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Abstract
Medical Visual Question answering (MedVQA) systems provide answers to questions based
on radiology images. Medical images are more complex than general images. They have low
contrast and are very similar to one another. The difference between medical images can only
be understood bymedical practitioners.While general images have very high quality and their
differences can easily be spotted by anyone. Therefore, methods used for general-domain
Visual Question Answering (VQA) Systems can not be used directly. The performance of
MedVQA systems depends mainly on the method used to combine the features of the two
input modalities: medical image and question. In this work, we propose an architecturally
simple fusion strategy that uses multi-head self-attention to combine medical images and
questions of the VQA-Med dataset of the ImageCLEF 2019 challenge. The model captures
long-range dependencies between input modalities using the attention mechanism of the
Transformer. We have experimentally shown that the representational power of the model
is improved by increasing the length of the embeddings, used in the transformer. We have
achieved an overall accuracy of 60.0%which improves by 1.35% from the existingmodel.We
have also performed the ablation study to elucidate the importance of eachmodel component.

Keywords Medical visual question answering · Multi-head self-attention · DistilBERT ·
VQA-Med 2019

1 Introduction

Medical imaging is the process of obtaining images of the body’s internal organs with the
help of technologies like CT, MRI, XRay, Nuclear medicine, etc. Radiologists interpret these
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medical images and present their analyses to doctors. Based on the radiologists’ diagnosis,
doctors determine the course of treatment for the patients. Nowadays, doctors rely immensely
on the report of radiologists for diagnosis, staging, and treatment. Doctors’ dependence on
radiologists’ reports has increased the radiologists’ workload drastically. An average radiol-
ogist has a few seconds to examine a single image [1]. Behavioral studies have shown that as
the decision speed of humans increases, decision accuracy decreases. A study [2] examining
the factors responsible for diagnostic errors found that increased workload and fatigue caused
by long workdays contribute to diagnostic errors. At times diagnostic inconsistency is seen
among radiologists. They vary in their interpretations of medical images. Therefore, accurate
interpretation of medical images requires experience, expertise, and ample time from radiol-
ogists. Efforts are made to enhance diagnostic accuracy and reduce interobserver variability.
An automated system can solve the abovementioned problems by efficiently analyzing med-
ical images and answering questions a medical practitioner may have regarding radiology
images.

Visual Question Answering (VQA) systems analyze input images and answer textual
questions based on them. The input question and the output answer are in a human-readable
form. The success of VQA for general images has attracted the research community’s atten-
tion in developingMedical Visual Question Answering (MedVQA) systems.MedVQA takes
as input a medical image and a question based on the input medical image. It provides as
output an answer to the question. It can reduce the burden on doctors by assisting them
in understanding complex medical images rapidly. A complete understanding of medical
images requires time and specialization. Medical practitioners can ask specific questions to
MedVQA systems to better understand the medical image and use the answers provided by
the MedVQA system as a second opinion while making diagnoses, thereby saving time and
reducing the rate of diagnostic errors. These systems can enhance telemedicine and remote
patient care as doctors can use them to probe patient reports remotely. These systems can
act as a source of reliable information for patients who are keen to gather more information
regarding their condition. It will increase the involvement of patients in their treatment pro-
cess and bring transparency to it.Medical students can useMedVQA systems for learning and
improving their diagnostic skills. Therefore, these systems can revolutionize the healthcare
sector by rapidly assessing medical images and streamlining the triage process. However,
this is possible only by an efficient and complete MedVQA model. Unlike VQA for general
images, MedVQA is still in its nascent stages of development. Therefore, further research is
needed to improve MedVQA.

VQA systems, in general, consist of three main modules. The first module is the input
feature encoder which extracts information from the input images and questions. The second
module is feature fusion, where extracted image and text features are combined. The third
module is an answer generator that takes the fused representation of input modalities and out-
puts the most appropriate answer. Figure 1. describes the overall architecture. VQA systems
require deeper comprehension of the image and question features and the semantic rela-
tionship between them to answer the questions correctly. Therefore, we can improve VQA
systems through advancements in two directions of research: feature encoder and feature
fusion. Ample research has been done in the area of image classification, object detection,
and text encoding, but feature fusion for VQA systems needs to be explored further.

Developing a MedVQA model is comparatively more difficult than developing a VQA
for general images. The first challenge is the size of the dataset. Unlike VQA for general
domain, obtaining a high-quality large dataset for MedVQA is tough, as annotation requires
professional medical experts. If we synthetically generate question-answer pairs from the
image, it also needs to be assessed by medical experts. The second challenge is handling
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Fig. 1 General architecture of VQA systems

different modalities (i.e., Xray, CT, Ultrasound, MRI) of medical images related to different
organs. Also,Medical images are of low contrast, and the region of interest can be very small.
Therefore, themodelmust be able to focus on afine-grained scale. In contrast, general-domain
VQA has very good-quality images, and the region of interest is not microscopic. Finally,
questions can contain medical terminology. Therefore, the model must be able to understand
bothmedical and non-medical terminologies. These differences highlight the need to develop
aMedVQAmodel that can learn to efficiently align and fuse/combine text and image features
using a small dataset.

Motivation
Recent medical VQAmodels use various techniques of Natural Language Processing such as
the attention mechanism of Transformer [3] and the BERT architecture [4]. The basic block
of these schemes projects the input into query, key, and value vectors. These vectors play a
significant role in capturing the relationship between regions of input. Many MedVQA [5,
6] modules have shown the efficiency of self-attention in fusion. However, they have yet to
explore the impact of varying the query, key, and value dimensions on themodel performance
and size. The recent works inMedVQA directly use the same length of the mentioned vectors
from BERT [5, 6]. The length of the vectors is comparatively small to capture the complex
information of the medical images. This motivates us to increase the representational power
of the model by increasing the length of the vectors. As we have seen from the previous work
of WideResNet, widening the intermediate feature maps helps improve the representational
power of the model. This in turn reduces the depth of the model [7]. It motivates us to widen
the query, key, and value vectors in the model. Thus, widening helps us to reduce the length
of the network. Thereby, reducing the total number of parameters by half from the existing
model [5].

Contribution
The main contributions of this paper are as follows:

• We propose a Multi-modal multi-head self-attention model for Medical VQA, with
improved representational power in a significantly less number of parameters.

• We have evaluated the results on VQA-Med-2019 of ImageCLEF [8] and compared our
fusion strategy’s results with previous work on this dataset, and shown improvements in
terms of accuracy, and computational efficiency.

• We have performed an extensive ablation study to validate the significance of individual
modules.
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• We have integrated our model with GradCam [9] explainability technique to identify the
image regions the model emphasizes while answering.

2 Related work

2.1 General VQA

VQA challenge in the general domain started in 2016 and has been held yearly since then.
The earliest VQA models used simple methods like concatenation, elementwise sum, or
product for feature fusion. However, such methods failed to capture the hidden semantic
relationship between the twomodalities efficiently. Thismotivated the use of the outer product
for fusion as they involve interaction between every element of one modality with every
other element of another modality. However, the major drawback of using the outer product
is that they are computationally expensive. Therefore, ways to reduce the computational
overhead of outer product while preserving their discriminating capacity has become an
active area of research. In Multimodal Compact Bilinear Pooling (MCB), [10] Fukui et al.
used Count Sketch [11] to represent image and question features. They chose count sketch
because of their exciting property, which Pham et al. proves in [12]. The major drawback
of this method is that count sketch can introduce errors due to hash collisions. Therefore,
for efficient results, the dimension of the count sketch vector needs to be significant. In the
original paper, the dimension of this count sketchwas set to 16000. Though the computational
cost of MCB [10] is less than the original outer product, but it is still very high. In Multi-
modal Factorized Bilinear Pooling (MFB) [13], another strategy is proposed to compute the
outer product. It is based on the efficient matrix factorization technique. Multimodal Tucker
Fusion (MUTAN) [14] uses Tucker decomposition to reduce the size of the parameter tensor.
It rewrites the very large bilinear interaction as a smaller bilinear interaction between input
projections.

The attention mechanism is another technique for feature fusion in VQA, as one modality
is used as a context to generate the weights for another modality. The attention mechanism
enables VQA models to focus on desired features while answering the question. Stacked
Attention Networks (SAN) [15] achieved significant improvement on the VQA benchmark
by using a multilevel attention mechanism. SAN identifies important image regions with
the help of question features. Hierarchical Image-Question Co-Attention (HieCoAtt) [16]
further emphasizes the importance of identifying key question words in addition to finding
important image regions. In HieCoAtt [16], the co-attention network uses image features to
determine attention over question words, and similarly, question features determine attention
on image features. With the success of Transformers [3] in NLP tasks, several VQA models
have started using self-attention for fusion and achieved higher accuracy value.

2.2 Medical VQA

The Medical VQA challenge began in 2018. For the first edition of the Medical VQA chal-
lenge, five out of 28 registered teams successfully submitted their models. This considerable
participation indicated the immense interest in theMedical VQA task. The following subsec-
tions briefly describe the work proposed in VQA-Med 2018 and VQA-Med 2019 challenges.
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2.2.1 VQA-med 2018

The dataset proposed for the inaugural version of the Medical VQA challenge, called VQA-
Med 2018, consists of 2866 medical images and 6413 question-answer pairs, divided into
the train, validation, and test set. The train set has 2278 medical images and 5413 question-
answer pairs. The validation set has 324 medical images and 500 question-answer pairs. The
test set has 264 medical images and 500 questions. UMMS [17] secured first rank in the
2018 challenge. They used ResNet-152 [18] for image features and LSTM [19] for Question
features. They combined both features using MFH [13]. TU [20] extracted image features
using the Inception-Resnet-v2 [21] network and question features using BiLSTM [22]. They
added an attention layer to combine image and text features. The attended features and
question features are concatenated and passed through the fully connected layer, followed by
the softmax layer. NLM [23] used VGG16 [24], pre-trained on Imagenet, for image features
and LSTM [19] for question features. They used a 2-layer SAN [15] to identify important
image regions for answering. JUST [25] proposed an encoder-decoder model. Encoder has a
VGG network and an LSTM for encoding image and question features. The two features are
concatenated andpassed to the decoder,which is anLSTM.FSTT [26] treated theVQAtask as
a multi-label classification problem. They used pre-trained VGG16 [24] and Bi-LSTM [22]
for image and question feature extraction, respectively. Image and question features are
combined using two fully connected layers. Combined image and question features pass
through a multi-label Decision Tree classifier.

2.2.2 VQA-med 2019

Medical VQA models, like general VQA models, contain four main components. The first
component is the Image/Visual Encoder.Medical VQAmodels use CNNs like VGGNet [24],
ResNet [18] predominantly for visual features. The second component is the Text/Question
Encoder which extracts question features. LSTM [19], BiLSTM [22], GRU [27], and the
Transformers e.g. BERT [4] are the widely used Text Encoders. The third component of
Med VQA models, the Fusion module, combines the extracted question and image features.
The output of the Fusion module passes through the Classification/Generation module, the
fourth component, for the final answer. This section briefly describes the fusion techniques
prevalent in Medical VQA.

In general, strategies proposed for general VQA like SAN [15], BAN [28], HieCoAtt [16],
MFB [13] are used in MedVQA. The winning model of ImageCLEF 2019 competition Han-
lin [29] used MFB with coattention [13] to combine image and question features. Recently,
new strategies have been developed specifically for the task of MedVQA. Some of them
are MedFuseNet [30] and Question-Centric Multimodal Low-rank Bilinear (QC-MLB) [31].
MedFuseNet [30] uses two types of attention mechanism. It first performs question attention
on the input question to identify important question words. This attended question represen-
tation is passed to the image attention module. The image attention module first captures the
robust interaction between the image and attended question features by fusing them using
MFB [13] and generates a combined feature vector. This feature vector is used for computing
multiple attention maps on image features based on attended question features. These atten-
tion glimpses are added to form attended image features. Inspired by the findings reported
in [32] that image-only models perform poorly compared to question-only models, a novel
fusion strategy that lays more emphasis on question features is proposed in QC-MLB [31]. In
this method, first, themulti-glimpse attentionmechanism proposed byXu et al. [33] is used to
compute image regions that are highly correlated to question features. The final global image
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features are obtained by concatenating these multiple attention maps. Question features are
transformed and concatenated (or tiled) to create global question features. Both this global
image and question features are combined to form a fused representation that is passed to
the answer generation module.

MultimodalMedical BERT(MMBERT) [5] is a Transformer-basedmodel. It passes image
features obtained from ResNet152 [18] and text token embeddings to a BERT-like model.
It has four BERT layers. Ye et al. [34] proposed a fusion strategy called CMSA that uses
self-attention for Referring Image Segmentation task and is later adopted for the Medical
VQA task [35] on VQARad dataset [36]. They used two layers of CMSA for the Medical
VQA task [35] to achieve better accuracy. We adopt a fusion technique similar to [35] for the
VQA-Med 2019 ImageCLEF dataset. We observe that by varying the hidden dimension of
query, key, and value, we are able to achieve better performance than MMBERT [5] for the
VQA-Med 2019 ImageCLEF dataset with a single layer multi-head self-attention. Therefore,
we used multi-head self-attention to capture the interaction between the two input modalities
in this work.

Table 1 gives an overview of the work done inMedical Visual Question Answering. Along
with the models proposed for VQA-Med-2019 dataset, we have included works proposed
for other datasets. We have added models proposed for VQA-RADDataset [36], Med-VQA-
2020 [37], Med-VQA-2021 [38], SLAKE [39]

3 Proposedmethodology

We have formulated the problem ofMedical VQA as a classification task.We aim to estimate
our model’s most likely response r̂ of our model from a fixed set of responses R, given a
radiology image I and a natural language textual question T . The task is summarised in (1):

r̂ = argmax
r∈R

p(r |I , T , θ) (1)

where θ represents model parameters.
Our model consists of four modules: visual encoder for extracting visual features from

the radiology image, textual encoder for extracting text features from the input question,
cross-modal fusion network for combining the two input modalities, and answer predictor
for generating the most likely answer. Figure 2. depicts the architecture of our MedVQA
system

Fig. 2 Multi-modal Multi-head Self-Attention based MedVQA architecture
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3.1 Visual encoder

We use Wide ResNet-50-2 [7] pre-trained on ImageNet. Wide ResNet-50-2 has the same
architecture as ResNet50 [18] except that it has wider 3×3 layers than ResNet50 by a factor
of 2. We have shown a detailed architecture of ResNet50 and Wide ResNet-50-2 in Table 2.
The first convolution layer is the same; both have 64 Kernels of size 7×7 with stride 2. Each
residual block ofWideResNet-50-2 has same kernel size but twice the number ofKernels than
ResNet50. By widening the convolutional layer, WideResNet50-2 performs better and faster
than ResNet152, which has three times more layers. The widening of convolutional layers
increases the representational power of residual blocks, which is beneficial for medical tasks
as it can capturemore features.We process the raw inputmedical images before sending them
through the Visual encoder. We have explained the preprocessing technique in Section 4.3
Implementation datails.We are using the output of the last convolution layer before the global
average pooling layer of pre-trained Wide ResNet-50-2 for high-level feature representation
of the medical image. Our visual features I is a tensor of dimensions R2048×8×8.

3.2 Textual encoder

We use DistilBERT [48] for encoding questions. DistilBERT, which stands for Distilled
BERT, is a compressed version of a largeBERT-base-uncasedmodel. It has 40% fewer param-
eters and is 60% faster than the original BERTmodel. Despite being smaller, it preserves 97%
of the original model’s language understanding. It is pre-trained using the knowledge Dis-
tillation process where the small student model(DistilBERT) is trained to mimic the output
probability distribution of the large teacher model(large BERT-base-uncased). We first tok-
enize each question word using DistilBERT Tokenizer. Each tokenized question i is encoded
into the word embedding Ti = {t1, t2, t3, ..., tL } where t j ∈ RD , D is the word embedding
dimension since we are using DistilBERT, its dimension is 768. L is the length of each ques-
tion. We have set it to 12 as the mode of the distribution of question length is 12. We obtained
T by averaging the output of the last and the penultimate layers of DistilBERT. Our question
is a tensor of dimension R12×768.

Table 2 Architecture of ResNet
50 and Wide ResNet-50-2

Layer Name ResNet50 WideResNet-50-2
conv1 7 × 7, 64, stride 2

layer 1 3 × 3, maxpool, stride 2⎡
⎣
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎤
⎦ × 3

⎡
⎣
1 × 1, 128
3 × 3, 128
1 × 1, 256

⎤
⎦ × 3

layer 2

⎡
⎣
1 × 1, 128
3 × 3, 128
1 × 1, 512

⎤
⎦ × 4

⎡
⎣
1 × 1, 256
3 × 3, 256
1 × 1, 512

⎤
⎦ × 4

layer 3

⎡
⎣
1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎤
⎦ × 6

⎡
⎣
1 × 1, 512
3 × 3, 512
1 × 1, 1024

⎤
⎦ × 6

layer 4

⎡
⎣
1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎤
⎦ × 3

⎡
⎣
1 × 1, 1024
3 × 3, 1024
1 × 1, 2048

⎤
⎦ × 3

average pool, 1000-D Fully Connected layer

Enteries having highest values are written in bold font
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3.3 Multi-modal multi-head self-attention

The Visual I and Question T features obtained from the Visual and Textual encoders,
respectively are concatenated. Visual features I ∈ RC×H×W and Question features
T ∈ RL×D are concatenated such that each question word is concatenated at each spa-
tial location of the image features resulting in a concatenated multi-modal representation
P = [I ||T ] ∈ RL×H×W×(C+D) . This multi-modal representation is linearly projected
to generate Query(Q), Key(K ), and Value(V ) vectors as Q = PWQP , K = PWK P and
V = PWV P where WQP ,WK P ,WV P ∈ R(C+D)×d . The Q, K, and V are reshaped to the
dimension RS×d where S = L × H ×W . We compute the similarity between the Query and
Key vectors using a scaled dot product followed by a row-wise softmax function to obtain
a score matrix. The final output V̂ ∈ RS×d is generated by computing the weighted sum of
the Value vector weighted by the similarity score as shown in (2):

V̂ = Attn(Q, K , V ) = so f tmax(QKT /
√
d)V (2)

Similar to [3], for richermulti-modal representation,weperformmulti-head attentionwherein
Query, Key, and Value are linearly transformed h times to obtain h (Q, K , V ) heads, and
the scaled dot-product is performed independently by these attention heads. In multi-head
attention, the dimension of query, key, and value is dq , dk, dv . The output from these h
independent heads is concatenated and linearly transformed by WO to produce the final

Fig. 3 Multi-Modal Multi-head Self-Attention module
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multi-modal attended features as shown in (3):

V ′ = [head1, head2, ..., headh]WO (3)

where, headi = Multi_Attn(Q, K , V ) = Attn(QWQ
i , KWK

i , VWV
i ), WQ

i ∈ R(d×dq ),
WK

i ∈ R(d×dk ), WV
i ∈ R(d×dv) and WO ∈ R(h∗dq×d) are the learnable matrices. To limit

the size of the multi-head attention layer like [3], we set dv = dk = dq = d/h. The
multi-modal attended features V ′ is projected and reshaped to the same dimension as P
to obtain linearly transformed feature P̂ = V ′WP where WP̂ ∈ Rd×(C+D). We add a
residual connection between transformed multi-modal attended features and concatenated
multi-modal representation P followed by layer normalization [49] to obtain P ′. Thus, P ′ =
Layer Norm(P̂+ P). It contains rich multimodal information and we pass it to next module.

Algorithm 1 and 2 describe the algorithm of the Multi-Modal Multi-Head self-attention
while, Fig. 3 represents the detailed architecture.

3.4 Answer predictor

Kafle et. in [32] reported that the question-only model performs better than image-only
models. Therefore, we average pool P ′ at all image regions to obtain an image attended
question embedding T̂ as in (4). This T̂ is again projected to the same dimension as the
question embedding T and summed with T to obtain T ′ as shown in (5).

T̂ =
∑H ∑W P ′

H × W
(4)

T ′ = (T̂ WT ) + T (5)

where WT ∈ R(C+D)×D is a projection matrix. T ′ summed over all the words to obtain a
single attended context vector ĉ as shown in (6)

ĉ =
L∑

(T ′) (6)

For the final answer, we pass ĉ through MLP, followed by a softmax layer to obtain
probabilities over the answer set:

p(r |I , T , θ) = so f tmax(MLP(ĉ)) (7)

4 Experiment

4.1 Dataset description

Weuse the ImageCLEFVQA-Med-2019 dataset [8] in ourwork. The dataset has 2-Dmedical
images and question-answer pairs. Medical images in this dataset are collected fromMedPix
database1. The training set contains 3200 2-D images of different sizes. The smallest image
in the dataset is of dimension 106×109, and the largest is of dimension 2268×2040. Except
for eight images, every dataset image has questions related to four categories. Therefore,
there are 12792 question-answer pairs. There are 500 images in the Validation set. Similar to

1 https://medpix.nlm.nih.gov/
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Algorithm 1 Training Algorithm
Require: Image I , Question T , Answer r , Batch Be
Ensure: Random initialization of Network parameter θ

1: I ←− Preprocess(I )
2: T ←− Tokenize(T )

3: for each epoch e do
4: for each Batch of size Be do
5: I ←− Visual_Encoder(I )
6: T ←− Textual_Encoder(T )

7: P ←− concat(I , T )

8: P ′ ←− MMHSA(P)

9: Calculate T̂ from P ′ using (5)
10: T ′ ←− (T̂ WT ) + T
11: Calculate context vector ĉ summing over the question words T ′
12: P(r |I , T , θ) = softmax(MLP(ĉ))
13: Loss L(r , r̂) ←− − ∑

p(r) log(p(r |I , T , θ))

14: Update θ ←− θ − ∇L
∇θ

15: end for
16: end for
17: θ∗ ←− θ return the trained network θ∗

Algorithm 2Multi-Modal Multi-Head Self Attention

1: function MMHSA(P) � Where P = [I ||T ] ∈ RL×H×W×(C+D)

2: Initialize WQP ,WK P ,WV P � Where WQP ,WK P ,WV P ∈ R(C+D)×d

3: Q ←− PWQP � Where Q ∈ RS×d , S = RL×H×W

4: K ←− PWK P � Where K ∈ RS×d , S = RL×H×W

5: V ←− PWV P � Where V ∈ RS×d , S = RL×H×W

6: Reshape Q, K , V as RS×h∗dq , RS×h∗dk , RS×h∗dv resp � Where h=# heads & dq = dk = dk
7: for each headi do
8: Initialize WQ

i ,WK
i ,WV

i

9: headi = Attn(QWQ
i , KWK

i , VWV
i ) compute MHSA using (2)

10: end for
11: Initialize Wo � Wo ∈ Rh∗dq×d

12: V ′ = [head1||head2...||headh ]Wo (3)
13: P̂ ←− V ′WP � P̂ ∈ RL×H×W×(C+D)&WP ∈ Rd×(C+D)

14: P ′ ←− LayerNorm(P̂ + P)

15: return P ′
16: end function

the trainset, the validation set also has four types of questions based on them. Therefore, the
validation set contains 2000 question-answer pairs. The dataset contains both open-ended and
closed-ended questions. These questions in the dataset belong to four different categories.
These four categories of questions are:

• Modality:The main aim of questions from this category is to determine the modality of
the radiology image. It contains images from eight major modalities: CT, XR, MR, US,
MA, GI, AG, and PT. These modalities are further sub-categorized.

• Plane: questions in this category are posed to identify the direction or plane of the given
medical image. This dataset has questions related to identifying the 16 planes from eight
major modalities.

• Organ system: deals with questions about identifying organs/anatomy displayed in the
image. There are ten different organ systems.
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Fig. 4 An example from the VQA-Med-2019 dataset

• Abnormality: determines the abnormality depicted in the image. There are around 1600
different types of diseases in the dataset. Several diseases in this dataset have only one
or two images.

The test set contains 125 image and question-answer pairs for each question category. There-
fore the size of the testset is 500 question-image pairs. Figure 4. shows an image and its
related questions. We use an additional VQA-Med-2020 test and validation datasets [37]. It
contains 500 image and question-answer pairs; each question is related to the abnormality
category.

4.2 Evaluationmetric

Since our model is a classification model, we have used the accuracy metric to check the
quantitative performance of our method. Accuracy is the total number of samples correctly
classified per the total number of samples in the dataset. Besides accuracy, we have also used
Recall, Precision, and F1 score to evaluate the performance of our classification model.

In binary classification, there are only two classes, positive and negative. For binary
classification:

1. True Positive(TP): when the predicted and actual labels are the same and equal to the
positive class.

2. False Positive(FP): when the predicted label is positive but the actual label is negative.
3. False Negative(FN): when the predicted label is negative but the actual label is positive.
4. True Negative(TN): when the predicted and actual labels are the same and equal to the

negative class.

Multiclass classification problem has n number of classes where n is more than two.
However, if we consider each class positive and all others negative, we will get n binary
classification problems. Hence, a multiclass classification problem can be assumed as a
collection of binary classification problems, one for each class. Therefore, we can compute
TP, FP, FN, and FP in the same way we calculate for binary classification problems. The
class we are considering is positive and others negative.

Recall measures the performance of a classification model in predicting all examples from
a given class accurately. Mathematically it is defined as:

Recall = T P

T P + FN
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Precision informs us about the accuracy of a classification model in predicting a posi-
tive example i.e. total positive examples correctly predicted per total number of examples
predicted as positive by the model. It is given as follows:

Precision = T P

T P + FP

Here, TP is when a predicted class is the same as the actual class I.
F1 score is an essential metric for assessing the classification model’s performance, espe-

cially in an imbalanced dataset. It is a single value between 0 and 1 obtained by combining
recall and precision by computing their harmonic mean. Mathematically it is defined as:

F1 score = 2 × precision × recall

precision + recall

Diagnostic Odds Ratio (DOR) is a single indicator for analyzing the discriminative capa-
bility of the classification model. The odds ratio computes the relation between two events.
Here we refer to the events as outcome and property. For example, in our case, the outcome
is the prediction of our classification models, and the property is the actual label. DOR is the
odds of a positive outcome where the property holds (positive actual label) divided by the
odds where the property does not hold. Mathematically, DOR is:

DOR = T P

FN

/
FP

T N
= T P × T N

FN × FP

The value of DOR lies between zero and infinity. A DOR value less than 1 indicates that
the classification model cannot discriminate and is worse than chance. A DOR value equal to
one shows that the model cannot discriminate between positive and negative cases. A higher
value of DOR, greater than one, indicates a higher discriminatory power of the model.

4.3 Implementation details

We use a single NVIDIA Tesla v100 GPU for training and testing purposes. As described in
Section 4.1, VQA-Med-2019 dataset contains questions related to four categories. Therefore,
we train four models. Each model specializes in answering questions from a single category.
We use the method given in [50] for classifying the questions into four categories during
testing. Based on the question category, we call the corresponding trained model.

Before passing the images to the model, we resize them to 256 × 256. Therefore, the
dimensions of image features I obtained from WideResNet-50-2 is (2048 × 8 × 8). To
make our model robust, we apply Data augmentation techniques. We use random rotation,
horizontal flip, and contrast enhancement. The length of all the input questions is set to 12
words. Any question over 12 words are trimmed, and smaller than 12 words are padded to
make all the questions of the same length. For the MMHSA module, we set the head h as

Table 3 Model Performance at different values of dq , dk , dv

Modality Plane Organ Abnormality

dq = dk = dv = 64 72.0 77.6 71.2 5.6

dq = dk = dv = 128 78.4 81.6 68.0 5.6

dq = dk = dv = 160 79.2 79.2 69.6 8.0
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Fig. 5 The train loss curve at different epochs as Learning rates decrease by 0.1 after every 10 epochs

eight and experiment with three different values of dq = dk = dv for our four models to
determine the best value. Table 3 shows the result of our experiment. Based on the accuracy
metric, we chose the value of dq = dk = dv for our four models. We have three fully
connected layers in the Answer predictor module of Plane, Organ, and Modality models,
each with 512, 2048, and 1024 neurons. The Answer predictor module of the Abnormality
model gave good results with a single layer having 2048 neurons. We used LeakyReLU [51]
activation function between our fully connected layers of the Answer classifier. We trained
all the models with Adam optimiser [52] with default values of β1 & β2. We start the training
process with a learning rate of 0.001, which is reduced by 0.1 after every ten epochs. Figure 5
shows the train loss as learning rate decreases after every ten epochs. We train the models for
150 epochs with an early stopping criterion to prevent overfitting. During training, we save
the model having a minimum loss on validation dataset for testing. The training accuracy
and loss over different epochs are shown in Figs. 6 and 7 respectively. From the plots it can
be observed that for all the question categories the accuracy of the model on the validation
set increases with the decreasing loss. This shows that as the training progresses our model
is learning the generalized patterns from the training data. Table 4 shows the performance of
our trained model on both training and test data sets.
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Fig. 6 The training accuracy computed on validation data at different epochs for different question categories

4.4 Ablation

To evaluate the effectiveness of each component of our model, we perform an ablation study
on our data. A detailed explanation of the model architecture in each experiment is given
below.

• Different image encoder and text encoder: In this experiment we try different combi-
nations for image and text encoder to identify the best image encoder and text encoder
pair for our task. For image encoder, we use Wide ResNet-50-2, ResNet50 [18], and
VGG16 [24]. For text encoder, we use DistilBERT and Clinical BERT [53].

• Without MMHSA: In this experiment, we remove the proposed Multi-Modal Multi-
Head Self Attention(MMHSA) module from the model architecture. We concatenate
visual and textual features such that each word is concatenated at each image region
resulting in a concatenated representation of dimension(L × H × W × (C + D)) where
L is the length of the question, D is the question word embedding dimension, C is
image channel size, H and W are the height and the width of the visual feature. This
concatenated representation is summed along all spatial positions of the image and along
all the words to obtain a single vector. This single vector is passed through MLP for
answer generation.
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Fig. 7 The Train-Validation loss curve at different epochs for different question categories

4.5 VQA benchmarking

We choose the attention model proposed by Kazemi et al. [54] as the baseline model because
this model outperformed previous models in VQA 1.0 [55] and VQA 2.0 [56] datasets and
became a baseline. It uses an attention module similar to SAN [15]. The model concatenates
the image and question features and passes through two convolution layers, generating two
image attention glimpses. Image attention glimpses and question features are concatenated
and passed through the classifier.

Table 4 Train-Test Loss and Accuracy

Question Category Train Accuracy Train Loss Test Accuracy Test Loss

Modality 82.7 0.47 79.2 0.82

Plane 83.8 0.48 81.6 0.71

Organ 77.1 0.67 71.2 1.50

Abnormality 5.7 5.40 8.0 8.40

Overall Accuracy 62.3 60.0
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Table 5 Comparision based on Accuracy metric with varying Image and Text Encoders on ImageCLEF 2019

DistilBERT Clinical BERT
Modality Plane OrganAbnormlity AccuracyModality Plane OrganAbnormality Accuracy

VGG16 70.4 71.2 65.6 5.6 53.2 68.8 67.2 60.0 6.4 50.6

ResNet50 79.2 75.2 68.8 6.4 57.4 68.0 72.0 64.8 6.4 52.8

Wide ResNet-50-2 79.2 81.6 71.2 8.0 60.0 74.4 80.0 69.6 7.2 57.8

Enteries having highest values are written in bold font

5 Results

5.1 Ablation study result

In our first ablation study, we try different image and text encoder combinations to find the
most appropriate image encoder and text encoder combination. Table 5 shows the results
with different Image and Text Encoders. From Table 5 we find that combining WideResNet-
50-2 with DistilBERT is a better choice for our network architecture. It outperforms
VGG16+DistilBERT by 12.78%, ResNet50+DistilBERT by 4.53%, VGG16+ClinicalBERT
by 15.67%, ResNet50+ClinicalBERT by 13.63%, andWideResNet-50-2 with ClinicalBERT
by 3.8%. Therefore, for all our experiments we use WideResNet-50-2 with DistilBERT.
In our second ablation study, we see the contribution of our proposed attention MMHSA
module in the performance of the model. From Table 6 we see that the MMHSA module
plays a significant role in the performance of our model. With MMHSA, the accuracy of the
model increases from 26.9% to 60.0%. Therefore, the proposed MMHSA module is able to
effectively combine the features of the two input modalities.

5.2 Comparision with VQA benchmark

VQABenchmark achieved an accuracy of 64.6% inVQA1.0 [55] and 59.7% inVQA2.0 [56]
datasets. It surpassed the previous best model accuracies by 0.4% in VQA 1.0 and by 0.5%
in VQA 2.0 datasets. From the results shown in Table 6, we see that our model achieves
higher accuracy in all question categories than VQA Benchmark [54]. Our attention model
achieves an accuracy of 60.0% while the VQA Benchmark achieves 40.6% on ImageCLEF
2019 dataset. Therefore, we can say that our attention mechanism is able to capture the
relationship between text and image features.

Table 6 Ablation study on ImageCLEF 2019 dataset

Modality Plane Organ Abnormality Accuracy

Without MMHSA 16.8 70.4 15.6 4.8 26.9

VQA Benchmark [54] 55.2 55.2 48.0 4.0 40.6

Ours 79.2 81.6 71.2 8.0 60.0

Enteries having highest values are written in bold font
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Table 7 Comparison based on
overall accuracy

Overall Accuracy

Team_PwC_-Med [42] 48.8

IBM research AI [41] 55.8

UMMS [40] 56.6

Hanlin [29] 62.4

Ours 60.0

5.3 Comparison with state-of-the-art

Wecompare the overall accuracy achieved by ourmodelwith the overall accuracy achieved by
some of the top-performingmodels in the ImageCLEF 2019 challenge. Since we have treated
MedVQA task as a classification problem, we compare our model with classification models
only. We have not compared our model with answer generation models. Hanlin [29] secured
the first position in ImageCLEF 2019 challenge. It uses MFB with co-attention [13] for
fusion. UMMS [40] also uses MFB with co-attention for multi-modal fusion. IBM Research
AI [41] and Team_PwC_-Med [42] use attention mechanism for fusion. Table 7 shows the
overall accuracy comparison of these models. In Table 8, we compare our results with the
Transformer-basedmodelMMBERT [5]. Since theMMBERTmodel uses additionalmedical
data for pretraining, for fair comparision we use the image encoder pretrained on ImageNet
only forMMBERT.We observe that ourmodel performes better thanMMBERT [5] by 1.35%
with fewer parameters. Our model uses 46.78% less parameters than MMBERT as shown in
Table 8.

5.4 Qualitative analysis

For qualitative analysis, we examine the output of GradCam [9] to determine the regions in
the image where the model is actually looking while providing answers. Figure 8. shows the
output of GradCam. We have shown the output of the image-question pair, which the model
correctly classified. These image-question answer pairs are from the organ category.We have
included the output of the organ category because identifying organs from radiology images
is a slightly simpler task for a non-medical person than identifying other categories. In the
GradCam output, we see that the model focuses on the regions where the organ is present
while making predictions.

Table 8 Comparison with models using Self-Attention

Modality Plane Organ Abnormality Accuracy #trainable parameters
(in Millions)

MMBERT [5] 79.2 81.6 71.2 4.8 59.2 466

Our 79.2 81.6 71.2 8.0 60.0 248

Enteries having highest values are written in bold font
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Fig. 8 GradCam output

6 Discussion

According to the results of the ablation study and comparison with the VQA Benchmark
model shown in Table 6, we see that the MMHSA module effectively fuses image and
question features. Our model achieves accuracy similar to MMBERT in organ, modality, and
plane categories and outperforms MMBERT in the abnormality category with 46.78% less
parameters as shown in Table 8. Besides accuracy, we have also computed Recall, Precision,
andF1 score using scikit-learn [57] to analyze the performance of our proposedmodel. Table 9
shows the Recall, Precision and F1 score. A high F1 score for classification models indicate
a high recall and precision value. A classification model with high recall and precision value
is considered suitable for the classification task. Therefore, the higher the F1 score, the better
the model. Our model achieves an f1 score of 0.83, 0.84 for modality, plane categories, which
is higher than MMBERT and VQA Benchmark. MMBERT achieves 0.81 and 0.83 f1 score
in modality and plane categories, while VQA Benchmark scores 0.53 and 0.45 in the same
categories respectively. In the organ category, our model andMMBERT achieves the same f1
score of 0.75, while VQABenchmark achieves 0.25. For the abnormality category, our model
achieves a high recall value in comparison to MMBERT and VQA Benchmark. However,
the overall performance in the abnormality category is low for all three models.

Table 9 Recall, Precision and F1
score

Ours MMBERT Baseline

Modality Precision 0.79 0.79 0.51

Recall 0.88 0.83 0.61

F1 score 0.83 0.81 0.53

Plane Precision 0.82 0.82 0.45

Recall 0.86 0.85 0.52

F1 score 0.84 0.83 0.45

Organ Precision 0.71 0.72 0.26

Recall 0.80 0.78 0.32

F1 score 0.75 0.75 0.25

Abnormality Precision 0.04 0.04 0.08

Recall 0.18 0.13 0.08

F1 score 0.07 0.06 0.08
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To analyze the discriminative ability of our models, we compute the DOR values for
each class in four categories. There are 13 classes in the test set of plane category. Among
all predicted classes, the plane classifier perfectly classifies all the instances of “mammo-
cc" class. Therefore, for the " mammo-cc" class, the classifier achieves 100% accuracy and
infinite DOR value. The “ap" class has the lowest DOR of 61.1 among all the predicted
classes. The plane classifier incorrectly predicts all the instances of “longitudinal", “frontal",
and “oblique" classes. The DOR value for these three classes is zero, signifying that the
classifier cannot learn the discriminating features of these classes. The train set has the least
proportion of these classes. Therefore, due to fewer images from these classes, the classifier
cannot learn the discriminating features and, hence, misclassifies them. However, for all the
predicted classes the plane classifier achieves a DOR value much higher than one.

The modality category has 25 different classes in the testset. For classes “cta - ct angiogra-
phy", “ct w/contrast (iv)", “mr - flair", “mr - adc map (app diff coeff)", the classifier classifies
perfectly with no false positve and false negative cases. Hence, the classifier obtains infinite
DORand 100%accuracy in these classes. The “yes" class has aminimumDORvalue of 245.3
among all the predicted classes. The classifier cannot predict “us-d-doppler ultrasound", “gi
and iv", “ct with gi and iv", “non contrast(mri)", and “sbft - small bowel" classes. Therefore,
the classifier achieves a zero DOR for these classes. The“sbft" is a submodality of modality
X-ray, since it is a particular type of X-ray. Due to less number of images of this class in
the training set, the classifier cannot learn the discriminating features and classify “sbft -
small bowel" as “xr - plain film". Similarly, due to less number of images in the trainset and
overlapping concepts, all the instances of “us-d-doppler ultrasound", “gi and iv", and “non
contrast(mri)" are mapped to “us - ultrasound", “iv", and “noncontrast" classes.

The organ category has ten classes. For the class “skull & contents", the classifier achieves
the highest DOR value of 586.5 among all the predicted classes. The “face, sinuses, and neck"
class has the lowest DOR value of 28.25. Organ classifier performsworst in classifying “heart
and great vessels" and “vascular and lymphatic" classes. The classifier misclassifies all the
instances of these classes in the test set. The train set has less images from these two classes.
Due to the lowest proportion in the train set, the classifier cannot capture their discriminating
features and, hence, misclassifies them. Overall, organ classifier achieves DOR value greater
than one for all the predicted classes.

Abnormality category has 111 different classes in its testset. The abnormality classifier
perfectly classifies all the examples of “yes", “acute appendicitis", “enchondroma", “hyper-
trophic pyloric stenosis" and “appendicitis" from the test set. For these classes, the classifier
achieves 100% accuracy and infinite DOR value. However, the model misclassifies all the
instances from other classes. Therefore, for all other classes, the DOR value is zero, and the
overall accuracy of the abnormality classifier reduces to 0.08%.

According to the DOR values of each class, our model efficiently captures the discrimi-
native features for maximum classes of plane, modality and organ categories. However, our

Table 10 SWOT Analysis

Strength Light weight. Interpretable. Weakness Abnormality prediction impacts the overall
accuracy Imbalanced dataset.

Opportunities More annotated med-
ical data samples External medical
Knowledge.

ThreatsSince it is a classificationmodel, it cannot handle
classes that are not included during training. Less number
of samples for a class.
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model does not perform well in the abnormality category. This is because of the high data
imbalance in the abnormality category. Also, the testset of this category has classes that
are absent in the trainset. In the present form, the MedVQA model can only answer basic
questions related to plane, organ, and modality identification from medical images. Doctors
cannot use it for disease diagnosis. However, we can overcome this problem by training the
model with more medical data and adding clinical knowledge. In Table 10 we discuss the
strengths, weaknesses, opportunities, and threats.

7 Conclusion

This paper proposes aMulti-ModalMulti-head Self-Attentionmechanism forMedical VQA.
We use ImageCLEF 2019 VQA-Med data. It contains questions related to four categories.
Therefore, we train four models, each specializing in answering questions from a single cat-
egory. We apply data augmentation techniques to increase the size of the data. We resize all
images to 256X256. We apply random rotation, contrast enhancement, and horizontal and
vertical flips on the images. For question tokenization, we use the DistilBERT tokenizer.
We use WideResNet50-2 for extracting image features. We pass question tokens through
DistilBERT to obtain question word embedding. We feed the image features and question
word embeddings into theMMHSAmodule. In theMMHSAmodule, question word embed-
dings are concatenated with the image features. We concatenate image and question words
such that each word is concatenated at each spatial location. These concatenated image
and question word embeddings, called as concatenated multimodal features, pass through
a multi-head self-attention module. The multi-head self-attention module transforms the
concatenated input into multiple query, key, and value vectors. It computes the scaled dot
product between the query and key vectors and applies softmax to obtain weights on the
value vector. The value vector is projected and resized to the same dimension as concate-
nated multimodal features. The output of the multi-head self-attention module is added with
concatenated multimodal features. This representation contains relevant question and image
features. We average it spatially along the image dimension. The resulting vector is linearly
transformed to the same dimension as question word embedding. We add the transformed
vector with the question word embeddings and sum along question words to obtain a single
context vector that contains relevant image and text information. This context vector passes
through Multi-Layer Perceptron followed by softmax to obtain the answer distribution. In
the multi-head self-attention module, we widened the dimension of query, key, and value and
observe the model’s performance for the MedVQA classification task on different question
categories.We find that different question categories performwell at different query, key, and
value dimensions. We obtain an accuracy of 60.0% with a single multi-head self-attention
module. It is comparable to several models with multiple multi-head self-attention layers.
Since our model uses a single attention module, we achieve this accuracy with almost half
the parameters used by models using multiple self-attention layers.

Our work’s primary focus is to enhance our model’s overall performance using the min-
imum number of parameters. We have yet to consider the problem of data imbalance. In
our future work, we aim to explore image-pretraining techniques to use the vast amount of
publicly available unlabelled medical data. We also want to examine the impact of adding a
medical knowledge base to the model’s efficiency, especially in the abnormality category. In
future work, we will examine the performance of the model on other MedVQA datasets.
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