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Abstract
We introduce a novel image encryption and decryption algorithm for multiple images 
incorporating multiple parameter fractional discrete cosine transform (MPFrDCT), 3D 
Arnold transform and RSA cryptosystem. Before encryption, the images are changed into 
their indexed formats by removing their color maps. The indexed formats of the images are 
taken as the red, green and blue channel of an ��� image. Firstly, the ��� image is taken 
as the input of 3D Arnold transform. The 3D Arnold transform not only dislocates the 
pixel positions, but also changes the pixel values. Mathematically, the 3D map performs 
both permutation as well as substitution. The distorted image is now encrypted using RSA 
cryptosystem which is a public key cryptosystem. The RSA cryptosystem makes the image 
secure in public domain as the hard problem is the factorization of large primes which is 
unbreakable. Lastly, the domain of the encrypted image is changed to frequency domain 
using MPFrDCT. If the secret keys are known to an unauthorized person, the encryption 
algorithm is still secure as the security of the presented cryptosystem depends upon the 
secret keys and the arrangements of the secret keys. The proposed image encryption algo-
rithm is storage efficient. The statistical and simulation analysis are conducted to evaluate 
the robustness of the presented encryption and decryption processes.
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1  Introduction

Due to vast development of network and communication technologies, exchange of digital 
images over the public channel has increased. The major issues in transmitting images over 
the public channel are storage and security of the images.

The security of the images can be achieved by developing image encryption algorithm. 
Several color image encryption algorithms are introduced in this research field [18, 22, 
40, 44] using Mellin transform, random phase encoding and Arnold transform etc. Opti-
cal image encryption algorithm [28] has been introduced in fourier transform domain. 
Researchers have also developed image encryption algorithms [10, 11, 19, 21, 41] in frac-
tional Fourier transform domain which is the generalization of Fourier transform. Image 
encryption algorithms based on choatic mapping combined with Hartley transform domain 
[8, 23], Gyrator transform [1–5, 31] and wavelet transform [6, 9, 26] have been proposed.

Multiple images are taken together to make the image encryption algorithms storage 
efficient. This concept was introduced by Situ and Zhang [32] incorporating wavelet multi-
plexing. Later, multiple image encryption algorithms [14, 17, 20, 30, 37, 39] are developed 
in fractional Fourier transform domain, Arnold transform, Gyrator transform and Fresnel 
domain. At the same time, double image encryption algorithm [29, 43] using multi-param-
eter fractional Fourier transform are proposed. The addition of chaotic map, dual pixel 
scrambling random phase encoding etc. adds an extra layer of security to the image encryp-
tion algorithms due to their scrambling behavior. Nonlinear amplitude and phase trunca-
tion based multiple image encryption algorithm [34, 35] in Fourier transform domain are 
also presented by different researchers. Nowadays, many researchers [12, 13, 16, 24, 25, 
36, 42] are working in this field.

Our contribution  We propose a novel technique to encrypt multiple images together in a 
multi-parameter frequency domain. Initially, three indexed images are extracted from three 
��� images. The three indexed images are treated as red, green and blue plane of an ��� 
image. The 3D Arnold transform is applied on the constructed ��� image. This transform 
permutes as well as changes the pixel values of the image. After this step, each pixel value 
is encrypted using RSA cryptosystem. This improves the security of the image as the hard 
problem in RSA cryptosystem is factoring of large primes. Lastly, MPFrDCT is applied on 
each encrypted pixel value. The encrypted image is a single image which makes the image 
encryption algorithm storage efficient as it is convenient to transform single image as com-
pared to multiple images. The decryption process is the reverse of the encryption process. 
After decryption, three images are recovered from the single encrypted image. Compari-
son, statistical and security analyzes are done to testify the proposed encryption algorithm.

Novelity  The presented image encryption algorithm is multi-layered secure in comparison 
to existing similar image encryption algorithms which are only single layered secure. The 
security in time, frequency and co-ordinate domain is developed using RSA cryptosystem, 
Arnold 3D cat map and multi-parameter FrDCT. The secret parameters in the scheme are 
the large primes in RSA, multiple parameters of MPFrDCT, secret keys and the arrange-
ments of secret keys. If an unauthorized person has access to secret keys still he is unable 
to get the original image as he does not know about the arrangements of secret keys. The 
presented image encryption algorithm is efficient in comparison to existing similar tech-
niques in terms of time complexity, storage complexity and communication complexity. 
Therefore, the presented scheme is novel.
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In Section 2, we have described the building blocks briefly. These are 3D Arnold trans-
form, MPFrDCT, RSA cryptosystem and Chirikov standard map. The encryption and decryp-
tion algorithm is presented in Section 3. Simulation is conducted in Section 4. In Section 5, 
we briefly compare our proposed algorithm with the similar techniques. Finally, the conclu-
sion is done in Section 6.

2 � Preliminaries

The fundamental building blocks RSA cryptosystem, MPFrDCT, discrete Chirikov standard 
map and 3D Arnold transform are briefly explained in this Section.

2.1 � 3D Arnold transform

The 2D Arnold transform permutes the position of the pixel in an image of size M ×M [30, 
33] using the following map.

where (r�
1
, r�

2
) is the new pixel position after permutation and (r1, r2) is the old pixel posi-

tion before permutation. The Arnold transfer only shifts the pixel positions from one posi-
tion to another position. The intensity values of the pixels remain unchanged.

The 3D Arnold transform permutes and substitutes the image pixels using the following 
map.

where the (mod M) is applied in the calculation of first two rows and (mod 256) is applied 
in the calculation of last row. The 3D Arnold transform first permutes the pixel position 
and then the substitution operation is done to change the pixel values. The third parameter

where r′
3
 is the pixel intensity after mapping and r3 is the pixel intensity before mapping. 

The inverse 3D Arnold map is given as below.

If the 3D Arnold transform is applied on the image t times, then the same image can be 
obtained using inverse 3D Arnold transform t times. The parameter t is kept secret.

(2.1)
(
r�
1

r�
2

)
=

(
1 1

1 2

)(
r1
r2

)
(mod M),

(2.2)
⎛⎜⎜⎝

r�
1

r�
2

r�
3

⎞⎟⎟⎠
=

⎛⎜⎜⎝

1 1 0

1 2 0

z1 z2 1

⎞⎟⎟⎠

⎛⎜⎜⎝

r1
r2
r3

⎞⎟⎟⎠
,

r�
3
= z1 × r1 + z2 × r2 + r3(mod 256),

(2.3)
⎛⎜⎜⎝

r1
r2
r3

⎞⎟⎟⎠
=

⎛⎜⎜⎝

2 − 1 0

−1 2 0

−z1 − z2 1

⎞⎟⎟⎠

⎛⎜⎜⎝

r�
1

r�
2

r�
3

⎞⎟⎟⎠
,



48566	 Multimedia Tools and Applications (2024) 83:48563–48584

1 3

2.2 � Assymetric key cryptosystem: RSA cryptosystem

An asymmetric key cryptosystem is a public key cryptosystem in which two different keys 
are used for image encryption and decryption process. One key is called public key and 
another is secret key. The secret key is kept hidden with the decrypter and the public key 
is made available for everyone. There is mathematical relation between the two keys. The 
RSA cryptosystem involves following steps. 

1.	 Firstly, two large different primes p and q are selected at random.
2.	 Generate the integer n by computing n = p ∗ q . Compute 

 is the number of positive integers less than n and relatively prime to n.
3.	 The encryption key e is the integer less than and relatively prime to �(n) , where, 

(e,�(n)) = 1 and 1 < e < 𝜙(n) . The encryption key is made available for everyone and 
is known as public key.

4.	 The decryption key d is the inverse of encryption key e modulo �(n) , i.e, 
d = e−1(mod �(n)) . The decryption key is kept secret and is known as secret key.

5.	 The plaintext message y ∈ ℤn is encrypted by computing ye(mod n) = c , where 
ℤn = {0, 1, 2, ..., n − 1} , c is called ciphertext.

6.	 The ciphertext c is decrypted by computing cd(mod n) ≡ yed(mod n) ≡ y(mod n) , as 
ed ≡ 1(mod �(n)).

The RSA cryptosystem is secure as long as the attacker does not know about the factoriza-
tion of n. So, the hard problem in RSA cryptosystem is factoring of large primes. This hard 
problem is also known as factoring problem. It states that it is computationally infeasible 
to factorize n = p ∗ q , where p and q are large primes. RSA cryptosystem withstands fre-
quency analysis attack indirectly by its encryption algorithm. In frequency analysis attack, 
the frequency distribution of ciphertext is analyzed to guess the corresponding plaintext. 
This attack is more effective where messages are replaced by a fixed pattern like in sub-
stitution cipher. The frequency of the ciphertext reveals the original plaintext whereas in 
RSA cryptosystem the ciphertext is obtained by taking the large power of the plaintext. 
The resulting ciphertext is a complex mathematical transformation rather than a simple 
substitution or transposition of the plaintext. The ciphertext looks like a random string of 
numbers and reveals nothing about the plaintext. Moreover, the key size in RSA is nearly 
2048 bits or more which makes it computationally infeasible to factorize the modulus and 
break the encryption algorithm using brute force or other known attacks.

In the proposed encryption algorithm, an ��� image with size M × N × 3 is encrypted 
using RSA cryptosystem. Each channel is a two dimensional matrix, say X, of size M × N , 
where X = [Xi,j], i = 1, 2,… ,M, j = 1, 2,… ,N . Each matrix has M ∗ N elements which 
are called pixels. Each pixel Xi,j is encrypted using the encryption key e as

Decrypt Ci,j using decryption key d as follows.

�(n) = (p − 1)(q − 1), where

𝜙(n) = {x ∈ ℕ ∶ (x, n) = 1 and x < n}

Ci,j = Xe
i,j
(mod n).
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2.3 � Chirikov standard map

This invertible map is useful in generating {�(j)}j=1,2,... and {�(j)}j=1,2,... which are random 
sequences using initial guesses {�0}, {�0} ∈ [0, 2�) . The two sequences are mathematically 
generated as follows.

where 𝜌 > 0 is a control parameter and �j, �j ∈ [0, 2�),∀i.

2.4 � Multi‑parameter fractional discrete cosine transform (MPFrDCT)

The DCT is an operator C ∶ ℝ
N
→ ℝ

N . The input and output of this map are both real vec-
tor of size N. The kernel matrix C for C is given as below.

where n, l = 0, 1, ...,M − 1, �0 = 1, �k =
√
2, l ≥ 1.

The properties of the matrix C are as follows. 

1.	 C is a unitary matrix.
2.	 C has M orthonormal eigenvectors xl with the property x∗

m
xl = �ml , where 

3.	 The eigenvalue �l corresponds to eigenvector xl where 𝜆l = ej𝜑l , 0 < 𝜑l < 𝜋 ∈ ℝ and it 
lies on the unit circle.

4.	 C is diagonalized as follows. 

 where Λ is a diagonal matrix with diagonal entries as �l , Xl = xlx
∗
l
 is unitary and 

XmXl = �mlXm and 
∑

l Xl = I

The map Ca ∶ ℝ
N
→ ℝ

N is an extension of the operator C and it is called fractional discrete 
cosine transform (FrDCT) [7], where “fraction” a ∈ ℝ . The operator Ca possess the follow-
ing properties. 

1.	 Ca+b = CaCb , this property is called additive property.
2.	 C1 = C , i.e, for a = 1 , Ca = C.

The kernel matrix Ca for FrDCT is given below.

Cd
i,j
(mod n) = Xi,j.

(2.4)�j+1 =(�j + �j)(mod 2�)

(2.5)�j+1 =(�j + � sin(�j + �j))(mod 2�),

(2.6)C =
����

1√
M
�k cos(2�

l(2n + 1)

4M
)
����.

(2.7)�ml =

{
1, if m=l

0, otherwise.

(2.8)C = XΛX∗ =
∑
l

Xne
j�l ,
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Alternatively,

where Xl = xlx
∗
l
,K = (M−�1−�−1)∕2 , 1 and -1 are the eigenvalues with the algebraic multi-

plicities �1 and �−1 , Y1 is the total number of �1 matrices Xl for eigenvalue 1, and Y−1 is the 
total number of �−1 matrices Xl for eigenvalue -1.

For instance, take M = 4M0 , M0 ∈ ℤ , (2.10) becomes

 where 𝜔l = 𝜑l + 2𝜋ql, l = 1, 2, ...,
M

2
, 0 < 𝜑l < 𝜋 , Al = 2Re[Xl],Bl = 2Im[Xl] , ql is the 

random sequence generated as explained in Section 2.3. For FrDCT, �� = (q1, q2, ..., qM∕2) , 
is the random sequence . Both �� and a are secret.

Multi-parameter fractional discrete cosine transform (MPFrDCT) of fractional order 
a, b for an image IM,N of size M × N is defined as follows:

where, CT
b
 is the notation for the transpose of Cb . The inverse MPFrDCT is computed a 

follows:

3 � Description of the proposed algorithm

In the design of an image encryption algorithm, a security system is developed by incor-
porating 3D Arnold transform, RSA cryptosystem and MPFrDCT. Firstly three ��� 
images are taken and converted into their indexed formats after removing the colour 
maps. The obtained three indexed images are named as �

�
 , �

�
 and �

�
 and are treated as 

red, green and blue channel of an ��� image. The image encryption and decryption pro-
cesses are pictorially displayed in Figs. 1 and 2 respectively.

Step 1 (Arnold 3D Transform): Firstly, Arnold 3D map is applied on each channel 
of an ��� image. The input matrices are �

�
 , �

�
 and �

�
 . The mechanism involved in this 

step is given below. 

1.	 The Arnold 3D map is applied t1, t2 and t3 times on �
�
 , �

�
 and �

�
 . The three matrices 

�� , �� and �� are obtained as output.
2.	 The matrices �� , �� and �� are treated as red, green and blue channel of an ��� 

image image.

(2.9)Ca = XΛaX∗.

(2.10)Ca = 2Re

[ K∑
l=1

Xl�
a
l

]
+ Y1(1)

a + Y−1(−1)
a,
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.
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Step 2 (RSA Cryptosystem): Secondly, each pixel intensity of each channel of the ��� 
image is encrypted as discused in Section 2.2 using RSA Cryptosystem. The public key 
and secret key for each component are given as below. 

1.	 For red channel input matrix is �� , the public and secret keys are pr, qr, nr = pr ∗ qr , 
�(nr) = (pr − 1)(qr − 1), er, dr = e−1

r
(mod nr)  ,  w h e r e  (er,�(nr)) = 1 a n d 

1 < er < 𝜙(nr).
2.	 For green channel input matrix is �� , the public and secret keys are 

pg, qg, ng = pg ∗ qg  ,  �(ng) = (pg − 1)(qg − 1), eg, dg = e−1
g
(mod ng)  ,  w h e r e 

(eg,�(ng)) = 1 and 1 < eg < 𝜙(ng).

Fig. 1   Encryption Process

Fig. 2   Decryption Process
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3.	 For blue channel input matrix is �� , the public and secret keys are 
pb, qb, nb = pb ∗ qb  ,  �(nb) = (pb − 1)(qb − 1), eb, db = e−1

b
(mod nb)  ,  w h e r e 

(eb,�(nb)) = 1 and 1 < eb < 𝜙(nb).

 The output matrices of this stage are ��� , ��� and ���.
Step 3 (Multi-Parameter Fractional Discrete Cosine Transform (MPFrDCT)): 
The MPFrDCT is applied on the output matrices ��� , ��� and ��� as explained in 
Section  2.4. The initial control parameters are generated according to the conditions 
explained in Section 2.3. 

1.	 The initial parameters x0 , y0 and � are taken randomly.
2.	 The two random sequences s and t are generated following the () and (2.42.5) 

(1000 + M∕2) times. Each random sequence is of length M∕2 . The sequences s and t 
are divided by � to generate sequences �′ and �′ . Both the sequences lie in the range 
[0, 2).

3.	 Generate the sequences �� and �� as follows. 

 where j = 1, 2, ...,M∕2.
4.	 Apply MPFrDCT with parameters a and b.

 The output of this step are ��� , ��� and ��� . The encryption algorithm encrypts 
three images together and produces a single encrypted image. The single encrypted 
image saves storage and communication cost. The decryption algorithm is just the 
reverse of the encryption algorithm. In decryption, firstly inverse MPFrDCT is applied 
on the encrypted image with parameters −a and −b . Now the partially encrypted image 
is decrypted using RSA cryptosystem. The secret keys used in the step are dr , dg , and db 
such that erdr ≡ 1(mod �(nr)) , egdg ≡ 1(mod �(ng)) and ebdb ≡ 1(mod �(nb)) . Lastly, 
the inverse Arnold 3D map is applied t1 , t2 and t3 times on each channel of the partially 
encrypted image. The inverse secret keys for RSA cyptosystem are dr, dg and db . Finally, 
colour maps are added to each channel of the decrypted images to get back the original 
��� color images.

4 � Simulation results

Simulation analysis is done to prove that the real world tests are conducted using the pro-
posed encryption scheme. The three experimental images for simulation are Baboon, Lena 
and Peppers from top to bottom given in Fig. 3(a). Each image is an ��� image of size 
512 × 512 × 3 . Firstly, the colour maps are extracted from these three images to produce 
three indexed images �

�
 , �

�
 and �

�
 . Three indexed images �

�
 , �

�
 and �

�
 are combined together 

to produce an ��� image of size 512 × 512 × 3 . The public and secret keys for red channel 
are pr = 59, qr = 61, nr = 3599 , �(nr) = 3480, er = 17, dr = 1433 . The public and secret 

(3.1)q1(j) =

{
0, if 0 ≤ ��(�) ≤ 1

1, 1 < ��(�) ≤ 2

(3.2)q2(j) =

{
0, if 0 ≤ ��(�) ≤ 1

1, 1 < ��(�) ≤ 2
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keys for green channel are pg = 73, qg = 79, ng = 5767 , �(ng) = 5616, eg = 19, dg = 3547 . 
The public and secret keys for blue channel are pb = 83, qb = 89, nb = 7387 , 
�(nb) = 7216, eb = 23, db = 1255 . Control parameters and initial guesses are set as 
x0 = 0.5489 , y0 = 0.4517 and � = 0.3587 to generate random sequences q1 and q2 . The 
MPFrDCT parameters are a = 0.5762 and b = 0.3982 . The parameters for Arnold 3D 
transform are set as t1 = 23 , t2 = 50 and t3 = 87 for red, green and blue channel respec-
tively. These parameters are kept secret. The single encrypted image of three color images 
is Fig. 3(b). The parameters for decryption process are taken as follows. The inverse Arnold 
3D parameters are t1 = 23 , t2 = 50 and t3 = 87 . The inverse parameters for MPFrDCT are 
−a and −b . The correctly decrypted images are displayed in Fig. 3(c).

4.1 � Security analysis

Security analysis is a tool to check the robustness of the encryption technique. The secret 
keys for the decryption of the encrypted image are dr = 1433, dg = 3547, db = 1255 , 
t1 = 23 , t2 = 50 , t3 = 87 , x0 = 0.5489, y0 = 0.4517 , � = 0.3587 , a = 0.5762 and 
b = 0.3982 . The images will be recovered correctly if the decrypter uses these secret keys 
in correct order. The encryption technique is very sensitive to secret keys. By sensitivity, 
we mean if we do small changes in the secret keys, the decrypter would not be able to get 
the original images. The sensitivity parameters are dr, dg, db , , x0, y0 , � , t1 , t2 , t3 , a, and b. 
The sensitivity analyzes are done briefly in this Section to prove our claim.

(a) (c)(b)

Fig. 3   Encryption/Decryption Results
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4.1.1 � Key space analysis

To check the robustness of the algorithm, key space analysis plays a vital role. There is a 
direct relationship between the robustness and the key space size. The secret keys involved 
in the proposed encryption algorithm are (i) the iteration numbers of Arnold 3D map 
t1, t2 and t3 , (ii) initial parameters x0 and y0 , (iii) control parameter � , (iv) decryption keys 
dr, dg, db in RSA cryptosystem and (v) fractions a and b. The hard problem in RSA crypto-
system is factoring algorithm, i.e., the factorization of nr, ng and nb . If nr, ng and nb , all are 
1024 bits long, the factorization is completely infeasible. The control parameter � and ini-
tial guesses x0, y0 are very small parameters. If we take the precision 10−14 , the key would 
be approximately of size 1070 . Also, the iteration numbers are integers and very large to 
withstand the exhaustive attack.

4.1.2 � Key sensitivity analysis

This test is conducted to demonstrate that the secret parameters are very sensitive. The term 
sensitivity means the small changes in the secret parameters would not allow decrypter 
to decrypt images correctly. Figure 3(a) shows the three input colour images. The single 
encrypted image is given in Fig. 3(b). Correctly decrypted images using correct secret keys 
with their correct arrangements are displayed in Fig. 3(c).

Sensitivity analysis‑I  This sensitivity analysis is executed using incorrect keys dr , dg and 
db . The incorrect keys are dr = 3547, dg = 1255, db = 1433 . The three decrypted images 
using these secret keys are given in Fig. 4a(i)-(iii).

Fig. 4   a(i)-a(iii) is Sensitivity Analysis-I using wrong dr = 3547, dg = 1255 and db = 1433 , b(i)-b(iii) is 
Sensitivity Analysis-II using wrong iteration numbers t1 = 50, t2 = 87 and t3 = 23 , c(i)-c(iii) is Sensitivity 
Analysis-III using wrong fractions a = 0.3982 and b = 0.5762
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Sensitivity analysis‑II  This sensitivity analysis is executed with incorrect iteration num-
bers of 3D Arnold map. The iteration parameters are t1 = 50, t2 = 87 and t3 = 23 . The three 
decrypted images using these secret keys are shown in Fig. 4b(i)-(iii).

Sensitivity analysis‑III  This sensitivity analysis is executed with random parameters 
of MPFrDCT. The random parameters are a = 0.3982 and b = 0.5762 . The other secret 
parameters are not changed. The three decrypted images using these secret keys are shown 
in Fig. 4c(i)-(iii).

Sensitivity analysis‑IV  This sensitivity analysis is executed with incorrect initial param-
eters x0 = 0.4517 and y0 = 0.6489 . The three decrypted images using these parameters are 
displayed in Fig.  5(a). The incorrect decrypted images with incorrect control parameter 
� = 0.8375 are shown in Fig. 5(b).

4.1.3 � Robustness against CPA and CCA​

The proposed encryption algorithm should resist chosen-plaintext attack (CPA) and cho-
sen-ciphertext attack (CCA). In CPA, the attacker has access to plaintexts of his choice. 
He received ciphertexts for the selected plaintexts. In CCA, the attacker has access to 
ciphertexts of his choice. He also received the corresponding plaintexts. The attacker 
tries to develop a relationship between the ciphertexts and plaintexts. If he succeed in 
developing relationship, he would be able to guess the secret keys. The security of this 
cryptosystem depends upon the secret parameters as well as their arrangements. Due to 
vast key space, it is practically impossible to develop a relation between the plaintexts 
and ciphertexts. Hence the proposed encryption scheme is CPA as well as CCA secure.

Fig. 5   Sensitivity Analysis-IV using (a) wrong initial guesses x0 = 0.4517 and y0 = 0.6489 and (b) wrong 
control parameter � = 0.8375
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4.2 � Statistical analysis

The statistical analysis is conducted to effectively present the results of the proposed encryp-
tion algorithm. Entropy analysis, peak signal to noise ratio (PSNR), mean square error (MSE), 
correlation coefficients and histogram analysis are conducted in this Section. These tests are 
briefly explained as given below.

4.2.1 � Entropy analysis

The randomness is measured by entropy. For an input y, the entropy H(y) is given by the fol-
lowing equation.

where logarithm of the probability p(yx) of the event yx to the base b is taken. The base b is 2 or 10. 
We have computed the entropy values of original Baboon, Lena , Peppers color images Fig. 3(a), 
encrypted image Fig. 3(b), decrypted Baboon, Lena, Peppers color images Fig. 3(c) and are given 
in Table 1. If the entropy of the encrypted images is the same as the entropy of the original image, 
then we can say that the algorithm decrypts the images correctly. It is clear from the Table 1 that 
the entropy of decrypted images matches with the entropy of original images. So original images 
are successfully recovered after encryption. If the randomness in encrypted images is less than 8, 
it shows the proposed algorithm can withstand any type of attack. As the randomness in encrypted 
images is less than 8, the proposed algorithm is secure against any type of attack.

4.2.2 � PSNR, MSE and correlation analysis

The PSNR is the ratio of the maximum power of the signal to the power of corrupting noise. 
Mathematically it is expressed as a logarithmic quantity in decibel scale. It is computed 
between the input and output image using the following mathematical equation.

(4.1)H(y) = −

2n−1∑
x=0

p(yx) logb p(yx),

(4.2)PSNR =10. log10

�
MAX2

I

MSE

�
= 20. log10

�
MAX2

I√
MSE

�

(4.3)=20. log10

(
MAXI

)
− 10. log10

(
MSE

)
,

Table 1   Entropy Analysis

S.No. Image Red component Green component Blue component

1. Fig. 3(a) Baboon 7.7529 7.4640 7.7733
2. Fig. 3(a) Lena 7.2634 7.5899 6.9854
3. Fig. 3(a) Peppers 7.3519 7.5899 7.0911
4. Fig. 3(b) 1.0042 1.0027 1.0020
5. Fig. 3(c) Baboon 6.7655 6.6660 6.4992
6. Fig. 3(c) Lena 6.2967 6.5945 6.1075
7. Fig. 3(c) Peppers 6.3924 6.6869 6.4058
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where MAXI represents the maximum pixel intensity of the image. The higher the PSNR, 
the better the quality of the decrypted image.

The mean squared error (MSE) is calculated between input and output image using 
the following equation. It tells us how how close a regression line is to a set of points.

where M × N is the size of an RGB image, �0 and � are input and output image, Δ� and 
Δ� are the sizes of pixels. The zero MSE indicates that the error is minimum in correctly 
decrypted images.

The correlation coefficient (CC) is also computed between input and output image. 
Practically, the value of this coefficient is between −1 and 1. The value 1 indicates the 
strong correlation between the two images whereas -1 represents the weak correlation. 
Weak correlation is also known as negatively correlated. If the value is 0, it shows no 
relationship between the input and output image.

The PSNR, MSE and CC of the three input images, encrypted image, decrypted 
images, incorrect decrypted images using wrong iteration numbers t1 = 50, t2 = 87 and 
t3 = 23 , wrong decrypted images using incorrect RSA secret keys dr = 3547, dg = 1255 
and db = 1433 , wrong decrypted images using wrong fractions a = 0.3982 and 
b = 0.5762 , wrong decrypted images using wrong initial guesses x0 = 0.4517 and 
y0 = 0.6489 and wrong decrypted images using wrong control parameter � = 0.8375 
are given in Tables 3–8. From the Table 2, we see that PSNR is INf, MSE is 0 and CC 
is 1. These values prove that the decrypted image is of good quality and is same as the 
original image as the error is zero. Lower PSNR, Higher MSE and zero CC values in 
Table 3 indicates that nothing can be retrieved from the encrypted image. The values 
of PSNR, MSE and CC in Tables 4, 5, 6, 7, 8 prove that the decrypted image is not of 
good quality.

(4.4)MSE =
1

M × N

M∑
m=1

N∑
n=1

[||||�(mΔ�, nΔ�) − �0(mΔ�, nΔ�)
||||
2
]
,

Table 2   PSNR, MSE and CC of 
decrypted images

S.No. Image PSNR MSE CC

1. Baboon Image Inf 0 1
2. Lena Image Inf 0 1
3. Peppers Image Inf 0 1

Table 3   PSNR, MSE and CC of 
single encrypted image

S.No. Image PSNR MSE CC

1. Baboon -18.1422 4.2393e+06 0.0014
2. Lena -22.4582 1.1452e+07 -4.2710e-04
3. Peppers -24.5817 1.8674e+07 0.0013
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4.2.3 � Correlation analysis

The correlation coefficient gives an idea about the relationship betweens the adjacent pix-
els. The correlation coefficients are computed for each channel of an ��� image follow-
ing the (4.5). Table 9 represents the correlation coefficient of red, green and blue channel 
of three experimental images Baboon, Lena and Peppers. The Table 9 clearly shows that 
the pixel values are linearly correlated. The correlation coefficients of the single encrypted 
image are also computed and given in Table 10. The values are approximately zero. This 
means pixel values do not share any relation. Lastly, correlation coefficients of decrypted 
images are given in Table 11. The pixel values are close to 1.

Table 4   PSNR, MSE and CC 
of incorrectly decrypted images 
with wrong iteration numbers 
t1 = 50, t2 = 87 and t3 = 23

S.No. Image PSNR MSE CC

1. Baboon Image -6.3787 2.8245e+05 -0.0020
2. Lena Image -4.4484 1.8112e+05 0.0047
3. Peppers Image -5.9496 2.5589e+05 -9.6540e-04

Table 5   PSNR, MSE and CC 
of incorrectly decrypted images 
with wrong RSA secret keys 
dr = 3547 , dg = 1255 and 
db = 1433

S.No. Image PSNR MSE CC

1. Baboon Image 8.0757 1.0128e+04 0.0471
2. Lena Image 7.9838 1.0344e+04 0.0500
3. Peppers Image 7.9655 1.0388e+04 0.0327

Table 6   PSNR, MSE and CC 
of incorrectly decrypted images 
with wrong fractions a = 0.3982 
and b = 0.5762

S.No. Image PSNR MSE CC

1. Baboon Image 7.8472 1.0675e+04 -0.0019
2. Lena Image 7.7470 1.0924e+04 -5.1423e-04
3. Peppers Image 7.8591 1.0646e+04 0.0012

Table 7   PSNR, MSE and CC 
of incorrectly decrypted images 
with wrong initial guesses 
x0 = 0.4517 and y0 = 0.6489

S.No. Image PSNR MSE CC

1. Baboon Image 7.8775 1.0601e+04 0.0030
2. Lena Image 7.7504 1.0915e+04 -0.0011
3. Peppers Image 7.8531 1.0660e+04 6.9752e-04

Table 8   PSNR, MSE and CC 
of incorrectly decrypted images 
with wrongm control parameter 
� = 0.8375

S.No. Image PSNR MSE CC

1. Baboon Image 7.8775 1.0601e+04 0.0030
2. Lena Image 7.7504 1.0915e+04 -0.0011
3. Peppers Image 7.8531 1.0660e+04 6.9752e-04
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where � and � are the input and output image, � and � are the mean values of input and 
output image respectively.

4.2.4 � Histogram analysis

This statistical analysis represents the number of pixels in an image at different intensity 
values. The histogram of each component of an ��� image is computed. The histogram 
of the input Baboon colour image is given in Fig. 6(a). Figure 6(b) and (c) represent the 
histogram of Lena color image and Peppers color image respectively. The histogram of the 
single encrypted image is displayed Fig. 6(d). The histogram of the encrypted image is dif-
ferent from the histogram of input images Baboon, Lena and Peppers. This confirms that 
the proposed encryption algorithm is free from statistical attacks.

(4.5)C =

M∑
m=1

N∑
n=1

(�(m, n) − �)(�(m, n) − �)

√√√√
( M∑

m=1

N∑
n=1

(�(m, n) − �)2
)( M∑

m=1

N∑
n=1

(�(m, n) − �)2
) ,

Table 9   Correlation Coefficients of original images

Baboon Lena Peppers

R G B R G B R G B
Horizontal 0.9145 0.8852 0.9332 0.9777 0.9716 0.9504 0.9802 0.9905 0.9818
Vertical 0.8603 0.7954 0.8788 0.9869 0.9868 0.9795 0.9779 0.9934 0.9792
Diagonal 0.8431 0.7722 0.8566 0.9674 0.9666 0.9380 0.9658 0.9868 0.9594

Table 10   Correlation 
Coefficients of encrypted image

Encrypted Image

R G B
Horizontal -0.0347 -0.0366 -0.0301
Vertical 0.0137 0.0541 0.0058
Diagonal 0.0119 8.6231e-05 -0.0058

Table 11   Correlation Coefficients of decrypted images

Baboon Lena Peppers

R G B R G B R G B
Horizontal 0.9193 0.8644 0.9092 0.9699 0.9656 0.9251 0.9593 0.9831 0.9653
Vertical 0.8374 0.7842 0.8609 0.9780 0.9760 0.9549 0.9631 0.9822 0.9631
Diagonal 0.8368 0.7520 0.8486 0.9638 0.9492 0.9150 0.9529 0.9738 0.9513



48578	 Multimedia Tools and Applications (2024) 83:48563–48584

1 3

4.2.5 � Occlusion attack

The robustness of the technique is tested by conducting the Occlusion attack by cropping 
encrypted image 25% and 50% from all the four sides, i.e, left, right, top and bottom. The 
25% cropped images from all the four sides are shown in Fig. 7(a), (b), (c) and (d). The three 
decrypted images after 25% cropping are displayed in Figs. 7(e), 8(f), (g) and 9(h). The 50% 
cropped images from lall the four sides are given in Fig. 10(a), (b), (c) and (d). The decrypted 

Fig. 6   Histogram analysis of (a) Baboon, (b) Lena, (c) Peppers and (d) encrypted image

Fig. 7   (a), (b), (c) and (d) 25% Cropped Images from all the four sides (e) fully decrypted image corre-
sponding to Fig. 7(a)
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Fig. 8   (f) fully decrypted image corresponding to Fig.  7(b); (g) fully decrypted image corresponding to 
Fig. 7(c)

Fig. 9   (h) fully decrypted image corresponding to Fig. 7(d)

Fig. 10   (a), (b), (c) and (d) 50% Cropped Images from all the four sides (e) fully decrypted image corre-
sponding to Fig. 10(a)
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images are given in Figs. 10(e), 11(f), (g) and 12(h), respectively. It is visually clear that the pro-
posed encryption algorithm has successfully defended the cropping attack.

5 � Comparison

We have done the comparison of our proposed encryption scheme with the existing similar 
schemes. Several researchers have given their contribution in the field of multiple image 
encryption algorithm. Some key differences are illustrated in Table 12.

1.	 Joshi et al. [14], Wang and Zhao [34] and Liu et al. [20] have developed image encryp-
tion algorithm for multiple images. The building blocks used are double random phase 
and fractional Fourier transform.

2.	 Yong et al. [39] introduced a novel scheme using rotation multiplexing method. Wang 
and Zhao [35] proposed multiple image encryption technique in Fourier domain.

3.	 Later discrete fractional Fourier transform and Fourier transform became the epicenter 
of research. The image encryption algorithms in these domains are given in [29, 43]. 
These schemes have used chaotic maps, pixel scrambling techniques, fractional orders, 
and the random phase masks.

Fig. 11   (f) fully decrypted image corresponding to Fig. 10(b); (g) fully decrypted image corresponding to 
Fig. 10(c)

Fig. 12   (h) fully decrypted image corresponding to Fig. 10(d)
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4.	 The multiple image encryption techniques are also given in Gyrator transform domain. 
Shi et al. [30] proposed the scheme in geometric and frequency domain. The secret key 
parameters are Arnold and wavelet transform.

5.	 Wu et al. introduced the concept of encryption of four images together using discrete 
fractional Fourier transform. The fractional orders are taken as the secret keys. Zhang 
and Xiao [42] presented his contribution using Chirikov standard map, discrete frac-
tional random transform and chaotic logistic maps. The security is based on pixel scram-
bling operation, fractional orders and random phase masks.

6.	 Wu et al. [36] introduced triple color image encryption scheme. The building blocks 
incorporated are FrDCT, Arnold transform and cyclic shift. The secret keys are iteration 
numbers and control parameter.

7.	 Wu et al. [38] proposed an image encryption algorithm incorporating random fractional 
discrete cosine transform with the dependent scrambling and diffusion. The proposed 
algorithm can withstand common classical attacks.

8.	 Qiu et al. [27] proposed double-image encryption algorithm using discrete fractional 
angular transform with fractional Fourier transform. The algorithm is applied on two 
grey scale images.

6 � Conclusions

We have introduced multi-layer secure image encryption technique using MPFrDCT, 
Arnold 3D transform and RSA cryptosystem. Three images are encrypted jointly to pro-
duce a single encrypted image. The single encrypted image is easy to transfer over the 
public channel. It saves communication and storage complexity. In the scheme, firstly three 
indexed images are generated by removing the color maps. The three indexed formats are 
taken as the three channel, i.e., �,� and � of an ��� image. Firstly, Arnold 3D map is 
registered on the ��� image. Later RSA cryptosystem is enforced to encrypt each pixel of 
the ��� image. It is a public key cryptosystem. Lastly, MPFrDCT is incorporated on the 
��� image. The decryption is just revere of these steps. The security of the scheme depend 
upon secret keys as well as their proper arrangements. The robustness of the scheme is 
tested by simulation analysis. A detailed comparison is also done with the existing similar 
schemes.
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