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Abstract
Big Data technologies emerging day by day and are making drastic changes in various real-
world applications. Traditional data mining tools adequate to process volumes of data but from 
past decades the rapid growth in data becomes difficult for processing. Due to continuous flow 
of data, data streams require additional computational processing than the traditional one. Big 
data stream processing considers different features of the data streams heterogeneity, scal-
ability, fault tolerance and query optimization. Efficient implementation of these features in 
real-world applications using big data analytics is a challenging job during data storage, pro-
cessing, and analysis phases. Therefore, the proposed model FRTSPS is a generic architecture 
which is influenced by popular big data processing Lambda architecture, based on distributed 
computing platform. The architecture using open-source platform Apache Flink for doing data 
processing. Flink is a popular platform for processing historical and stream data flows at once 
parallelly. Its stateful streaming can obtain more scalability and flexibility along with high 
throughput and low latency than the remaining stream processing programming models.

Keywords  Big Data · Big Data Processing · Stream Computing · Apache Flink

1  Introduction

Over the past few decades, there has been an abnormal increase in the growth rate of data 
every year. The world is progressively becoming digitalized in various fields and sectors. 
Industries are actively seeking valuable insights from data to enhance their assets and 
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tackle challenges in a competitive landscape. Many business sectors are adopting innova-
tive technologies such as Cloud Computing, Artificial Intelligence (AI), Big Data Analyt-
ics, Internet of Things (IoT), and Machine Learning [1]. The primary objective of these 
advancements is to develop recommendation systems, personal assistant programs, self-
driving vehicles, automation, and fraud detection systems, among others. However, manag-
ing the rapidly expanding and diverse data has become an intricate and demanding task for 
data administrators [2].

For performing complex data computations, centralized computing systems have been 
employed. In such scenarios, a central server system oversees the hardware and software 
components of multiple client systems and conducts computations. This approach of paral-
lel processing proves cost-effective as the infrastructure is equipped with high-end hard-
ware capable of handling substantial data volumes. To overcome challenges related to 
parallel processing, distributed and cloud computing technologies have been introduced 
[3]. These technologies facilitate dynamic online resource allocation and sharing, thereby 
enhancing system performance, scalability, reliability, and cost-effectiveness.

In the present era, real-world business applications predominantly opt for distributed 
systems with cloud infrastructure [4]. Companies are leveraging both historical and real-
time data to extract valuable insights from the vast data influx, enabling the creation of 
modern applications for business expansion. The analysis of such data significantly con-
tributes to organizational profits. Real-time data holds particular importance for application 
analysis. Systems must effectively respond to user queries and provide efficient customer 
services by promptly adapting to real-time circumstances. Online users represent a crucial 
asset for digital applications and organizations. Continuously evaluating and analyzing data 
falls within the realm of stream processing. This approach handles "real-time" data and 
continuously addresses queries to provide timely customer services [5].

A data stream [6] is a unique form of dynamic real-time data characterized by infinite 
unbounded variations. These data streams are derived from diverse sources and stored as 
compact data records in extensive clusters simultaneously. The primary processing meth-
ods for data streams are batch processing and micro-batch processing, which are based on 
time intervals. Predicting outcomes from such data streams for real-world decision support 
presents a considerable challenge. The expanding data landscape introduces new obstacles 
to extracting meaningful insights. Major cloud vendors offer virtual stream pipelines to 
process a range of data streams [7] (Figs. 1, 2, 3, 4, 5 and 6).

The realm of real-time big data analytics employs a variety of technological tools and 
architectures. Ongoing research is dedicated to analyzing real-time streaming data. These 

Fig. 1   Data stream processing



37371Multimedia Tools and Applications (2024) 83:37369–37385	

1 3

studies indicate a wide array of tools being used for data processing, with no single tool 
serving as a definitive solution. Previous research relied on combinations of diverse tools 
to process data in both batch and real-time streams. However, integrating multiple tools 
introduces complexity, particularly for handling intricate datasets. Developing highly scal-
able and fault-tolerant systems is proving increasingly challenging.

To address these concerns, the focal contributions revolve around proposing a compre-
hensive architecture known as FRTSPS (Flexible Real-Time Traffic Stream Processing Sys-
tem) for analyzing real-time simulations of traffic data presented as extensive data streams. 
The term "data stream" here refers to the records captured by traffic cameras. FRTSPS 

Fig. 2   Batch processing

Fig. 3   Micro-Batch processing

Fig. 4   Stream processing

Fig. 5   Apache flink platform architecture
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adopts a distributed architecture rooted in a popular data stream processing framework, 
catering to both real-time and batch-oriented processing needs. This architecture features 
distributed storage for bounded and unbounded data, data processing units, and a query 
optimization process to analyze vehicle counts recorded at specific time stamps.

The rest of this paper is structured into specific sections as outlined below. Section 2 
furnishes background information pertinent to the research domain. Section 3 highlights 
previous work related to the subject. In Section 4, the architecture FRTSPS is introduced, 
detailing its design and system implementation. Notably, a segment of the model handles 
batch processing for historical data, while the remainder manages stream processing for 
real-time data streams. Section 5 elaborates on the key evaluation metrics employed and 
showcases the outcomes achieved through the utilization of FRTSPS. Finally, Section  6 
encapsulates the conclusions drawn from this research endeavor.

2 � Back ground

Data has become an integral part of our lives, with real-time applications and various 
domains generating substantial volumes of data. For instance, data originates from sources 
such as IoT devices [8], user interactions on the web, financial transactions, and location 
tracking systems, among others. A significant proportion of this data is characterized by 
high speed, heterogeneity, and streaming nature. It often lacks uniform organization and is 
in high demand, leading to complex processing challenges associated with these extensive 
datasets.

The term "big data" refers to an immense influx of data (volume) that grows rapidly 
(velocity) from diverse digital sources (variety), utilized for knowledge extraction and 
decision-making purposes [3]. Gartner [9] categorizes big data based on its initial three 
fundamental attributes, to which additional characteristics have been appended over time. 
These extensions encompass Volume (data of substantial size), Velocity (data with swift 
speed), Variety (data of assorted types), Variability (data with varying meanings and for-
mats), Veracity (data with reliability and accuracy considerations), Value (data with sig-
nificance), Visualization (data presented in diverse ways), Validity (data with defined 
consistency), Vulnerability (data prone to significant breaches), and Volatility (data with 

Fig. 6   Working phases of proposed architecture FRTSPS
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extended availability) [10, 11]. These attributes encapsulate the challenges posed by big 
data, complicating the three major phases of data storage, processing, and organization. 
Various tools and technologies have been devised to address these challenges.

In recent years, the analysis of big data [11] has emerged as a powerful approach 
aimed at devising architectures and technological models capable of effectively managing 
large datasets and supporting efficient decision-making systems across diverse real-time 
domains. These domains include engineering, science, healthcare, social media, anomaly 
detection, business intelligence, finance, marketing, recommendation engines, security, 
and fraud detection. Big data surpasses the scope of traditional database management sys-
tems. Similar to conventional mining algorithms, big data not only processes locally stored 
data but can also manage data spread across remote locations such as cloud servers [8], all 
while accommodating diverse data types. The organization and analysis of such extensive 
data are typically carried out in a distributed or streamed manner. Programming models 
like message passing interfaces are inadequate for handling big data. As a result, parallel 
processing offers an improved approach to enhancing processing performance.

Advancements in technology, along with supportive architectures and cloud computing 
platforms, have been developed to address the challenges of big data [7]. Novel program-
ming models like MapReduce [10] have been introduced to handle large data volumes on 
commodity clusters at a substantial scale. Prominent big data frameworks such as Hadoop 
[11], Pig [13], Hive [2], and Mahout [12] are based on the MapReduce model. The appeal 
of MapReduce lies in its simplicity, parallel processing capabilities, cost-effective distrib-
uted nature, and robust fault tolerance, contributing to its swift adoption.

The distributed storage and processing inherent to the MapReduce model confer advan-
tages over traditional data processing techniques. Yet, deploying data into computer hard-
ware becomes increasingly complex when faced with extensive data inflow. However, the 
use of big data frameworks based on the MapReduce paradigm has encountered challenges 
related to performance and reliability due to the inability to reuse data effectively [12]. Job 
execution within the MapReduce framework involves data reading, writing, and MapRe-
duce job execution, which can be slow due to latency-associated disk input–output opera-
tions [13]. This underscores the need for novel tools and techniques to tackle these issues 
and automate the storage and processing of massive datasets within supporting models.

2.1 � Batch processing vs  Micro‑Batch processing vs stream processing

Big data processing involves three primary paradigms: Batch, Micro-batch, and Stream 
processing. In Batch processing, data is organized into finite bounded jobs. Large data vol-
umes are collected as a batch within specific time intervals and subsequently undergo pro-
cessing using a data analytical engine. The processing duration for this method tends to be 
longer, and jobs are executed according to predefined schedules. This paradigm is typically 
chosen when immediate processing results are not necessary [12].

An apt example of batch processing is observed in mainframe computers. Due to their 
involvement with substantial volumes of data, these systems encounter time-consuming 
data access and integration procedures that render continuous streaming unfeasible. Batch 
processing grapples with challenges such as fault tolerance, extended processing times, and 
cost-effectiveness [13].

The micro-batch processing approach serves as a midway point between batch and 
stream processing. In this method, data is organized into smaller groups known as micro-
batches, with predetermined time intervals. Unlike batch processing, which accumulates all 
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historical data into a single large batch over specific time increments, micro-batch process-
ing involves smaller data groups being loaded and processed more frequently, adhering to 
pre-established thresholds [14]. This technique proves particularly valuable for scenarios 
requiring real-time data processing, such as online dashboards, server logs, and intrusion 
detection, as it strikes a balance between processing speed and data volume.

Stream processing involves executing jobs immediately upon the arrival of data within 
an infinite timeframe. This paradigm lacks a definitive endpoint for job execution. Data 
is continuously fed into the system as an uninterrupted flow, its size remaining uncertain. 
This approach entails real-time data analysis, enabling rapid insights. However, maintain-
ing stream processing applications proves to be a complex task due to their continuous 
operation as long as data streams persist [15]. Stream processing is ideally suited for appli-
cations necessitating instant outcomes, offering shorter job execution times in comparison 
to batch processing.

Key attributes of stream processing encompass assured job execution, robust fault tol-
erance, periodic checkpointing to capture stream state, state information management, 
heightened throughput, minimal latency, and remarkable scalability. Noteworthy chal-
lenges in stream processing pertain to storage and processing considerations.

2.2 � Comparison of big data processing models

This segment aims to provide a comprehensive comparison among the primary types of 
big data processing models: batch, micro-batch, and stream processing. By evaluating vari-
ous parameters relevant to the organization and analysis of significant data across diverse 
platforms, we can assess performance metrics and challenging attributes for each of these 
programming models. As depicted below, Table 1 offers an overview of the comparisons.

In batch processing, data is stored for several hours or even days before undergoing 
analysis. This programming paradigm relies on the MapReduce model and is particularly 
suited for handling extensive datasets. Consequently, the processing performance tends to 
be slower compared to other models [16]. Apache Hadoop stands out as the leading frame-
work for executing batch processing tasks [1].

Turning to micro-batch processing, this method involves the analysis of smaller-sized 
batches of nearly real-time data, typically arriving within minutes or seconds of specific 
time intervals. This approach demonstrates swifter performance than batch processing yet 
slightly lags behind stream processing. Notably, it accommodates a wider range of pro-
gramming languages. Apache Spark [17] streaming emerges as a prominent platform for 
micro-batch processing, attributed to its in-memory caching capabilities. Data is directly 
transmitted to the streaming analytical engine without prior storage, making it an online 
dynamic process that boasts advantages over alternative processing models.

Apache Flink [16] has gained traction as a favored platform for stream processing, offer-
ing integration with various platforms and frameworks. Starting as an incubating project 
under the Apache Software Foundation in April 2014, Apache Flink has garnered wide-
spread adoption by contributors and business entities across the globe. It adeptly processes 
bounded and unbounded data streams in a distributed, scalable, and fault-tolerant manner. 
Furthermore, Flink [18] can be characterized as a platform rather than a mere framework 
due to its robust integration capabilities with other frameworks. Operating as a distributed 
stream processor, Flink provides diverse APIs at varying levels of abstraction to facilitate 
stateful stream processing, accompanied by specialized libraries catering to different appli-
cation scenarios. The Dataset abstraction API serves batch processing purposes, while the 
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DataStream [3] abstraction API is employed for stream processing. Programming tools 
supported for data processing in Flink encompass Java, Scala, Python, and R [4].

Flink [19] is an Open-source true stream processing tool majorly can process both 
batch and stream data. Query processing is two to three times faster than the other 
stream processing frameworks because of its query optimizing engine and can provide 
high throughput and low latency. In-memory storage is automatic and scalable. The 
processing operations map, filter and reduce are the continuous long running opera-
tions in the framework.

3 � Related work

In robotic applications, rapid human face recognition is vital for improved 
human–machine interaction. Cloud technology integration mitigates speed limi-
tations by dynamically providing memory and processing power. However, pub-
lic cloud usage raises concerns about image database security. To address this, we 
explore secure face recognition options where recognition occurs on encrypted data. 
We evaluate eight encryption algorithms for security and recognition accuracy. Face 
recognition tests in robot and cloud environments measure average recognition time 
using Principal Component Analysis (PCA) on encrypted data. This research aims to 
enhance secure face recognition’s feasibility and efficiency in practical applications 
[33].

This paper outlines our current endeavors in creating the E-Recall system, an inno-
vative platform designed for cloud-based mobile rich media data management. The 
primary objective is to establish an intelligent and all-encompassing infrastructure 
that addresses (1) Enabling efficient processing of media data at scale. (2) Facilitat-
ing flexible sharing and publication of media content. (3) Supporting personalized 
integration of media content within a mobile environment. The E-Recall system rep-
resents a pioneering approach to addressing these multifaceted challenges in media 
management and mobility [34].

Van Dongen et al. [17] discussed about the scalability of stream processing jobs in 
the view of performance and efficiency. The frameworks denoted are: Flink, Kafka 
Streams, Spark Streaming, and Structured Streaming. Horizontal and vertical scal-
ing issues are evaluated. Scaling considering no of factors like framework design, 
resource allocation, pipeline design and data characteristic. Previous works focus on 
evaluating latency, throughput, fault tolerance and scalability factors individually 
through their frameworks. Here a proposing model. OSPBench suite is used to evalu-
ate additional efficiency of the same factors with in a single suite. Data streams con-
sidered are taken from Netherlands national traffic data. OSPBench suit design for 
finding efficiency of workload factors and used elasticity to improve the scalability of 
stream processing. For large clusters, there should be researches required to increase 
the performance when large pipelines considered.

Iwendi et  al. [20] implemented an architecture to process and analyze heterogeneous 
data streams from various digital IOT devices. This author considered datasets of News-
groups for text analysis. Proposed architecture mainly focused on result accuracy and 
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execution time. The partition based and mining-based algorithms are used for text analysis. 
Louvain method is used for detecting and extracting separate words from the input data. 
Input streaming data processed with map reducing and accurate results are obtained by 
extracting the knowledge from the data. Text analysis of volumes of input data resulting 
efficient outputs if the input is increased. Streaming data complex structure reduced to sim-
ple structure.

The applications of big data in healthcare sectors provides quality of services with cost 
effective advancements. Big data stream computing is a big asset for this domain for doing 
effective analyzation of rapid growing health data. Ta et al. [21] introduced a novel archi-
tecture for the prediction and analyzation of health records by using various big data ana-
lytical tools. The architecture is generic combination of various big data tools like Apache 
Kafka, Storm and NoSQL Cassandra.

Data streams collected from various medical sources, stored and processed in a distrib-
uted architecture. Proposed architecture can do batch and stream computing of health care 
records. Through the stream computing, applications get efficient storage and query opti-
mization. Additional benefits with the analysis of streams are fraud detection, drug discov-
ery, medical diagnosis and support systems. Due to the inconsistency of medical data, the 
analysis is a difficult job for the processing of real-time data streams. Classical data mining 
tools give transparent results for such case but if additionally, machine learning applica-
tions reduce the complexity of the distributed processing of data streams.

For the real-time heterogeneous data, batch processing is not adequate whereas the data 
is time-variant and require efficient prediction models. Akanbi et al. [22] explores a distrib-
uted middleware framework for stream processing of heterogeneous real-time data using 
various big data technologies. Apache Kafka having greater potential for processing data-
sets from local machines and sensor devices. Effective Drought Index (EDI) model predicts 
data streams in two steps. Running the predictive model and querying infinite streams are 
the two processing steps involved in this framework.

Dynamic analysis and real-time processing of moving objects data sets is a challeng-
ing job for the development of algorithms. Spatial concentrations are used for detecting 
the traffic jams or crowd population on the busy roads or junctions. For these kinds of 
issues most of the applications using batch processing scenarios where traffic positions 
of moving objects considered in timely manner and batch processed. Real-time streaming 
data applications demands stream processing for faster results. Roriz Junior et al. [23] pro-
posed a parallel algorithm, DG2CEP which uses DBSCAN algorithm to process stream-
ing data with low latency. Streaming data complex structure reduced to simple structure. 
Rush hours of traffic dynamically changes and the system need to accommodate the input 
streams and process dynamically.

Health care Sector having vast advancements regards to big data scenarios. The analysis 
and prediction of health reports, helps the medical practitioners for giving efficient services 
to the patients. Actually, the health reports are collected from various data sources. Vanathi 
et  al. [24] explores the applications of big data stream processing in health care sector. 
The proposed architecture in this paper is a combination of various big data tools Apache 
Storm, Apache Kafka and NoSQL Cassandra. The architecture can process in both batch 
and stream processing manner and is scalable.

Disaster management is the one of the real-time applications where big data and 
Cloud computing emerges for analysis useful in emergency situations. Puthal et  al. [25] 
proposed a framework for predicting real-time emergency decision support services and 
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alert generation. For such kind of applications user’s sensitive data must be protected. This 
paper majorly discussing about the security aspects of the data streams. Real-time process-
ing of sensitive data is a challenging job. Apache Storm open-source tool is used for imple-
menting alert systems and predicting the disaster areas.

Internet of things having emerging applications in the big data domain. The data 
transmission from digital devices is dynamic and heterogeneous in nature. Corral-
Plaza et al. [26] proposing an architecture that preprocess the data streams by homog-
enizing them for better query optimization. The architecture is a generic one and is 
used for various sources of IOT devices. Here author considered the real-time data 
stream like water supply management data that is processed, transformed and further 
analyzed by the data processing tools Kafka, Apache Avro and Esper.

Stream processing frameworks solving complex data organizing jobs in the field of 
parallel processing. Scalability, Reliability and Fault tolerance are the major advances 
of such kind of processing scenario. Van Dongen et al. [27] worked on the compari-
son of the big data stream processing tools Spark, Flink and Kafka. The major aspects 
considered here are the storage failures and job failures. The job scheduling approach 
between the tools given efficient results whereas Storm framework having better 
results.

4 � Flink based real‑time stream processing system (frtsps)

Existing big data tools rely on batch processing techniques with high latency, which proves 
inadequate and time-consuming for processing critical applications and real-time streaming 
data [22]. Batch processing methods handle bounded data periodically, yielding results in a 
time-ordered fashion. Conversely, stream processing techniques cater to both bounded and 
unbounded data, providing real-time results in a matter of seconds, contingent on stream 
velocity. However, the accuracy of stream processing outcomes may fall short compared to 
batch processing due to the larger data volume processed.

To overcome these challenges, the lambda architecture [28] emerges as a solution 
by integrating batch and stream processing techniques to deliver enhanced and pre-
cise results. Our proposed architecture, FRTSPS, is built upon the lambda architecture 
[29], featuring three layers: the batch processing layer, the stream processing layer, 
and the service layer. The stream processing layer adeptly manages incoming real-
time streaming data, while the batch layer captures substantial volumes of bounded 
data at specific time intervals. This data is stored in a distributed manner and ana-
lyzed using the map-reduce technique. The service layer acts as an intermediary con-
necting the batch and stream layers, facilitating the visualization of analytical results 
as output. In essence, the lambda architecture synergizes both batch and stream pro-
cessing layers to effectively analyze historical data and real-time data streams [30].

Within FRTSPS, the focus is on the real-time traffic dataset, which is organized into 
distinct categories based on location and time windows. This dataset encompasses various 
attributes, including vehicle ID, vehicle speed, position, and traffic light data. The primary 
objective involves simulating the dataset to ascertain the volume of vehicles traversing spe-
cific locations during designated time intervals.

As an example, we present a straightforward algorithm that outlines the control logic 
employed within the system implementation.
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Algorithm to simulate Real-time Traffic Data in FRTSPS
def Vehicle Model
1.  # Load Data
2.       # The producer service
3.            build a pipeline to the records Vehicle Plate No, Timestamp, Vehicle type.
4.            write the data to Kafka topics to randomly generate vehicle events.
5.            handle the topic messages at local cluster with topic name “vehicle-type.”
6.            partition the data based on the vehicle type
7.  # Transform Data
8.      # The Consumer Service
9.           map the results from producer by serialization.
10.         assign keyed data stream to windows operator.
11.         aggregate the sum of vehicles crossed at the specific time frame.
12.         deserialize the Vehicle model.
13. # Visualize Data
14          eliminate conflicts and duplicates
15 analyze the data
16 return vehicle count crossed at the certain time stamp.
17 compute throughput and latency in terms of vehicle count
18          count number of Vehicle events within a multi-broker cluster
19          Estimate System runtime ratio
End

4.1 � Load data

During this phase, the data transmissions are bifurcated into two distinct pipelines to man-
age both streaming and batch data. The Batch processing layer, operating within the first 
pipeline, handles incoming data at specific time intervals. This data is subsequently stored 
in a distributed database engine for further processing. Should new data arrive within 
the same time window, it’s appended to the existing master data in the distributed stor-
age system. On the other hand, the stream processing layer captures real-time data, with 
varying data stream speeds. To manage the fluctuating load, Apache Kafka [21] topics are 
leveraged.

Kafka [22] functions as a data buffer, effectively moderating the flow of streaming 
data at the analysis level. Input data originating from digital sources is managed through 
two topics within the framework: producers and consumers. Producers extract data from 
pipelines and transform it for analysis by consumers. This mechanism acts as a channel 
between the traffic system and the sensors. Streaming data is integrated into the system in 
message format, denoted as a topic. Each message contains two key parameters: producers 
and consumers, each specialized in handling distinct data types. Incoming data is managed 
by producers and analyzed by consumers. Topics serve as the mechanism for organizing 
data, where producers send data to topics, and consumers retrieve data as messages. The 
number of topics depends on data size, including attributes like vehicle speed, position, 
and traffic lights. Both structured and unstructured data can be accommodated [24].
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A Kafka cluster [26] oversees each topic with a unique identifier. Producers write data 
to topics, and consumers send messages to specific topics for data retrieval. Each topic 
can be subscribed to by zero or multiple consumers. Broker nodes within the cluster han-
dle partitioning and replication of topics to achieve high throughput. Every message is 
assigned a unique offset value to facilitate easy tracking. Topics can be created manually 
or automatically. The process of organizing topics involves four sequential steps: listing 
topics, describing topics, creating topics, and deleting topics. The cluster layout is visually 
represented in the Fig. 7.

4.2 � Transform data

This phase is designated for data transformation, achieved through specific operations. 
Within the batch processing layer, data is subjected to the Extract, Transform, and Load 
(ETL) process [22]. The outcome of this process constitutes batch views that are subse-
quently indexed. These batch views can be scaled for further indexing when new ones 
become available in the pipeline. Due to the sheer volume of data, this process is relatively 
slow. However, the stream layer compensates for this time delay by processing real-time 
data streams. This layer is responsible for generating real-time views through the process-
ing of recently arrived data that hasn’t undergone transformation in the batch layer.

In the transform layer, a Kafka Consumer is utilized within the Apache Flink [31] job. 
Its role is to provide statistical results pertaining to specific vehicle types crossing prede-
fined speed thresholds within certain time intervals. Kafka [11] data nodes are employed 
for storing stream data, while PostgreSQL tables accommodate bounded data. The Con-
sumer collects messages and interprets them as data streams. Flink [4], utilizing a mas-
ter–slave processing model, initializes the job manager for task scheduling on worker 
nodes, generating individual jobs for each data stream event. Task managers oversee these 
events, issuing heartbeat signals to nodes throughout processing. Stream abstraction is 

Fig. 7   Apache kafka cluster with producer, consumer groups and partition layout
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executed using DataStream objects [10], which receive data from the cluster and parallelly 
perform map, filter, and reduce operations on the data for the respective job events.

Data retrieval from the PostgreSQL database is facilitated by the JDBC connector, for-
warding it to the phase’s query optimizer. Here, batch and stream views are merged. To 
ensure fault tolerance, snapshot checkpoints are implemented in the event of node, hard-
ware, software, or network failures. In such cases, DataStreams [3, 5] are automatically 
restarted, and checkpoint log values are reset.

The Query optimizer phase involves parallel data processing in both stream and batch 
formats. Notably, both layers contain data in the same format. Should any discrepancies 
arise in batch or stream views, the query optimizer reevaluates the views as new data is 
appended to existing records. Data cleaning ensues, addressing error values to minimize 
inaccuracies. The transform phase consistently queries the latest available data. Window-
ing and SQL transformations [32] are also employed to eliminate duplicates. Streaming 
windows partition infinite data streams into finite-sized buckets for processing, guided 
by certain parameters. Following these operations, the transformed data materializes as a 
SQL-ready timestamp.

4.3 � Visualize data

The final phase within FRTSPS is dedicated to visualization, with its primary objective 
being to present the analyzed data to end-users. This phase recognizes that the batch layer 
is designed for historical data, while the stream layer caters to real-time streaming data. 
Consequently, both the batch and stream layers simultaneously transmit data to this visuali-
zation layer in the form of metrics for analysis.

Data is written to the merge layer, facilitating the merging of streaming and batch data 
concurrently. Subsequently, the results from both layers are combined while eliminating 
any conflicts or duplicates. The processed data is then made readily available within the 
database for analysis. To achieve this, we employ the Cassandra sink, which outputs pro-
cessed streams to the same Cassandra table. The outcomes generated in the visualization 
phase manifest as analytical dashboards for users to interpret and derive insights from.

5 � Results & discussion

The underlying goal behind introducing the generic architecture FRTSPS in this paper is to 
seamlessly integrate both batch and stream processing programming models. We delve into 
the fundamental concepts of big data processing, which play a crucial role in efficiently 
analyzing extensive datasets in real-time. The study encompasses various data types and 
sizes, which are relevant for stream analytics. Through a comprehensive evaluation, diverse 
parameters are scrutinized to gauge the system’s efficiency and effectiveness. These param-
eters offer insights into the system’s performance within designated time frames and its 
responsiveness to generic real-time queries. FRTSPS lays out a flow-based, generic analyti-
cal model, serving as the foundation for data storage and management.

In Section 4, we present the system model and elaborate on the flow-based analysis of 
stream processing across multiple layers. The major phases within the system encompass 
data loading, data processing, and the merging of in-flow stream analysis. The data cluster 
exhibits scalability to accommodate varying data bandwidths while effectively managing 
faults that may arise in individual machines. In-memory capabilities aid in processing large 
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volumes of data streams effortlessly, capable of handling diverse data simultaneously. Dur-
ing the data analysis phase, the query optimizer is implemented through reducer and evalu-
ator modules. These modules employ aggregation functions to count vehicles at specific 
time stamps.

The map process is integrated into the producer phase, aligning with the real-time 
data flow. Through an evaluation, we measure performance metrics such as throughput 
and latency for our FRTSPS architecture. Total throughput and latency for each job are 
assessed concerning buffer timeout and the number of events processed per second. The 
execution of jobs involves 20 task managers. All metrics are recorded, leading to the calcu-
lation of average throughput and latency for our data.

Figure 8 illustrates the comparison between average throughput and latency for a spe-
cific number of events. As we extend the batch interval by a few seconds, throughput dem-
onstrates an increase. Correspondingly, inherent latency becomes apparent. This observa-
tion implies that event-driven processing within the clusters necessitates limited buffers. 
Notably, a sustainable throughput of 9.82 MBS/s/event is achieved. The visualization of 
performance metrics further confirms that FRTSPS is capable of delivering high through-
put and minimized latency.

Figure 9 presents a comparative analysis of FRTSPS’s throughput results in relation to 
other frameworks. The data points, depicted as dot markers, showcase throughput as the 
chosen performance metric, specifically considering vehicle events within a multi-bro-
ker cluster. The evaluation encompasses the number of events per cycle and the count of 

Fig. 8   Variations in throughput 
and latency as the buffer timeout 
increases
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CPU cores employed per job execution. Notably, it is evident that FRTSPS yields higher 
throughput outcomes as both the number of events and CPU cores increase.

In Figs. 10 and 11, we delve into a comparison involving processed events per second 
and the system run-time ratio for FRTSPS, particularly juxtaposed with platforms Spark 
and Storm. Within this context, Apache Flink emerges with notably higher throughput in 
comparison to the other platforms. Notably, its behavior follows a linear trajectory and 
maintains a high saturated ratio, underlining its robust performance characteristics.

6 � Conclusion

In this work, FRTSPS proves to be robust, reliable, scalable, and elastic for processing 
data streams. It comprises three fundamental phases: pre-processing, transformation, and 
analysis, and demonstrates the capability to handle substantial real-time streams. Moreo-
ver, it seamlessly integrates both batch and stream processing for complex datasets. Nota-
bly, the query optimizer exhibits robustness in addressing intricate queries as each topic is 
designed to manage distinct types of data.
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However, it’s essential to acknowledge certain limitations, primarily related to the 
processing of extensive real-world data streams. The evaluation of multi-level queries is 
facilitated through the utilization of simple Python functions.

Real-world applications necessitate the analysis of heterogeneous data streams rapidly 
generated from various digital sources. Conventional data processing tools and applications 
fall short in effectively addressing such challenges. Consequently, there arises a demand for 
the development of intricate data structures to represent processing and networking archi-
tectures. To complement this, further research is essential for refining existing big data tools 
and implementing more advanced analytical models, such as machine learning architectures.
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