanding of the effectiveness of the F2UIE method, a comprehensive visual analysis
was conducted using 5 images from each dataset. The selection of these images was based
on their degradation level and the presence of common issues encountered in underwater
imagery, such as color-cast, low-lighting, and haze. Different UIE methods are compare
the performance of F2UIE including CLAHE [47], UCM [48], UWCNN [13], Water-Net
[16], Shallow-Net [49], WaveNet [50] and F2UIE methods on RUIE, EUVP and UWGAN
datasets. By conducting this comprehensive assessment, we aim to ascertain the superiority
of F2UIE in real underwater scenario.

The qualitative comparison analysis serves a dual purpose: (1) showcasing the effective-
ness of deep-learning-basedmethods in situationswhere reference information is unavailable,
and (2) highlighting the superiority of our proposed method, which successfully enhances
underwater scenes without relying on ground truth data for training for real as well as syn-
thetic underwater images.

In Fig. 5, the input images from RUIE dataset exhibits a noticeable green deviation, and
several of the compared UIE methods fail to produce satisfactory results in addressing this
issue. Specifically, methods such as CLAHE and UCM are unable to effectively eliminate
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Fig. 5 The qualitative comparison of existing CLAHE, UCM, UWCNN, Water-net, Shallow-net, Wave-net
with F2UIE on RUIE dataset

the greenish color cast. Whereas, Water-Net and Shallow-Net both introduces yellowish tint.
The UWCNNmethods also introduces red artefacts in the enhanced with increased contrast.
The results obtained using Wave-Net are quite effective but higher luminance. In contrast,
our F2UIE successfully eliminates the green deviation and achieves a well-balanced color
representation.

In Fig. 6, the input images fromEUVP dataset includes different underwater issues such as
color cast and low brightness. The CLAHE and UCMmethods are unable to handle green as
well as blue color cast issue. TheUWCNNeliminates color cast issue but degrades the quality
of image by introducing reddish color. Whereas Water-net and Shallow-net both partially
removes color cast issue but results in poor contrast. In contrast, our F2UIE successfully
eliminates the color cast issue in some scenarios.

In Fig. 7, the input images fromUWGAN dataset includes different level of color cast and
haze issues. The CLAHE, UCM, UWCNN, Water-net, Shallow-net and Wave-net partially
removes the color-cast and fails to restore the true colors of the images. However, the F2UIE
shows better results in comparison to existing methods due to its training and better feature
extraction.

Through qualitative analysis, it is evident that the proposed F2UIE method outperforms
the compared methods in terms of color-cast removal, haze reduction, and improved image
quality. These results validate the effectiveness of the F2UIE method in handling underwater
image enhancement challenges.

4.3 Quantitative comparison

The quantitative analysis of the F2UIE method was conducted by comparing its performance
with several existing methods, using metrics such as NIQE, BRISQUE, and UIQM.
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Fig. 6 The qualitative comparison of existing CLAHE, UCM, UWCNN, Water-net, Shallow-net, Wave-net
with F2UIE on EUVP dataset

Fig. 7 The qualitative comparison of existing HE, CLAHE, ICM, UCM, UWCNN, Water-Net and F2UIE on
the UWGAN dataset
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The results presented in Table 4 demonstrate that the F2UIE method achieved the highest
values for UIQM for real underwater datasets such as RUIE ad EUVP. This indicates that
F2UIE effectively enhances the sharpness, color, and contrast of degraded images, surpassing
the capabilities of other methods. In contrast, traditional approaches like CLAHE and UCM
mainly focus on contrast improvement but often introduce unwanted artefacts. Moreover, the
UWCNN, WaterNet, ShallowNet and WaveNet method tends to produce a yellowish effect
in the output, resulting in undesired noise. It also shows that the F2UIE method achieved the
lowest BRISQUE values for all three datasets, indicating its ability to recover images that
are more aligned with the human visual system. The F2UIE method successfully restores the
natural colors in the images.

In terms of NIQE, as shown in Table 4, the F2UIE method obtained the minimum values
for the EUVP and UWGAN datasets, demonstrating its effectiveness in restoring the natu-
ralness of degraded images. However, for the RUIE datasets, F2UIE did not yield significant
improvements compared to other methods. Notably, the WaveNet method performed well in
terms of NIQE.

Overall, the quantitative analysis confirms that the proposed F2UIE method outperforms
existing methods in terms of NIQE, BRISQUE, and UIQM, showcasing its superior ability
to enhance underwater images.

4.4 Run-time comparsion

The average runtime ofHE,CLAHE, ICM,UCM,UWCNN,Water-Net and F2UIE have been
computed on different resolutions, 100×100, 200×200, 300×300, 400×400 and 500×500.
Table 5 presents the values of the average runtime of the compared methods including F2UIE
for 200 images. However, the proposed network has been tested on a large number of datasets.
It can be seen that UCM spends more time processing in comparison to other methods. It
can also be observed that Water-Net obtains the worst time complexity. Among, all these
methods HE and CLAHE spend minimum time in processing as they do not need training
time. However, in terms of deep learning methods, the proposed F2UIE outperforms existing
methods as it is a lightweight network.

5 Conclusion

In this paper, a novel approach Feature-based Convolutional Neural Network (F2UIE) is
presented for underwater image enhancement. Its effectiveness, superior performance, and
efficiency make it a valuable tool for various underwater imaging applications, ranging from
marine research to underwater robotics and surveillance. The qualitative and quantitative eval-
uation of the F2UIE demonstrates its effectiveness in addressing common challenges such as
haze, color-cast, and low-lighting in underwater images. The qualitative results showcase that
the F2UIE method successfully mitigates color-cast issues and produces visually appealing
enhancements. Furthermore, the F2UIE exhibits robust performance in removing haze from
both real-world and synthetic underwater images. The quantitative evaluation validates the
superiority of the F2UIE over state-of-the-art methods using metrics such as UIQM (RUIE-
3.367,UWGAN-2.631, EUVP-3.390), NIQE (RUIE-3.146,UWGAN-5.11, EUVP-3.41) and
BRISQUE (RUIE-36.44,UWGAN-37.01 andEUVP-38.38) for all three datasets. The F2UIE
achieves excellent performance in terms of image quality assessment, further affirming its
effectiveness in enhancing underwater images. Moreover, the proposed F2UIE demonstrates
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Table 5 The total run-time of HE, CLAHE, ICM, UCM, UWCNN, F2UIE and Water-Net methods on RUIE,
UWGAN and EUVP dataset

Image size CLAHE UCM UWCNN Water-net Shallow-net WaveNet Proposed F2UIE

100 × 100 1.56 1.4 249.14 122.97 241.82 408.62 225.16

200 × 200 1.86 2.15 299.61 536.59 264.25 620.45 219.05

300 × 300 3.89 2.9 224.58 1172.64 294.2 1012.26 213.6

400 × 400 4.63 4.87 385.39 2018.56 340.2 1176.63 281.13

500 × 500 5.79 6.36 469.83 3086.62 410.52 2273.23 335.19

The bold values in Table 5 proves that F2UIE outperforms existing deep learning methods methods as it is a
lightweight network

promising results in terms of average run time for different image sizes (100*100-225.16,
200*200-219.05, 300*300-213.6, 400*400-281.13, 500*500-335.19), outperforming other
deep neural networks. This efficiency is crucial for real-time and resource-constrained appli-
cations.

However, there are avenues for future research and improvement. Exploring other neural
network architectures as baseline models could potentially enhance the effectiveness and
performance of the F2UIE. Additionally, investigating novel techniques for handling specific
challenges in underwater image enhancement, such as image distortion and noise reduction,
would further contribute to advancing the field.

Author Contributions Not applicable

Funding Not applicable

Availability of data andmaterials Not applicable

Code Availability Not applicable

Compliance with ethical standards

Conflicts of interest Not applicable

Ethics approval Not applicable

Consent to participate Not applicable

Consent for publication Not applicable

References

1. Narasimhan SG, Nayar SK (2002) Vision and the atmosphere. Int J Comput Vis 48(3):233–254
2. Drews P, Nascimento E, Moraes F, Botelho S, Campos M (2013) Transmission estimation in underwater

single images. In: Proceedings of the IEEE international conference on computer vision workshops,
pp 825–830

3. Peng Y-T, Cosman PC (2017) Underwater image restoration based on image blurriness and light absorp-
tion. IEEE Trans Image Process 26(4):1579–1594

4. Cai X, Jiang N, Chen W, Hu J, Zhao T (2023) Cure-net A cascaded deep network for underwater image
enhancement. IEEE J Ocean Eng 1–11. https://doi.org/10.1109/JOE.2023.3245760

123

https://doi.org/10.1109/JOE.2023.3245760


Multimedia Tools and Applications (2024) 83:50111–50132 50131

5. Sun B, Mei Y, Yan N, Chen Y (2023) Umgan: Underwater image enhancement network for unpaired
image-to-image translation. J Marine Sci Eng 11(2):447

6. Fu X, Cao X (2020) Underwater image enhancement with global-local networks and compressed-
histogram equalization. Signal Process Image Commun 86:115892

7. Verma G, Kumar M (2022) Systematic review and analysis on underwater image enhancement methods,
datasets, and evaluation metrics. J Electron Imaging 31(6):060901

8. Hitam MS, Awalludin EA, Yussof WNJHW, Bachok Z (2013) Mixture contrast limited adaptive his-
togram equalization for underwater image enhancement. In: 2013 International Conference on Computer
Applications Technology (ICCAT), pp 1–5. IEEE

9. Tian Y, Narasimhan SG (2009) Seeing through water: image restoration using model-based tracking. In:
2009 IEEE 12th International conference on computer vision, pp 2303–2310. IEEE

10. Verma G, Kumar M, Raikwar S (2023) Single under-water image enhancement using the modified trans-
mission map and background light estimation. In: Machine vision and augmented intelligence: select
Proceedings of MAI 2022, pp 235–247. Springer
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