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Abstract
Even though temporal information matters for the quality of video saliency detection, many 
problems still arise/emerge in present network frameworks, such as bad performance in time-
space coherence and edge continuity. In order to solve these problems, this paper proposes a 
full convolutional neural network, which integrates temporal differential and pixel gradient 
to fine tune the edges of salient targets. Considering the features of neighboring frames are 
highly relevant because of their proximity in location, a co-attention mechanism is used to 
put pixel-wise weight on the saliency probability map after features extraction with multi-
scale pooling so that attention can be paid on both the edge and central of images. And the 
changes of pixel gradients of original images are used to recursively improve the continuity 
of target edges and details of central areas. In addition, residual networks are utilized to inte-
grate information between modules, ensuring stable connections between the backbone net-
work and modules and propagation of pixel gradient changes. In addition, a self-adjustment 
strategy for loss functions is presented to solve the problem of overfitting in experiments. 
The method presented in the paper has been tested with three available public datasets and its 
effectiveness has been proved after comparing with 6 other typically stat-of-the-art methods.
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1 Introduction

Video saliency detection aims to recognize interesting zones in dynamic scenes by simulat-
ing the attention mechanism of human’s eyes. Compared with detecting salient objects in 
images, video saliency object detection encounters new challenges posed by continuous 
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movement clues and abundant inter-frame information. Differential features of consecutive 
frames can be used to ensure a better performance in background suppression and edge 
detection. Video saliency detection has been widely applied in video compression [1], 
video target tracking [2], video quality assessment [3], video summarization [4], and scene 
understanding [5–9], image understanding [26–32], action/object recognition [33, 34], etc.

Prevailing video saliency detection methods generally provide macroscopic perspectives 
and use optical flow and LSTM convolution models to extract temporal characteristics. 
However, these methods often overlook some interframe details when extracting and inte-
grating features and result in poor continuity of differential features between consecutive 
frames.

To solve the above-mentioned problem, this paper proposes a static feature extraction 
network with several static saliency networks working in parallel to extract the informa-
tion features of video frames and obtain initial temporal information. Interframe differen-
tial information between consecutive frames is used to set up a co-attention mechanism. 
As designed, the co-attention edge module and central module integrate interframe rela-
tionships. And the temporal relationships between differential information of consecutive 
frames are used in assisting learning the temporal and spatial continuity of interframe 
movements. The detection results have been obviously improved by combining the co-
attention module and the pixel gradient-based refinement module. At the same time, we 
also apply recurrent multi module training optimization and the loss function self-adjust-
ment strategy to further modify the network modal.

The main contributions of the paper are as follows:

(1) A fully convolutional neural network integrating temporal difference and pixel gradient 
has been designed, which effectively solves the poor performance of temporal spatial 
coherence and edge continuity.

(2) A co-attention mechanism is set up to integrate temporal differentials to solve the 
problem of present network models lacking good learning of information continuity;

(3) A method for optimizing image details is proposed based on pixel gradient to rectify 
the details of salient objects and improve edge continuity and details of the central 
areas of targets;

(4) A self-adjustment strategy for the loss functions is used to improve the stability of the 
network structure to avoid overfitting.

(5) Our model has tested on three public datasets, and the experimental results prove its 
effectiveness.

2  Related work

2.1  Image saliency object detection

Image saliency object detection can be realized by two network models supported by dif-
ferent attention mechanisms: top-down and bottom-up models. The top-down method deals 
with images under the control of human’s consciousness. Yang et al. [10] developed a sali-
ency model combining conditional randomness and visual dictionary, which learned condi-
tional random fields by way of characteristic self-adjustment; and as CRF are output layers, 
it can learn the dictionary under structural supervision. Gao et al. [11] proposed a bottom-
up saliency detector in line with the statistics of characteristics of natural images. Cheng 
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et al. [12] proposed a salient object extraction algorithm based on regional contrast degree, 
which can calculate both the global contrast difference and spatial weighting consistency. 
In [35], Hu et al. proposed a novel co saliency detection framework that transforms each 
image into a semantic superpixel cluster through segmentation, and generates images of 
different sizes for each input image using the VGG-16 model. The model also explores 
a new Graph Convolutional Network method to fine-tune multi-scale features, capturing 
common information between all scale features and private or complementary informa-
tion for each scale feature. Zhang et  al. [37] developed a new deep network framework, 
DeepACG, which uses Gromov Wasserstein distance to establish dense 4D correlated vol-
umes for all image pixel pairs. This model also designs a semantic aware Common Atten-
tion Module (SCAM), which recognizes the semantic classes of foreground collaborative 
objects and modulates this information into deep representations to achieve the localization 
of relevant pixels, and the model also utilizes a Contrast Edge Enhancement Module to 
capture richer contexts and preserve fine-grained spatial information.

2.2  Video saliency object detection

Compared with saliency object detection of images, video saliency detection is more chal-
lenging because of involving more complicated detection situations and temporal informa-
tion. As a response to the problem, Yu et al. [13] proposed a video saliency incorporating 
spatiotemporal cues and uncertainty weighting, Wang et al. [14] proposed a spatiotemporal 
saliency detection for video sequences based on the gradient flow field and energy optimi-
zation. In addition to the problem in utilization of spatiotemporal information, a lack of 
massive annotated video datasets has always been a problem. Wang et al. [15] proposed 
a data enhancement technology which can simulate video training data by using available 
annotated image data so that the network can learn different salient information and pre-
vent overfitting training videos which are limited in capacity. In [36], Wang et al. proposed 
a key saliency object re enhancement method based on bottom-up weighted features and 
top-down semantic knowledge to better simulate human visual attention mechanism in 
dynamic scenes. This method effectively eliminates noise and redundancy, and provides 
accurate local spatiotemporal features for saliency detection, further improving the accu-
racy of detection.

Unlike existing image or video saliency detection methods, this paper presented a new 
method based on an image detection framework. This method combines the temporal dif-
ferences of video frames and image saliency detection framework and can capture and uti-
lize the gradient changes of pixels to improve overall visual effects of salient objects.

3  Proposed method

In this paper, we propose a new method to improve the edge continuity and central details 
of video saliency detection. Our research is composed of three parts: the joint static feature 
extraction network (SFN), temporal difference co-attention model (TCM), and pixel gradient-
based refinement processing module (GRM). Figure 1 is a diagram of the method. SFN aims 
to extract temporal features on the basis of an image saliency detection method. After SFN 
extraction of information, TCM integrates temporal difference information via a co-attention 
mechanism, enhance spatiotemporal consistency between video consecutive frames, and draw 
attention to both edge and central areas. Then GRM improves details in the edge and central 
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areas by capturing the pixel gradients of initial images. In addition, a self-adjustment strategy 
is adopted for loss functions to avoid overfitting during training. The network framework of 
this work is shown in Fig. 1. Specifically, the raw data first enters the SFN network for feature 
extraction, and then inputs the TCM module for edge and center feature information enhance-
ment. Then, the GRM module improves the detail information of the features, and then enters 
the TCM module for the second feature information enhancement, as well as the GRM mod-
ule for the second feature information improvement. Residual connections have been added to 
supplement the information lost via feature enhancement through convolution, ensuring that 
modules do not mistakenly learn unimportant information due to information loss and pre-
venting gradient explosion and fitting problem. Then, the sigmoid function is used to binarize 
the feature information and calculate the loss based on the results. The following section will 
provide a specific explanation of the module designed in this article.

3.1  Joint static feature extraction network

In view of the excellent feature extraction of VGG16, this paper uses U-Net with a VGG16 
encoder as a subnet of the joint static feature extraction network to extract initial features of 
video frames. Because of lacking a sufficiently large annotated database for video saliency 
training, this paper uses the database of DUTS-TR to train the U-Net model and copy the 
weights obtained from training to the subnets for extracting features of the former, middle, 
and latter frames. It can ensure the highest relevancy of information output at the beginning of 
overall dynamic network training (Fig. 2).

We have designed unilateral information communication channels for three static extrac-
tion networks (U-Net) and used Formulas (1) and (2) to integrate high-level semantic informa-
tion at the bottom of U-net to make sure middle frames can acquire more common features.

where f represents the features after fusion of features of the  5th layer; conv5 repre-
sents the features of the  5th layer; U1 represents the first sub-net; U2 represents the second 

(1)f = (conv5)U1 × (conv5)U3

(2)(conv5)U2 = conv1×1
(

cat
(

f, (conv5)U2
))

Fig. 1  Diagram of the designed network framework. SFN is a joint encoder and decoder network composed 
of three image saliency detection modules, whose initial weights are obtained by training using DUTS-TR. 
TCM and GRM recursively extract and deal with temporal differences of the edge or central areas of high-
level semantic information output by SFN via skip-connection
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sub-net; U3 represents the third sub-net; cat (*) represents the overlapping of features via 
channels; conv1×1 (*) represents dimensionality reduction via 1×1 convolution.

3.2  Temporal differential collaborative attention module

Compared with image saliency detection, video saliency detection has its advantage: clues 
of sequential movements. To improve the performance of video saliency detection, we 
design a temporal differential co-attention edge module and central module aiming at the 
edge and center zones of targets, respectively.

As shown in Fig. 3(a), the co-attention edge modules of former frames integrates sali-
ency features of SFN outputs through coordinating inter-frame relationships and then 
assign weights spatially. This module is composed of two parts: the former frame and the 
rest. The former frame is trained with annotated GT maps and the rest trained with the 
union of GT maps to obtain as much edge information as possible. Multi-scale pooling 
and multi-scale convolution are used for former frames to integrate their information. For 
the other part, multi-scale pooling and upsampling are used for dimension reduction and 
integrated information is added to the former frames. Overlapping information is deeply 
processed and reduced to one dimension via 1×1 convolution blocks, and then is multiplied 
by I1_(t-1) to put weight on initial data. Similar to Fig. 3(a) and (b) puts together temporal 
differences between middle frames and former and latter frames and adds them to mid-
dle frames. After dimension reduction, information of middle frames is updated and more 
attention can be paid to their edge zones. The TCM central module is designed following 

Fig. 2  Joint static feature extrac-
tion network
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the similar principle except that the intersection of GT maps of other parts is used rather 
than their union, and convolution and pooling are conducted before upsampling.

3.3  Pixel gradient‑based refinement processing module

As in original images, pixel values are approximate where salient objects locate but are 
distinct from those of the background along their edges, so pixel gradient can be properly 
used to set up a barrier to separate the inside from the outside. Once obtaining the profiles 
of salient objects, the pixel gradient can act as a powerful tool for capturing and utilizing 
the details of salient objects. In this paper, we use the TCM modules to integrate the loca-
tion information of edge zones and central zones to support the gradient-based optimiza-
tion module. As shown in Fig. 4, based on information provided by the TCM edge module, 
we define the edges of objects through shrinkage first and then expansion. It can help edge 
optimization get rid of interference by pixel information outside the edge. Meanwhile, as 
the size of salient objects varies, convolution blocks are designed specifically for multiple-
scale pixel expansion. A more balanced approach is used to optimize the information out-
put by TCM central modules. On the basis of shrinkage and expansion, the approach of 
expansion followed by shrinkage is also used for optimization because besides the problem 
of hollows, the integrity of edge information needs to be considered when dealing with 
central information. In addition, to give full play the combined effects of the pixel gradient 
module and TCM, they are jointly used to recurrently optimize the network structure.

(3)sg = max (S) +min (S) − sg

Front frame edge module of TCM  Middle frame edge module of TCM

Front frame center module of TCM   Middle frame center module of TCM

Fig. 3  Temporal difference co-attention edge module，I1_(t-1) represents the former frame information 
output by SFN, I1_(t) represents the middle frame information output by SFN, I1_(t+1) represents the latter 
frame information output by SFN, I2_(t) represents the updated middle frame information, I3_(t) represents 
the updated middle frame information by the gradient transform module, Avgp3,6,9 represents the 3×3, 
6×6, and 9×9 multiscale pooling operations, Conv3,6,9 represents 3×3, 6×6, and 9×9 multiscale convolu-
tion operations, Res represents residual block, conv1×1 represents 1×1 convolution block, ⨂ represents 
element-by-element multiplication, and ⨁ represents channel and channel concatenate
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Sg is gray value, max (S) is the maximum value in the saliency map, and min (S) is the 
minimum value in the saliency map.

3.4  Loss function self‑adjustment strategy

As several TCM modules are involved in our method, which in turn require several loss func-
tions to guide spatial attention, it is hence very necessary to coordinate the relationships 
between loss functions. Besides, as completely annotated video saliency detection datasets are 
lacked, overfitting often happens during training. To solve these two problems, a self-adjust-
ment strategy is proposed for loss functions.

The loss function self-adjustment strategy includes testing the generalization performance 
of network training as shown in Fig. 5 and then adjusts the learning rate and the proportion of 
loss functions of different modules. In total, 51 binary cross-entropy loss functions are used 
in this paper, and 51 results obtained corresponding to 51 losses. If 26 of the losses pass the 
test, the initial learning rate remains unchanged; otherwise, it needs to be 1/10 the initial one. 
At the same time, the proportion of loss functions should be adjusted according to the number 
of losses tested qualified: The more qualified losses in a module, the larger proportion it will 
account for. The formula for the binary cross entropy loss function is expressed as follows:

(4)Loss = −
1

N

N
∑

i=1

yi ∙ log
(

p
(

yi
))

+
(

1 − yi
)

∙ log
(

1 − p
(

yi
))

Fig. 4  Pixel gradient refinement module, First, initial saliency maps are obtained after dimension reduction 
of information from TCM by using 1×1 convolution blocks and then binarization by sigmoid functions. 
Besides, 8 pixel gradient information maps are acquired for each pixel point at its proximity by using pixel 
gradient convolution blocks, and these maps are used to expand or shrink the areas of similar pixel val-
ues for initial saliency maps. Expansion can be accomplished by using expansive convolution blocks and 
shrinkage accomplished by expansion after reversing the colors of saliency maps. (as shown in Formula 3)

4  Experiment

4.1  Datasets

Three commonly used benchmark datasets are used for evaluation in this paper: DAVSOD 
[16], SegTrackV2 [17], and DAVIS 2017 [18]. The dataset of DAVSOD (Densely 
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Annotated VSOD) is composed of 226 motion video sequences showing obvious motion 
displacements of salient objects, and hence, is of great value for evaluating how well 
motion laws are captured. The dataset of SegTrack V2 includes 14 sequences of video 
frames featuring birds, animals, vehicles, and mankind, aiming at evaluating the effec-
tiveness of the detection method when external interferences in their motions are severe. 
DAVIS 2017 (Densely Annotated Video Segmentation 2017) is composed of 90 high-qual-
ity, full HD video sequences, 6242 frames in total, and every frame has fully pixel-level 
annotated groundtruth data. DAVIS 2017 has been so far the most sophisticated dataset 
that covers all kinds of challenges in the way of segmentation of video objects, such as 
sheltering, motion ambiguity, and changes of appearance, and can evaluate the detection 
method from all aspects.

4.2  Evaluation criteria

To comprehensively evaluate the performance of the method, we compare it with 6 popular 
methods by using three indicators, which are precision-recall (PR) curves, the maximum 
F-measure [19], and mean absolute error (MAE).

β2 is used to put weight on precision and recall to reflect their importance, where β2 is 
0.3, indicating precision is more important. P-R curves and F-Measure are used to measure 
how perfectly saliency maps match GT after binarization. MAE can measure the level of 
similarity between the primary saliency map and GT by the average absolute difference in 
pixel values. The three indicators can demonstrate the value of the method proposed in the 
paper.

(5)F� =

(

1 + �2
)

Precision × Recall

�2 × Precision × Recall

Fig. 5  Flow chart of loss function generalization test
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Our model is built within the PyTorch framework. To fit the training, we trained the 
model using Random Gradient Descent (SGD) to 300 epochs with a batch size of 16. This 
article used a total of 51 binary cross entropy loss functions, resulting in 51 results corre-
sponding to 51 losses. The initial learning rate is set to 0.01, and if 26 losses pass the test, 
the initial learning rate remains unchanged; Otherwise, it is 1/10 of the initial value. And 
all experiments in this article were completed on NVIDIA RTX 1080 GPU.

4.3  Performance Comparison

The method in this paper is compared with 8 other advanced detection methods, which are 
SSAV [20], PDB [21], FGRNE [22], SCOM [23], MBN [24] and LSTI [25]. The superior-
ity of our network model has been highlighted in Figs. 6 and 7, and Table 1. For the sake of 
fairness, saliency maps used in the paper come from their authors.

4.3.1  Quantitative analysis

To quantitatively analyze the performance of the proposed method, three indicators includ-
ing PR curves,  maxFβ, and MAE are used in the section for comparing it with other main-
stream video saliency detection methods. As indicated by PR curves in Fig. 6, our method 
has shown an excellent result with its precision and recall being the best among these 
methods as tested with all three datasets. As shown in Table 1 listing  maxFβ and MAE of 
all methods, ours is 0.57%, 0.24%, and 0.34% higher than the second best method in terms 
of  maxFβ when being tested with datasets of DAVIS 2017, DAVSOD, and SegTrackV2, 
respectively; when it comes to MAE, our method is 0.10%, 0.50%, and 0.19% lower. Our 
method has been proved to be effective as it leads other methods by wide margin in tests 
with all three different kinds of datasets.

4.3.2  Qualitative analysis

Figure 7 shows comparison of visual results from our network model and other network 
models. According to this comparison, the images based on our method have more clear-
cut edges and more details in its center and are free from central hollows, achieving better 
visual effects than other methods. Our method has secured satisfactory effects for different 
kinds of primary images, which either have low contrast between the background or object 
(the first group), high contrast of the object itself (the second group), complicated back-
ground (the third group), or many details in the object (the fourth group).

Davis 2017  DAVSOD  Segtrack V2

Fig. 6  P-R Curves in terms of three different databases
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4.4  Ablation experiment

In this sector, ablation experiments are conducted to confirm the effectiveness of each 
module of our model, for which DAVIS 2017 and SegTrackV2 are used.

4.4.1  Effectiveness of GRM

After adding the GRM module, the edge continuity for salient objects has been improved. 
As shown in Table  2, indicators for both DAVIS 2017 and SegTrackV2 are better than 
before. But from Fig. 8, it can be found that despite the better detection performance for 
edges, there are hollows in central areas.

4.4.2  Effectiveness of GRM and TCM

In view of the different results in detecting central and edge areas, TCM is used to draw 
attention to both the central and edge areas. Then GRM is used to deal with different areas 

Fig. 7  Comparison of the results of different video saliency detection method

Table 1  Comparison of MAE 
and maximum F-measure of 
different methods

Methods DAVIS 2017 DAVSOD SegTrackV2

maxFβ MAE maxFβ MAE maxFβ MAE

SSAV[20] 0.8618 0.0289 0.6229 0.0828 0.8366 0.0239
PDB[21] 0.8645 0.0291 0.5747 0.0962 0.8514 0.0238
FGRNE[22] 0.7970 0.0429 0.6150 0.0853 0.6941 0.0365
SCOM[23] 0.7895 0.0545 0.4943 0.2198 0.8105 0.0294
MBN[24] 0.8576 0.0342 0.5373 0.0996 0.6739 0.0301
LSTI[25] 0.8501 0.0342 0.5856 0.1067 0.8589 0.0253
Ours 0.8702 0.0279 0.6253 0.0778 0.8623 0.0219
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distinctively to ensure edge continuity and avoid hollows in central areas. As can be seen in 
Fig. 8, hollows in the central area after applying TCM are much less than before.

4.4.3  Effectiveness of REC and Self_Loss

As shown in Table  2, recurrent optimization and self-adjustment loss functions (Self_
Loss) have improved the final outcomes. The recurrent optimization strategy (REC) has 
exploited the potential of the combination GRM and TCM at maximum, and Self_Loss 
effectively alleviate overfitting present in training and also help maintain the stability of 
network structure. As shown in Fig. 8, these strategies have contributed to a better detec-
tion performance.

5  Conclusion

This paper proposes a deep learning method for video saliency object detection based on 
temporal difference and pixel gradient. The detection model is mainly composed of tempo-
ral differential co-attention module and pixel gradient refinement module. The co-attention 
module makes statistics of spatiotemporal information of salient objects, and then the pixel 
gradient refinement module conducts pixel-level optimization of video frames. And the 
recurrent optimization strategy is applied to improve the precision of spatiotemporal sali-
ency results. In addition, we propose the loss function self-adjustment strategy to enhance 
net stability and deal with problems like overfitting. Experiments with several publicly 
available datasets verify that the designed method can provide better indicators and visual 
effects.

Current research has demonstrated that our designed common attention mechanism 
and pixel gradient refinement module can effectively solve the problem of poor continu-
ity of differential features between consecutive frames. However, video saliency object 

Table 2  MAE and  maxFβ for the ablation experimental method

Configurations DAVIS 2017 SegTrackV2

maxFβ MAE maxFβ MAE

SFN 0.8259 0.0423 0.8100 0.0307
SFN+GRM 0.8384 0.0349 0.8323 0.0242
SFN+GRM+TCM 0.8663 0.0309 0.8585 0.0239
SFN+GRM+TCM+REC 0.8695 0.0287 0.8605 0.0229
SFN+GRM+TCM+REC+Self_Loss 0.8702 0.0279 0.8623 0.0219

Fig. 8  Visual effect of Ablation Experiment
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detection still faces various challenges brought by continuous motion clues and rich inter 
frame information. Thus, the current research has not been able to fully solve all the issues 
of video saliency detection under complicated scenarios in the wild, which is our future 
research direction.
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