
Vol.:(0123456789)

Multimedia Tools and Applications (2024) 83:37369–37385
https://doi.org/10.1007/s11042-023-17151-6

1 3

An efficient architecture for processing real‑time traffic data
streams using apache flink

B. Gnana Deepthi1 · K. Sandhya Rani1 · P. Venkata Krishna1 · V. Saritha1

Received: 7 September 2022 / Revised: 1 September 2023 / Accepted: 15 September 2023 /
Published online: 30 September 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Big Data technologies emerging day by day and are making drastic changes in various real-
world applications. Traditional data mining tools adequate to process volumes of data but from
past decades the rapid growth in data becomes difficult for processing. Due to continuous flow
of data, data streams require additional computational processing than the traditional one. Big
data stream processing considers different features of the data streams heterogeneity, scal-
ability, fault tolerance and query optimization. Efficient implementation of these features in
real-world applications using big data analytics is a challenging job during data storage, pro-
cessing, and analysis phases. Therefore, the proposed model FRTSPS is a generic architecture
which is influenced by popular big data processing Lambda architecture, based on distributed
computing platform. The architecture using open-source platform Apache Flink for doing data
processing. Flink is a popular platform for processing historical and stream data flows at once
parallelly. Its stateful streaming can obtain more scalability and flexibility along with high
throughput and low latency than the remaining stream processing programming models.

Keywords Big Data · Big Data Processing · Stream Computing · Apache Flink

1 Introduction

Over the past few decades, there has been an abnormal increase in the growth rate of data
every year. The world is progressively becoming digitalized in various fields and sectors.
Industries are actively seeking valuable insights from data to enhance their assets and

 * P. Venkata Krishna
 parimalavk@gmail.com

 B. Gnana Deepthi
 gdeepthi.bitra@gmail.com

 K. Sandhya Rani
 sandhyaranikasireddy@yahoo.co.in

 V. Saritha
 vsaritha@spmvv.ac.in

1 Department of Computer Science and Engineering, Sri Padmavati Mahila Visvavidyalayam,
Tirupati, India

http://orcid.org/0000-0001-8138-5878
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-17151-6&domain=pdf

37370 Multimedia Tools and Applications (2024) 83:37369–37385

1 3

tackle challenges in a competitive landscape. Many business sectors are adopting innova-
tive technologies such as Cloud Computing, Artificial Intelligence (AI), Big Data Analyt-
ics, Internet of Things (IoT), and Machine Learning [1]. The primary objective of these
advancements is to develop recommendation systems, personal assistant programs, self-
driving vehicles, automation, and fraud detection systems, among others. However, manag-
ing the rapidly expanding and diverse data has become an intricate and demanding task for
data administrators [2].

For performing complex data computations, centralized computing systems have been
employed. In such scenarios, a central server system oversees the hardware and software
components of multiple client systems and conducts computations. This approach of paral-
lel processing proves cost-effective as the infrastructure is equipped with high-end hard-
ware capable of handling substantial data volumes. To overcome challenges related to
parallel processing, distributed and cloud computing technologies have been introduced
[3]. These technologies facilitate dynamic online resource allocation and sharing, thereby
enhancing system performance, scalability, reliability, and cost-effectiveness.

In the present era, real-world business applications predominantly opt for distributed
systems with cloud infrastructure [4]. Companies are leveraging both historical and real-
time data to extract valuable insights from the vast data influx, enabling the creation of
modern applications for business expansion. The analysis of such data significantly con-
tributes to organizational profits. Real-time data holds particular importance for application
analysis. Systems must effectively respond to user queries and provide efficient customer
services by promptly adapting to real-time circumstances. Online users represent a crucial
asset for digital applications and organizations. Continuously evaluating and analyzing data
falls within the realm of stream processing. This approach handles "real-time" data and
continuously addresses queries to provide timely customer services [5].

A data stream [6] is a unique form of dynamic real-time data characterized by infinite
unbounded variations. These data streams are derived from diverse sources and stored as
compact data records in extensive clusters simultaneously. The primary processing meth-
ods for data streams are batch processing and micro-batch processing, which are based on
time intervals. Predicting outcomes from such data streams for real-world decision support
presents a considerable challenge. The expanding data landscape introduces new obstacles
to extracting meaningful insights. Major cloud vendors offer virtual stream pipelines to
process a range of data streams [7] (Figs. 1, 2, 3, 4, 5 and 6).

The realm of real-time big data analytics employs a variety of technological tools and
architectures. Ongoing research is dedicated to analyzing real-time streaming data. These

Fig. 1 Data stream processing

37371Multimedia Tools and Applications (2024) 83:37369–37385

1 3

studies indicate a wide array of tools being used for data processing, with no single tool
serving as a definitive solution. Previous research relied on combinations of diverse tools
to process data in both batch and real-time streams. However, integrating multiple tools
introduces complexity, particularly for handling intricate datasets. Developing highly scal-
able and fault-tolerant systems is proving increasingly challenging.

To address these concerns, the focal contributions revolve around proposing a compre-
hensive architecture known as FRTSPS (Flexible Real-Time Traffic Stream Processing Sys-
tem) for analyzing real-time simulations of traffic data presented as extensive data streams.
The term "data stream" here refers to the records captured by traffic cameras. FRTSPS

Fig. 2 Batch processing

Fig. 3 Micro-Batch processing

Fig. 4 Stream processing

Fig. 5 Apache flink platform architecture

37372 Multimedia Tools and Applications (2024) 83:37369–37385

1 3

adopts a distributed architecture rooted in a popular data stream processing framework,
catering to both real-time and batch-oriented processing needs. This architecture features
distributed storage for bounded and unbounded data, data processing units, and a query
optimization process to analyze vehicle counts recorded at specific time stamps.

The rest of this paper is structured into specific sections as outlined below. Section 2
furnishes background information pertinent to the research domain. Section 3 highlights
previous work related to the subject. In Section 4, the architecture FRTSPS is introduced,
detailing its design and system implementation. Notably, a segment of the model handles
batch processing for historical data, while the remainder manages stream processing for
real-time data streams. Section 5 elaborates on the key evaluation metrics employed and
showcases the outcomes achieved through the utilization of FRTSPS. Finally, Section 6
encapsulates the conclusions drawn from this research endeavor.

2 Back ground

Data has become an integral part of our lives, with real-time applications and various
domains generating substantial volumes of data. For instance, data originates from sources
such as IoT devices [8], user interactions on the web, financial transactions, and location
tracking systems, among others. A significant proportion of this data is characterized by
high speed, heterogeneity, and streaming nature. It often lacks uniform organization and is
in high demand, leading to complex processing challenges associated with these extensive
datasets.

The term "big data" refers to an immense influx of data (volume) that grows rapidly
(velocity) from diverse digital sources (variety), utilized for knowledge extraction and
decision-making purposes [3]. Gartner [9] categorizes big data based on its initial three
fundamental attributes, to which additional characteristics have been appended over time.
These extensions encompass Volume (data of substantial size), Velocity (data with swift
speed), Variety (data of assorted types), Variability (data with varying meanings and for-
mats), Veracity (data with reliability and accuracy considerations), Value (data with sig-
nificance), Visualization (data presented in diverse ways), Validity (data with defined
consistency), Vulnerability (data prone to significant breaches), and Volatility (data with

Fig. 6 Working phases of proposed architecture FRTSPS

37373Multimedia Tools and Applications (2024) 83:37369–37385

1 3

extended availability) [10, 11]. These attributes encapsulate the challenges posed by big
data, complicating the three major phases of data storage, processing, and organization.
Various tools and technologies have been devised to address these challenges.

In recent years, the analysis of big data [11] has emerged as a powerful approach
aimed at devising architectures and technological models capable of effectively managing
large datasets and supporting efficient decision-making systems across diverse real-time
domains. These domains include engineering, science, healthcare, social media, anomaly
detection, business intelligence, finance, marketing, recommendation engines, security,
and fraud detection. Big data surpasses the scope of traditional database management sys-
tems. Similar to conventional mining algorithms, big data not only processes locally stored
data but can also manage data spread across remote locations such as cloud servers [8], all
while accommodating diverse data types. The organization and analysis of such extensive
data are typically carried out in a distributed or streamed manner. Programming models
like message passing interfaces are inadequate for handling big data. As a result, parallel
processing offers an improved approach to enhancing processing performance.

Advancements in technology, along with supportive architectures and cloud computing
platforms, have been developed to address the challenges of big data [7]. Novel program-
ming models like MapReduce [10] have been introduced to handle large data volumes on
commodity clusters at a substantial scale. Prominent big data frameworks such as Hadoop
[11], Pig [13], Hive [2], and Mahout [12] are based on the MapReduce model. The appeal
of MapReduce lies in its simplicity, parallel processing capabilities, cost-effective distrib-
uted nature, and robust fault tolerance, contributing to its swift adoption.

The distributed storage and processing inherent to the MapReduce model confer advan-
tages over traditional data processing techniques. Yet, deploying data into computer hard-
ware becomes increasingly complex when faced with extensive data inflow. However, the
use of big data frameworks based on the MapReduce paradigm has encountered challenges
related to performance and reliability due to the inability to reuse data effectively [12]. Job
execution within the MapReduce framework involves data reading, writing, and MapRe-
duce job execution, which can be slow due to latency-associated disk input–output opera-
tions [13]. This underscores the need for novel tools and techniques to tackle these issues
and automate the storage and processing of massive datasets within supporting models.

2.1 Batch processing vs Micro‑Batch processing vs stream processing

Big data processing involves three primary paradigms: Batch, Micro-batch, and Stream
processing. In Batch processing, data is organized into finite bounded jobs. Large data vol-
umes are collected as a batch within specific time intervals and subsequently undergo pro-
cessing using a data analytical engine. The processing duration for this method tends to be
longer, and jobs are executed according to predefined schedules. This paradigm is typically
chosen when immediate processing results are not necessary [12].

An apt example of batch processing is observed in mainframe computers. Due to their
involvement with substantial volumes of data, these systems encounter time-consuming
data access and integration procedures that render continuous streaming unfeasible. Batch
processing grapples with challenges such as fault tolerance, extended processing times, and
cost-effectiveness [13].

The micro-batch processing approach serves as a midway point between batch and
stream processing. In this method, data is organized into smaller groups known as micro-
batches, with predetermined time intervals. Unlike batch processing, which accumulates all

37374 Multimedia Tools and Applications (2024) 83:37369–37385

1 3

historical data into a single large batch over specific time increments, micro-batch process-
ing involves smaller data groups being loaded and processed more frequently, adhering to
pre-established thresholds [14]. This technique proves particularly valuable for scenarios
requiring real-time data processing, such as online dashboards, server logs, and intrusion
detection, as it strikes a balance between processing speed and data volume.

Stream processing involves executing jobs immediately upon the arrival of data within
an infinite timeframe. This paradigm lacks a definitive endpoint for job execution. Data
is continuously fed into the system as an uninterrupted flow, its size remaining uncertain.
This approach entails real-time data analysis, enabling rapid insights. However, maintain-
ing stream processing applications proves to be a complex task due to their continuous
operation as long as data streams persist [15]. Stream processing is ideally suited for appli-
cations necessitating instant outcomes, offering shorter job execution times in comparison
to batch processing.

Key attributes of stream processing encompass assured job execution, robust fault tol-
erance, periodic checkpointing to capture stream state, state information management,
heightened throughput, minimal latency, and remarkable scalability. Noteworthy chal-
lenges in stream processing pertain to storage and processing considerations.

2.2 Comparison of big data processing models

This segment aims to provide a comprehensive comparison among the primary types of
big data processing models: batch, micro-batch, and stream processing. By evaluating vari-
ous parameters relevant to the organization and analysis of significant data across diverse
platforms, we can assess performance metrics and challenging attributes for each of these
programming models. As depicted below, Table 1 offers an overview of the comparisons.

In batch processing, data is stored for several hours or even days before undergoing
analysis. This programming paradigm relies on the MapReduce model and is particularly
suited for handling extensive datasets. Consequently, the processing performance tends to
be slower compared to other models [16]. Apache Hadoop stands out as the leading frame-
work for executing batch processing tasks [1].

Turning to micro-batch processing, this method involves the analysis of smaller-sized
batches of nearly real-time data, typically arriving within minutes or seconds of specific
time intervals. This approach demonstrates swifter performance than batch processing yet
slightly lags behind stream processing. Notably, it accommodates a wider range of pro-
gramming languages. Apache Spark [17] streaming emerges as a prominent platform for
micro-batch processing, attributed to its in-memory caching capabilities. Data is directly
transmitted to the streaming analytical engine without prior storage, making it an online
dynamic process that boasts advantages over alternative processing models.

Apache Flink [16] has gained traction as a favored platform for stream processing, offer-
ing integration with various platforms and frameworks. Starting as an incubating project
under the Apache Software Foundation in April 2014, Apache Flink has garnered wide-
spread adoption by contributors and business entities across the globe. It adeptly processes
bounded and unbounded data streams in a distributed, scalable, and fault-tolerant manner.
Furthermore, Flink [18] can be characterized as a platform rather than a mere framework
due to its robust integration capabilities with other frameworks. Operating as a distributed
stream processor, Flink provides diverse APIs at varying levels of abstraction to facilitate
stateful stream processing, accompanied by specialized libraries catering to different appli-
cation scenarios. The Dataset abstraction API serves batch processing purposes, while the

37375Multimedia Tools and Applications (2024) 83:37369–37385

1 3

Ta
bl

e
1

 T
he

 c
om

pa
ris

on
 o

f t
he

 b
ig

 d
at

a
pr

oc
es

si
ng

 m
od

el
s [

1,
 3

, 4
, 1

2,
 1

4,
 1

6]

Pa
ra

m
et

er
s

B
at

ch
 P

ro
ce

ss
in

g
M

ic
ro

-B
at

ch
 P

ro
ce

ss
in

g
St

re
am

 P
ro

ce
ss

in
g

D
at

a
St

or
ag

e
D

at
a

w
ith

in
 a

n
ho

ur
 o

r d
ay

s (
H

ist
or

ic
al

 d
at

a)
D

at
a

ar
riv

ed
 a

t r
ec

en
t r

ea
l-t

im
e

Re
ce

nt
ly

 a
rr

iv
ed

 d
at

a
at

 su
b-

se
co

nd
 ti

m
ef

ra
m

es
Jo

b
Im

pl
em

en
ta

tio
n

Fi
ni

te
 jo

b
(b

at
ch

)
Sm

al
l g

ro
up

 o
f b

at
ch

es
D

at
a

str
ea

m
s

Fr
am

ew
or

ks
 su

pp
or

te
d

A
pa

ch
e

H
ad

oo
p,

 A
pa

ch
e

Sp
ar

k,
 G

ra
ph

X
,

A
lte

ry
x

A
pa

ch
e

Sp
ar

k
St

re
am

in
g,

 V
er

tic
a,

 F
lu

en
td

,
Lo

gs
ta

sh
A

pa
ch

e’
s S

pa
rk

, S
to

rm
, F

lin
k,

 S
4,

 sF
lu

m
e,

C

on
flu

en
t’s

 K
SQ

L,
 S

am
za

A
PI

 L
an

gu
ag

es
Ja

va
Ja

va
, S

ca
la

, R
, P

yt
ho

n
Ja

va
, S

ca
la

, P
yt

ho
n

St
at

ef
ul

 o
pe

ra
tio

ns
N

o
N

o
Ye

s
B

at
ch

 /
St

re
am

 p
rim

iti
ve

M
ap

Re
du

ce
D

str
ea

m
D

at
aS

tre
am

In
-m

em
or

y
ca

ch
e

N
o

Ye
s

Ye
s

O
pt

im
iz

at
io

n
M

an
ua

l o
pt

im
iz

at
io

n
M

an
ua

l o
pt

im
iz

at
io

n
H

av
in

g
in

de
pe

nd
en

t q
ue

ry
 o

pt
im

iz
er

Ti
m

e
de

la
y

H
ug

e
da

ta
 p

ro
ce

ss
in

g
at

 o
nc

e
ca

us
es

 d
el

ay
Re

la
tiv

el
y

fa
ste

r b
ec

au
se

 o
f i

n-
m

em
or

y
ca

ch
in

g
Ve

ry
 F

as
te

r a
bo

ut
 in

 m
ill

is
ec

on
ds

Pr
oc

es
si

ng
 sp

ee
d

Sl
ow

er
Fa

ste
r t

ha
n

ba
tc

h
Fa

ste
r t

ha
n

m
ic

ro
-b

at
ch

Th
ro

ug
hp

ut
Lo

w
H

ig
h

H
ig

h
La

te
nc

y
H

ig
h

Lo
w

Lo
w

Fa
ul

t t
ol

er
an

ce
Pa

rti
al

ly
 fa

ul
t t

ol
er

an
t

N
ot

 fu
lly

 fa
ul

t t
ol

er
an

t b
ec

au
se

 o
f i

n-
m

em
or

y
ca

ch
in

g
an

d
Re

si
lie

nt
 D

ist
rib

ut
ed

 D
at

as
et

s
D

ist
rib

ut
ed

 sn
ap

sh
ot

s f
or

 e
ac

h
jo

b
ex

ec
ut

io
n

en
su

re
s F

ul
ly

 fa
ul

t t
ol

er
an

ce
Se

cu
rit

y
K

er
be

ro
s a

ut
he

nt
ic

at
io

n
is

 so
m

ew
ha

t d
iffi

cu
lt

A
llo

w
s K

er
be

ro
s a

ut
he

nt
ic

at
io

n
A

llo
w

s K
er

be
ro

s a
ut

he
nt

ic
at

io
n

Sc
al

ab
ili

ty
H

ig
h

Ve
ry

 h
ig

h
Ve

ry
 h

ig
h

Pe
rfo

rm
an

ce
Sl

ow
er

N
ot

 a
s e

ffi
ci

en
t

Effi
ci

en
t

C
os

t
N

ot
 C

os
t-e

ffe
ct

iv
e

si
nc

e
do

ne
 o

n
co

m
m

od
ity

ha

rd
w

ar
e

C
os

t-e
ffe

ct
iv

e
si

nc
e

re
qu

ire
s h

ig
h

R
A

M
C

os
t-e

ffe
ct

iv
e

si
nc

e
re

qu
ire

s h
ig

h
R

A
M

Re
al

-ti
m

e
an

al
ys

is
Fa

ils
 in

 re
al

-ti
m

e
an

al
ys

is
Su

pp
or

ts
 re

al
-ti

m
e

an
al

ys
is

Su
pp

or
ts

 re
al

-ti
m

e
an

al
ys

is

37376 Multimedia Tools and Applications (2024) 83:37369–37385

1 3

DataStream [3] abstraction API is employed for stream processing. Programming tools
supported for data processing in Flink encompass Java, Scala, Python, and R [4].

Flink [19] is an Open-source true stream processing tool majorly can process both
batch and stream data. Query processing is two to three times faster than the other
stream processing frameworks because of its query optimizing engine and can provide
high throughput and low latency. In-memory storage is automatic and scalable. The
processing operations map, filter and reduce are the continuous long running opera-
tions in the framework.

3 Related work

In robotic applications, rapid human face recognition is vital for improved
human–machine interaction. Cloud technology integration mitigates speed limi-
tations by dynamically providing memory and processing power. However, pub-
lic cloud usage raises concerns about image database security. To address this, we
explore secure face recognition options where recognition occurs on encrypted data.
We evaluate eight encryption algorithms for security and recognition accuracy. Face
recognition tests in robot and cloud environments measure average recognition time
using Principal Component Analysis (PCA) on encrypted data. This research aims to
enhance secure face recognition’s feasibility and efficiency in practical applications
[33].

This paper outlines our current endeavors in creating the E-Recall system, an inno-
vative platform designed for cloud-based mobile rich media data management. The
primary objective is to establish an intelligent and all-encompassing infrastructure
that addresses (1) Enabling efficient processing of media data at scale. (2) Facilitat-
ing flexible sharing and publication of media content. (3) Supporting personalized
integration of media content within a mobile environment. The E-Recall system rep-
resents a pioneering approach to addressing these multifaceted challenges in media
management and mobility [34].

Van Dongen et al. [17] discussed about the scalability of stream processing jobs in
the view of performance and efficiency. The frameworks denoted are: Flink, Kafka
Streams, Spark Streaming, and Structured Streaming. Horizontal and vertical scal-
ing issues are evaluated. Scaling considering no of factors like framework design,
resource allocation, pipeline design and data characteristic. Previous works focus on
evaluating latency, throughput, fault tolerance and scalability factors individually
through their frameworks. Here a proposing model. OSPBench suite is used to evalu-
ate additional efficiency of the same factors with in a single suite. Data streams con-
sidered are taken from Netherlands national traffic data. OSPBench suit design for
finding efficiency of workload factors and used elasticity to improve the scalability of
stream processing. For large clusters, there should be researches required to increase
the performance when large pipelines considered.

Iwendi et al. [20] implemented an architecture to process and analyze heterogeneous
data streams from various digital IOT devices. This author considered datasets of News-
groups for text analysis. Proposed architecture mainly focused on result accuracy and

37377Multimedia Tools and Applications (2024) 83:37369–37385

1 3

execution time. The partition based and mining-based algorithms are used for text analysis.
Louvain method is used for detecting and extracting separate words from the input data.
Input streaming data processed with map reducing and accurate results are obtained by
extracting the knowledge from the data. Text analysis of volumes of input data resulting
efficient outputs if the input is increased. Streaming data complex structure reduced to sim-
ple structure.

The applications of big data in healthcare sectors provides quality of services with cost
effective advancements. Big data stream computing is a big asset for this domain for doing
effective analyzation of rapid growing health data. Ta et al. [21] introduced a novel archi-
tecture for the prediction and analyzation of health records by using various big data ana-
lytical tools. The architecture is generic combination of various big data tools like Apache
Kafka, Storm and NoSQL Cassandra.

Data streams collected from various medical sources, stored and processed in a distrib-
uted architecture. Proposed architecture can do batch and stream computing of health care
records. Through the stream computing, applications get efficient storage and query opti-
mization. Additional benefits with the analysis of streams are fraud detection, drug discov-
ery, medical diagnosis and support systems. Due to the inconsistency of medical data, the
analysis is a difficult job for the processing of real-time data streams. Classical data mining
tools give transparent results for such case but if additionally, machine learning applica-
tions reduce the complexity of the distributed processing of data streams.

For the real-time heterogeneous data, batch processing is not adequate whereas the data
is time-variant and require efficient prediction models. Akanbi et al. [22] explores a distrib-
uted middleware framework for stream processing of heterogeneous real-time data using
various big data technologies. Apache Kafka having greater potential for processing data-
sets from local machines and sensor devices. Effective Drought Index (EDI) model predicts
data streams in two steps. Running the predictive model and querying infinite streams are
the two processing steps involved in this framework.

Dynamic analysis and real-time processing of moving objects data sets is a challeng-
ing job for the development of algorithms. Spatial concentrations are used for detecting
the traffic jams or crowd population on the busy roads or junctions. For these kinds of
issues most of the applications using batch processing scenarios where traffic positions
of moving objects considered in timely manner and batch processed. Real-time streaming
data applications demands stream processing for faster results. Roriz Junior et al. [23] pro-
posed a parallel algorithm, DG2CEP which uses DBSCAN algorithm to process stream-
ing data with low latency. Streaming data complex structure reduced to simple structure.
Rush hours of traffic dynamically changes and the system need to accommodate the input
streams and process dynamically.

Health care Sector having vast advancements regards to big data scenarios. The analysis
and prediction of health reports, helps the medical practitioners for giving efficient services
to the patients. Actually, the health reports are collected from various data sources. Vanathi
et al. [24] explores the applications of big data stream processing in health care sector.
The proposed architecture in this paper is a combination of various big data tools Apache
Storm, Apache Kafka and NoSQL Cassandra. The architecture can process in both batch
and stream processing manner and is scalable.

Disaster management is the one of the real-time applications where big data and
Cloud computing emerges for analysis useful in emergency situations. Puthal et al. [25]
proposed a framework for predicting real-time emergency decision support services and

37378 Multimedia Tools and Applications (2024) 83:37369–37385

1 3

alert generation. For such kind of applications user’s sensitive data must be protected. This
paper majorly discussing about the security aspects of the data streams. Real-time process-
ing of sensitive data is a challenging job. Apache Storm open-source tool is used for imple-
menting alert systems and predicting the disaster areas.

Internet of things having emerging applications in the big data domain. The data
transmission from digital devices is dynamic and heterogeneous in nature. Corral-
Plaza et al. [26] proposing an architecture that preprocess the data streams by homog-
enizing them for better query optimization. The architecture is a generic one and is
used for various sources of IOT devices. Here author considered the real-time data
stream like water supply management data that is processed, transformed and further
analyzed by the data processing tools Kafka, Apache Avro and Esper.

Stream processing frameworks solving complex data organizing jobs in the field of
parallel processing. Scalability, Reliability and Fault tolerance are the major advances
of such kind of processing scenario. Van Dongen et al. [27] worked on the compari-
son of the big data stream processing tools Spark, Flink and Kafka. The major aspects
considered here are the storage failures and job failures. The job scheduling approach
between the tools given efficient results whereas Storm framework having better
results.

4 Flink based real‑time stream processing system (frtsps)

Existing big data tools rely on batch processing techniques with high latency, which proves
inadequate and time-consuming for processing critical applications and real-time streaming
data [22]. Batch processing methods handle bounded data periodically, yielding results in a
time-ordered fashion. Conversely, stream processing techniques cater to both bounded and
unbounded data, providing real-time results in a matter of seconds, contingent on stream
velocity. However, the accuracy of stream processing outcomes may fall short compared to
batch processing due to the larger data volume processed.

To overcome these challenges, the lambda architecture [28] emerges as a solution
by integrating batch and stream processing techniques to deliver enhanced and pre-
cise results. Our proposed architecture, FRTSPS, is built upon the lambda architecture
[29], featuring three layers: the batch processing layer, the stream processing layer,
and the service layer. The stream processing layer adeptly manages incoming real-
time streaming data, while the batch layer captures substantial volumes of bounded
data at specific time intervals. This data is stored in a distributed manner and ana-
lyzed using the map-reduce technique. The service layer acts as an intermediary con-
necting the batch and stream layers, facilitating the visualization of analytical results
as output. In essence, the lambda architecture synergizes both batch and stream pro-
cessing layers to effectively analyze historical data and real-time data streams [30].

Within FRTSPS, the focus is on the real-time traffic dataset, which is organized into
distinct categories based on location and time windows. This dataset encompasses various
attributes, including vehicle ID, vehicle speed, position, and traffic light data. The primary
objective involves simulating the dataset to ascertain the volume of vehicles traversing spe-
cific locations during designated time intervals.

As an example, we present a straightforward algorithm that outlines the control logic
employed within the system implementation.

37379Multimedia Tools and Applications (2024) 83:37369–37385

1 3

Algorithm to simulate Real-time Traffic Data in FRTSPS
def Vehicle Model
1. # Load Data
2. # The producer service
3. build a pipeline to the records Vehicle Plate No, Timestamp, Vehicle type.
4. write the data to Kafka topics to randomly generate vehicle events.
5. handle the topic messages at local cluster with topic name “vehicle-type.”
6. partition the data based on the vehicle type
7. # Transform Data
8. # The Consumer Service
9. map the results from producer by serialization.
10. assign keyed data stream to windows operator.
11. aggregate the sum of vehicles crossed at the specific time frame.
12. deserialize the Vehicle model.
13. # Visualize Data
14 eliminate conflicts and duplicates
15 analyze the data
16 return vehicle count crossed at the certain time stamp.
17 compute throughput and latency in terms of vehicle count
18 count number of Vehicle events within a multi-broker cluster
19 Estimate System runtime ratio
End

4.1 Load data

During this phase, the data transmissions are bifurcated into two distinct pipelines to man-
age both streaming and batch data. The Batch processing layer, operating within the first
pipeline, handles incoming data at specific time intervals. This data is subsequently stored
in a distributed database engine for further processing. Should new data arrive within
the same time window, it’s appended to the existing master data in the distributed stor-
age system. On the other hand, the stream processing layer captures real-time data, with
varying data stream speeds. To manage the fluctuating load, Apache Kafka [21] topics are
leveraged.

Kafka [22] functions as a data buffer, effectively moderating the flow of streaming
data at the analysis level. Input data originating from digital sources is managed through
two topics within the framework: producers and consumers. Producers extract data from
pipelines and transform it for analysis by consumers. This mechanism acts as a channel
between the traffic system and the sensors. Streaming data is integrated into the system in
message format, denoted as a topic. Each message contains two key parameters: producers
and consumers, each specialized in handling distinct data types. Incoming data is managed
by producers and analyzed by consumers. Topics serve as the mechanism for organizing
data, where producers send data to topics, and consumers retrieve data as messages. The
number of topics depends on data size, including attributes like vehicle speed, position,
and traffic lights. Both structured and unstructured data can be accommodated [24].

37380 Multimedia Tools and Applications (2024) 83:37369–37385

1 3

A Kafka cluster [26] oversees each topic with a unique identifier. Producers write data
to topics, and consumers send messages to specific topics for data retrieval. Each topic
can be subscribed to by zero or multiple consumers. Broker nodes within the cluster han-
dle partitioning and replication of topics to achieve high throughput. Every message is
assigned a unique offset value to facilitate easy tracking. Topics can be created manually
or automatically. The process of organizing topics involves four sequential steps: listing
topics, describing topics, creating topics, and deleting topics. The cluster layout is visually
represented in the Fig. 7.

4.2 Transform data

This phase is designated for data transformation, achieved through specific operations.
Within the batch processing layer, data is subjected to the Extract, Transform, and Load
(ETL) process [22]. The outcome of this process constitutes batch views that are subse-
quently indexed. These batch views can be scaled for further indexing when new ones
become available in the pipeline. Due to the sheer volume of data, this process is relatively
slow. However, the stream layer compensates for this time delay by processing real-time
data streams. This layer is responsible for generating real-time views through the process-
ing of recently arrived data that hasn’t undergone transformation in the batch layer.

In the transform layer, a Kafka Consumer is utilized within the Apache Flink [31] job.
Its role is to provide statistical results pertaining to specific vehicle types crossing prede-
fined speed thresholds within certain time intervals. Kafka [11] data nodes are employed
for storing stream data, while PostgreSQL tables accommodate bounded data. The Con-
sumer collects messages and interprets them as data streams. Flink [4], utilizing a mas-
ter–slave processing model, initializes the job manager for task scheduling on worker
nodes, generating individual jobs for each data stream event. Task managers oversee these
events, issuing heartbeat signals to nodes throughout processing. Stream abstraction is

Fig. 7 Apache kafka cluster with producer, consumer groups and partition layout

37381Multimedia Tools and Applications (2024) 83:37369–37385

1 3

executed using DataStream objects [10], which receive data from the cluster and parallelly
perform map, filter, and reduce operations on the data for the respective job events.

Data retrieval from the PostgreSQL database is facilitated by the JDBC connector, for-
warding it to the phase’s query optimizer. Here, batch and stream views are merged. To
ensure fault tolerance, snapshot checkpoints are implemented in the event of node, hard-
ware, software, or network failures. In such cases, DataStreams [3, 5] are automatically
restarted, and checkpoint log values are reset.

The Query optimizer phase involves parallel data processing in both stream and batch
formats. Notably, both layers contain data in the same format. Should any discrepancies
arise in batch or stream views, the query optimizer reevaluates the views as new data is
appended to existing records. Data cleaning ensues, addressing error values to minimize
inaccuracies. The transform phase consistently queries the latest available data. Window-
ing and SQL transformations [32] are also employed to eliminate duplicates. Streaming
windows partition infinite data streams into finite-sized buckets for processing, guided
by certain parameters. Following these operations, the transformed data materializes as a
SQL-ready timestamp.

4.3 Visualize data

The final phase within FRTSPS is dedicated to visualization, with its primary objective
being to present the analyzed data to end-users. This phase recognizes that the batch layer
is designed for historical data, while the stream layer caters to real-time streaming data.
Consequently, both the batch and stream layers simultaneously transmit data to this visuali-
zation layer in the form of metrics for analysis.

Data is written to the merge layer, facilitating the merging of streaming and batch data
concurrently. Subsequently, the results from both layers are combined while eliminating
any conflicts or duplicates. The processed data is then made readily available within the
database for analysis. To achieve this, we employ the Cassandra sink, which outputs pro-
cessed streams to the same Cassandra table. The outcomes generated in the visualization
phase manifest as analytical dashboards for users to interpret and derive insights from.

5 Results & discussion

The underlying goal behind introducing the generic architecture FRTSPS in this paper is to
seamlessly integrate both batch and stream processing programming models. We delve into
the fundamental concepts of big data processing, which play a crucial role in efficiently
analyzing extensive datasets in real-time. The study encompasses various data types and
sizes, which are relevant for stream analytics. Through a comprehensive evaluation, diverse
parameters are scrutinized to gauge the system’s efficiency and effectiveness. These param-
eters offer insights into the system’s performance within designated time frames and its
responsiveness to generic real-time queries. FRTSPS lays out a flow-based, generic analyti-
cal model, serving as the foundation for data storage and management.

In Section 4, we present the system model and elaborate on the flow-based analysis of
stream processing across multiple layers. The major phases within the system encompass
data loading, data processing, and the merging of in-flow stream analysis. The data cluster
exhibits scalability to accommodate varying data bandwidths while effectively managing
faults that may arise in individual machines. In-memory capabilities aid in processing large

37382 Multimedia Tools and Applications (2024) 83:37369–37385

1 3

volumes of data streams effortlessly, capable of handling diverse data simultaneously. Dur-
ing the data analysis phase, the query optimizer is implemented through reducer and evalu-
ator modules. These modules employ aggregation functions to count vehicles at specific
time stamps.

The map process is integrated into the producer phase, aligning with the real-time
data flow. Through an evaluation, we measure performance metrics such as throughput
and latency for our FRTSPS architecture. Total throughput and latency for each job are
assessed concerning buffer timeout and the number of events processed per second. The
execution of jobs involves 20 task managers. All metrics are recorded, leading to the calcu-
lation of average throughput and latency for our data.

Figure 8 illustrates the comparison between average throughput and latency for a spe-
cific number of events. As we extend the batch interval by a few seconds, throughput dem-
onstrates an increase. Correspondingly, inherent latency becomes apparent. This observa-
tion implies that event-driven processing within the clusters necessitates limited buffers.
Notably, a sustainable throughput of 9.82 MBS/s/event is achieved. The visualization of
performance metrics further confirms that FRTSPS is capable of delivering high through-
put and minimized latency.

Figure 9 presents a comparative analysis of FRTSPS’s throughput results in relation to
other frameworks. The data points, depicted as dot markers, showcase throughput as the
chosen performance metric, specifically considering vehicle events within a multi-bro-
ker cluster. The evaluation encompasses the number of events per cycle and the count of

Fig. 8 Variations in throughput
and latency as the buffer timeout
increases

0

20

40

60

80

100

0 20 40 60 80 100

Ev
en

ts
pe

r s
ec

Buffer Timeout (millisecs)

Throughput
Latency

Fig. 9 Comparison of throughput
for frameworks Spark, Storm and
FRTSPS

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Ev
en

ts
pe

r s
ec

CPU Cores

FRTSPS
Spark
Storm

37383Multimedia Tools and Applications (2024) 83:37369–37385

1 3

CPU cores employed per job execution. Notably, it is evident that FRTSPS yields higher
throughput outcomes as both the number of events and CPU cores increase.

In Figs. 10 and 11, we delve into a comparison involving processed events per second
and the system run-time ratio for FRTSPS, particularly juxtaposed with platforms Spark
and Storm. Within this context, Apache Flink emerges with notably higher throughput in
comparison to the other platforms. Notably, its behavior follows a linear trajectory and
maintains a high saturated ratio, underlining its robust performance characteristics.

6 Conclusion

In this work, FRTSPS proves to be robust, reliable, scalable, and elastic for processing
data streams. It comprises three fundamental phases: pre-processing, transformation, and
analysis, and demonstrates the capability to handle substantial real-time streams. Moreo-
ver, it seamlessly integrates both batch and stream processing for complex datasets. Nota-
bly, the query optimizer exhibits robustness in addressing intricate queries as each topic is
designed to manage distinct types of data.

0

20

40

60

80

100

0 100 200 300 400

Ev
en

ts
pe

r s
ec

Data Size in GB's

FRTSPS
Spark
Storm

Fig. 10 Processed events per second

0

20

40

60

80

100

0 100 200 300 400

A
ve

ra
ge

 R
un

-ti
m

e
(s

ec
s)

Data Size (GB's)

Storm Spark FRTSPS

Fig. 11 System Run-time ratio

37384 Multimedia Tools and Applications (2024) 83:37369–37385

1 3

However, it’s essential to acknowledge certain limitations, primarily related to the
processing of extensive real-world data streams. The evaluation of multi-level queries is
facilitated through the utilization of simple Python functions.

Real-world applications necessitate the analysis of heterogeneous data streams rapidly
generated from various digital sources. Conventional data processing tools and applications
fall short in effectively addressing such challenges. Consequently, there arises a demand for
the development of intricate data structures to represent processing and networking archi-
tectures. To complement this, further research is essential for refining existing big data tools
and implementing more advanced analytical models, such as machine learning architectures.

Funding The authors have not disclosed any funding.

Data availability The datasets generated during and/or analysed during the current study are available from
the corresponding author on reasonable request.

Declarations

Conflicts of interests The authors declares that there is no conflict of interest for this paper.

References

 1. Kiran M, Murphy P, Monga I, Dugan J, Baveja SS (2015) Lambda architecture for cost-effective
batch and speed big data processing. 2015 IEEE International Conference on Big Data (Big Data),
Santa Clara, CA, USA, pp. 2785–2792. https:// doi. org/ 10. 1109/ BigDa ta. 2015. 73640 82

 2. Isah H, Abughofa T, Mahfuz S, Ajerla D, Zulkernine F, Khan S (2019) A survey of distributed data
stream processing frameworks. IEEE Access 7:154300–154316

 3. Tantalaki N, Souravlas S, Roumeliotis M (2020) A review on big data real-time stream processing
and its scheduling techniques. Int J Parallel Emergent Distrib Syst 35(5):571–601

 4. Lopez MA, Lobato AG, Duarte OC (2016) A performance comparison of open-source stream pro-
cessing platforms. 2016 IEEE Global Communications Conference (GLOBECOM), Washington,
DC, USA, pp. 1–6. https:// doi. org/ 10. 1109/ GLOCOM. 2016. 78415 33

 5. Rabl T, Traub J, Katsifodimos A, Markl V (2016) Apache Flink in current research. It-Inform Technol
58(4):157–165

 6. Feng L (2020) A real-time computer network trend analysis algorithm based on dynamic data stream
in the context of big data. 2020 International conference on intelligent transportation, big data & smart
city (ICITBS), Vientiane, Laos, pp. 473–476. https:// doi. org/ 10. 1109/ ICITB S49701. 2020. 00102

 7. Carbone P, Fragkoulis M, Kalavri V, Katsifodimos A (2020) Beyond analytics: The evolution of
stream processing systems. In Proceedings of the 2020 ACM SIGMOD international conference
on management of data (SIGMOD ’20). Association for computing machinery, New York, USA,
2651–2658. https:// doi. org/ 10. 1145/ 33184 64. 33831 31

 8. Marques, Nuno C, Bruno Silva, Hugo Santos (2016) An interactive interface for multi-dimensional
data stream analysis. 2016 20th International Conference Information Visualisation (IV), Lisbon,
Portugal, pp. 223–229. https:// doi. org/ 10. 1109/ IV. 2016. 72

 9. De Mauro A, Greco M, Grimaldi M (2016) A formal definition of Big Data based on its essential
features. Libr Rev 65(3):122–135

 10. Carbone P, Katsifodimos A, Ewen S, Markl V, Haridi S, Tzoumas K (2015) Apache flink: Stream
and batch processing in a single engine. The Bulletin of the Technical Committee on Data Engi-
neering, 38(4):28–38

 11. Jiang W, Luo J (2022) Big data for traffic estimation and prediction: a survey of data and tools.
Appl Syst Innov 5(1):23

 12 Nazari E, Shahriari MH, Tabesh H (2019) BigData analysis in healthcare: apache hadoop, apache
spark and apache flink. Front Health Inform 8(1):14

https://doi.org/10.1109/BigData.2015.7364082
https://doi.org/10.1109/GLOCOM.2016.7841533
https://doi.org/10.1109/ICITBS49701.2020.00102
https://doi.org/10.1145/3318464.3383131
https://doi.org/10.1109/IV.2016.72

37385Multimedia Tools and Applications (2024) 83:37369–37385

1 3

 13. Naoual El aboudi and Benhlima L (2018) Big data management for healthcare systems: architec-
ture, requirements, and implementation." Advances in Bioinformatics, 2018(4059018):10. https://
doi. org/ 10. 1155/ 2018/ 40590 18

 14. Venkataraman S, Panda A, Ousterhout K, Armbrust M, Ghodsi A, Franklin MJ, Recht B, Stoica I
(2017) Drizzle: Fast and adaptable stream processing at scale. In Proceedings of the 26th Symposium
on Operating Systems Principles, 374–389. https:// doi. org/ 10. 1145/ 31327 47. 31327 50

 15. Fragkoulis M, Carbone P, Kalavri V, Katsifodimos A (2020) A survey on the evolution of stream pro-
cessing systems. arXiv preprint arXiv:2008.00842

 16. Mahapatra T (2020) Composing high-level stream processing pipelines. J Big Data 7(1):1–28
 17. Van Dongen G, Van Den Poel D (2021) Influencing factors in the scalability of distributed stream pro-

cessing jobs. IEEE Access 9:109413–109431
 18. Shahverdi E, Awad A, Sakr S (2019) Big stream processing systems: an experimental evaluation. In

2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW), 53–60
 19. HoseinyFarahabady MR, Jannesari A, Taheri J, Bao W, Zomaya AY, Tari Z (2020) Q-flink: A qos-aware con-

troller for apache flink. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Com-
puting (CCGRID), Melbourne, VIC, Australia, pp. 629-638. https:// doi. org/ 10. 1109/ CCGri d49817. 2020. 00- 30

 20. Iwendi C, Ponnan S, Munirathinam R, Srinivasan K, Chang C-Y (2019) An efficient and unique TF/IDF algo-
rithmic model-based data analysis for handling applications with big data streaming. Electronics 8(11):1331

 21. Ta, V-D, Liu C-M, Nkabinde GW (2016) Big data stream computing in healthcare real-time analytics. In
2016 IEEE international conference on cloud computing and big data analysis (ICCCBDA), pp. 37–42. IEEE

 22. Akanbi A, Masinde M (2020) A distributed stream processing middleware framework for real-time analy-
sis of heterogeneous data on big data platform: case of environmental monitoring. Sensors 20(11):3166

 23. Roriz Junior M, Olivieri B, Endler M (2019) DG2CEP: a near real-time on-line algorithm for detecting
spatial clusters large data streams through complex event processing. J Internet Serv Appl 10(1):1–28

 24. Vanathi R, Khadir AS (2017) A robust architectural framework for big data stream computing in per-
sonal healthcare real time analytics. 2017 world congress on computing and communication technolo-
gies (WCCCT), Tiruchirappalli, India, pp. 97–104. https:// doi. org/ 10. 1109/ WCCCT. 2016. 32

 25. Puthal D, Nepal S, Ranjan R, Chen J (2016) A secure big data stream analytics framework for disas-
ter management on the cloud. 2016 IEEE 18th International Conference on High Performance Com-
puting and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd Interna-
tional Conference on Data Science and Systems (HPCC/SmartCity/DSS), Sydney, NSW, Australia, pp.
1218–1225. https:// doi. org/ 10. 1109/ HPCC- Smart City- DSS. 2016. 0170

 26. Corral-Plaza D, Medina-Bulo I, Ortiz G, Boubeta-Puig J (2020) A stream processing architecture for
heterogeneous data sources in the Internet of Things. Comput Stand Inter 70:103426

 27. van Dongen G, Van Den Poel D (2021) A performance analysis of fault recovery in stream processing
frameworks. IEEE Access 9:93745–93763

 28. Hasani Z, Kon-Popovska M, Velinov G (2014) Lambda architecture for real time big data analytic. ICT
Innovations 133–143

 29. Probst L, Rauschenbach F, Schuldt H, Seidenschwarz P, Rumo M (2018) Integrated real-time data
stream analysis and sketch-based video retrieval in team sports. 2018 IEEE International Conference on
Big Data (Big Data), Seattle, WA, USA, pp. 548-555. https:// doi. org/ 10. 1109/ BigDa ta. 2018. 86225 92

 30. Qadah E, Mock M, Alevizos E, Fuchs G (2018) Lambda architecture for batch and stream processing.
In CEUR Workshop Proc 2083:109–116

 31. Li Z, Yu J, Bian C, Pu Y, Wang Y, Zhang Y, Guo B (2020) Flink-er: an elastic resource-schedul-
ing strategy for processing fluctuating mobile stream data on flink. Mobile Information Systems,
2020(5351824):17. https:// doi. org/ 10. 1155/ 2020/ 53518 24

 32 Van Dongen G, Van den Poel D (2020) Evaluation of stream processing frameworks. IEEE Trans Par-
allel Distrib Syst 31(8):1845–1858

 33. Karri C (2021) Secure robot face recognition in cloud environments. Multimedia Tools Appl 80(12):18611–18626
 34. Shen J, Yan S, & Hua XS (2010). The e-recall environment for cloud based mobile rich media data

management. In Proceedings of the 2010 ACM multimedia workshop on Mobile cloud media comput-
ing. 31–34. https:// doi. org/ 10. 1145/ 18779 53. 18779 63

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.1155/2018/4059018
https://doi.org/10.1155/2018/4059018
https://doi.org/10.1145/3132747.3132750
https://doi.org/10.1109/CCGrid49817.2020.00-30
https://doi.org/10.1109/WCCCT.2016.32
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0170
https://doi.org/10.1109/BigData.2018.8622592
https://doi.org/10.1155/2020/5351824
https://doi.org/10.1145/1877953.1877963

	An efficient architecture for processing real-time traffic data streams using apache flink
	Abstract
	1 Introduction
	2 Back ground
	2.1 Batch processing vs Micro-Batch processing vs stream processing
	2.2 Comparison of big data processing models

	3 Related work
	4 Flink based real-time stream processing system (frtsps)
	4.1 Load data
	4.2 Transform data
	4.3 Visualize data

	5 Results & discussion
	6 Conclusion
	References

