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Abstract
Many methods have been proposed to detect the originality of an image. One of the most
commonly used method, the Copy - move forgery detection (CMFD), is considered here.
The contribution of this paper is the application of the new fuzzy distances in clustering
using metaheuristics. The family of the used fuzzy distances satisfies the axioms of the
fuzzy metric. CMFD method, which includes Variable Neighborhood Search (VNS) and
Bee Colony Optimization (BCO) metaheuristics, has been tested and compared with similar
methods. The proposed method with the proposed new metric used in this research gave
better results than the existing methods. The proposed fuzzy metrics in this paper as well
as the problem of p−median clustering applied to the problem and compared with existing
research in this field give better results.

Keywords Metrics · Methaheuristic · Clustering · Forensic images

1 Introduction

Thanks to the constant development of technologies, mobile phones and digital cameras, the
use of digital photos is represented in everyday life. They are used as sources of information,
but often also as compelling evidence in forensic research, as evidence in court, in journalism,
and etc. Modifying the content of such images has become very simple, through certain
software tools, so we cannot be sure of the originality of the image. Changes occur by adding
or removing certain image content, or making multiple images into a single image, all with
the aim of misrepresenting information. For these reasons, it is important to develop new
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methods for detecting such changes. One of the most common changes is the so-called Copy
Move Forgery Detection (CMFD). Changes occur by copying and pasting part of an image to
another part within the same image. Such changes can be subsequently scaled, rotated, copied
multiple times, and the like. Since the copied and pasted parts are from the same image, their
detection becomes even more complex, because the characteristics of the copied and pasted
parts are very similar (noise components, color temperatures, gloss, and etc). The image is by
its very nature suitable for the application of fuzzy theory system [1]. Here it is the case with
fuzzy distance. The parameter that gives the fuzzy nature of that distance can be varied and so
come to some of its value which gives good results in concrete in the case of the application
of that distance. They are discussed in the second section notions fuzzy T and fuzzy Smetrics
[2], i.e. distances with appropriate properties. For the distance classes, we use in applications
have been shown to be fuzzy metric. The aim of this research is a new fuzzy distance and its
application in clustering [1, 3] using metaheuristics. Thus, two metaheuristics are described
in the third section were used: VNS (variable neighborhood search) and BCO (bee colony
optimization). We compared the results with the results from the literature and showed the
success of the proposed methods. All implemented in programming language C#.

This paper is divided into 6 sections. In the following, we present an overview of the
literature. The techniques used in this paper, the metaheuristics as well as the distance used
in them are given in Section 3 and Section 4. The results we obtained with the proposed
techniques aswell as the description of the database can be found in Section 5,while Section 6
contains the conclusion of the research and suggestions for further research.

2 Literature review

The forgery regions are determined by computing the similarity between block features.
Wang et al. [4] proposed block-based forensics to detect region duplication for an image.
The method mainly used the mean intensities of a circle with different radii around the
center of the block to represent the features of the block. Ryu et al. [5, 6] used Zernike
moments as block features. The method can identify the forged region by copy-rotate-move
forgery. Huang et al. [7] proposed a discrete cosine transform (DCT)-based forgery detection
method. The image is first divided into overlapping blocks and the DCT is applied, thus
the DCT coefficients for each block are quantized by fixed step size q and then rounded to
the nearest integer. Wang et al. [8] proposed a forgery method that combines the discrete
wavelet transform (DWT) and the DCT. The DWT and DCT are applied to each image block
to extract features.

Research gap and objectives are not much clear. Bravo-Solorio and Nandi [9] proposed
a polar-based forgery detection method to detect copy-move attacks for an image. This
method subdivided an image into overlapping blocks of pixels. Davarazni et al. [10] used
multiresolution local binary patterns (MLBP) for forgery detection. This method used LBP
operations to extract feature vectors for each block, and then sorted these vectors based on
lexicographical order. Lee et al. [11] used a histogram of oriented gradients (HOG) of each
block as features; these features are ordered by using lexicographical sorting. The duplicated
image blocks are detected by measuring similar block pairs. Li et al. [12] used a polar
harmonic transform to extract the rotation and scaling invariant features as block features
(similar to the method of Lee et al. [11].

In the paper [19], the authors propose a hybrid model for the problem copy move forgery
detection. Their model successfully recognizes different sizes of altered regions. They com-
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bine different techniques to improve detection. Using SWT,DCT and SVD techniques reduce
the feature vectors. One of themathematical models was used in the paper [21]. Our proposed
model is based on strict mathematical proofs. Improved block-based matching algorithm
(IBMA) to solve the problem. Experiment results show that the improved block-basedmatch-
ing algorithm is better than the classical block-based matching algorithmwhen an image was
distorted byGaussian noise, salt-pepper noise, or JPEG compression.When it comes to prob-
lemswith different dimensions of images [20], the proposedmodel passive forensic approach
effectively detects copy-move forged regions in medium and large size images. The proposed
model reduces the search space before performing actual counterfeit detection. Forgery anal-
ysis on a reduced search domain reduces the computation time without compromising the
accuracy of the results. On average, it is quite effective at accurately detecting counterfeits
and keeps false positive rates low.

3 Fuzzymetrics

In the literature, the notion distance means a mapping that can satisfy many different traits
and, depending on them, find their applications. On a set of all fuzzy sets, defined over a set,
distance can be considered according to certain properties and applications.

Kramosil and Michalek [13] in 1975 they expanded the concept of Menger’s probabilitic
metric spaces at the concept stage and thus first defined the term fuzzy metric space. Among
the many results, modified approaches to the concept stage, a significant place is occupied by
the results published by Gregory and Sapena with associates (see e.g. [14]) and start from a
slightly modified definition of the fuzzy metric space, introduced by George and Veeramani
[15]. Dualized definition the S and T fuzzy metric space were introduced in the paper. Some
of the applications of such a defined distance in image filtering and segmentation can be
found, for example, in [2, 14, 16].

We focused on fuzzymetrics because they are better due to their properties. In this section,
we consider the fuzzy S−metric and the fuzzy T metric defined in [2].

Definition 1 Fuzzy S-metric space is a triple (X , s, S) such that X is a non-empty set, S is a
continuous t-conorm and s is a fuzzy set at X × X × (0,+∞) that satisfies the following
conditions for all a, b, c ∈ X , α, β > 0:

Sm1 s(a, b, α) ∈ [0, 1);
Sm2 s(a, b, α) = 0 ⇔ a = b;
Sm3 s(a, b, α) = s(b, a, α);
Sm4 S(s(a, b, α), s(b, c, β)) ≥ s(a, c, α + β);
Sm5 s(a, b, −) : (0,+∞) → [0, 1] is an continuous function.

The fuzzy set s is called a fuzzy S-metric. If instead of S f m1), we have s(a, b, α) ∈ [0, 1],
for the fuzzy set s we say it is a fuzzy S-metric in the broader sense, and (X , s, S) is a fuzzy
S-metric space in the broader sense.

Definition 2 Fuzzy T-metric space is an ordered triple (X , t, T ) such that X is a non-empty
set, T is a continuous t-norm and t is a fuzzy set at X × X × (0,+∞) that satisfies the
following conditions for all a, b, c ∈ X , α, β > 0:

Tm1 t(a, b, α) ∈ (0, 1];
Tm2 t(a, b, α) = 1 ⇔ a = b;
Tm3 t(a, b, α) = t(b, a, α);
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Tm4 T (t(a, b, α), t(b, c, β)) ≤ t(a, c, α + β);
Tm5 t(a, b, −) : (0,+∞) → [0, 1] is a continuous function.
The fuzzy set t is called fuzzy T-metric. If instead of T f m1), we have t(a, b, α) ∈ [0, 1],
for the fuzzy set t we say it is a fuzzy T-metric in the broader sense, and (X , t, T ) is a fuzzy
T-metric space in the broader sense.

Definition 3 Fuzzy S-metric s (T−metric t) is stationary on X if s (t) does not depend of
α, i.e. if for all fixed a, b ∈ X , function sa,b(α) = s(a, b, α) (ta,b(α) = t(a, b, α)) is a
constant.

Remark 1 The triangular norm, shorter t−norm (triangular conorm, shorter t−conorm) is a
binary operation T : [0, 1]2 → [0, 1] (S : [0, 1]2 → [0, 1]) which satisfies: monotonicity,
commutativity, associativity and neutral element is 1 (0).

Theorem 1 [2] If (X , s, S) is a fuzzy S−metric space and the T t−norm dual to t−conorm
S with respect to the continuous involutive fuzzy complement c, then (X , c ◦ s, T ) is a fuzzy
T−metric space.

If (X , t, T ) is a fuzzy T−metric space and S t−conorm dual to the norm T with respect
to a continuous involutive fuzzy complement c, then (X , c ◦ t, S) is a fuzzy S−metric space.

Remark 2 The non-increasing function c : [0, 1] → [0, 1] is a continuous fuzzy complement,
if c(0) = 1 and c(1) = 0 hold. If c is a continuous function, c is said to be a continuous fuzzy
complement. Fuzzy complement c is involutive if c(c(a)) = a holds for every a ∈ [0, 1].
Example 1 [2, 14] Themapping t : R+×R

+ → R defined by t(a, b, K) = min{a,b}+K
max{a,b}+K ,where

K > 0, is the fuzzy T -metric with respect tomultiplication, and s(a, b, K) = |a−b|
max (a, b)+K is

a fuzzy S-metric with respect to the algebraic sum, S(a, b) = 1−(1−a)(1−b) = a+b−ab
is dual it with respect to standard fuzzy complement.

Example 2 [2, 14] If (X , d) is a metric space then the mapping t : X × X ×R
+ → R defined

by

t(a, b, K) = K
K + d(a, b)

,

is the fuzzy T -metric with respect to the multiplication and its dual (with respect to the
standard fuzzy complement) s(a, b, K) = 1 − t(a, b, K) = d(a,b)

K+d(a,b) is the fuzzy S-metric
with respect to the algebraic sum.

Example 3 [2] Mapping t : R
+ × R

+ → R defined by t(a, b, K) = a+b
2 +K

max{a,b}+K , where

K > 0 is a fuzzy T -metric with respect to multiplication, and s(a, b, K) = |a−b|
2(max(a,b)+K) is

the fuzzy S-metric with respect to the algebraic sum, is dual to it with respect to standard
fuzzy complement.

Theorem 2 Mapping t : R+ × R
+ → R, p ≥ 1 defined by

tK(a, b) = t(a, b, K) =
p
√

a p+bp
2 + K

max{a, b} + K
, (1)

where K > 0, is a fuzzy T -metric with respect to multiplication.
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Proof Wewill carry out the proof for the case p > 1 (for p = 1 see [2]). T f m1) a, b ∈ R
+.

Without loosing any fact, let a ≤ b. Then we have a p ≤ bp ⇒ a p + bp ≤ 2bp ⇒ a p+bp
2 ≤

bp ⇒ p
√

a p+bp
2 + K ≤ b + K = max{a, b} + K, i.e. 1 ≥ tK(a, b) =

p
√

a p+bp
2 +K

max{a,b}+K > 0.

T f m2)(⇐) a = b ⇒ tK(a, b) =
p
√

a p+a p

2 + K

max{a, a} + K
=

p
√

2a p

2 + K

a + K
= 1.

(⇒) tK(a, b) = 1 ⇔ p

√
a p + bp

2
+ K = max{a, b} + K ⇔ p

√
a p + bp

2
= max{a, b}

a ≤ b ⇒ p

√
a p + bp

2
= b ⇒ a p + bp

2
= bp ⇒ a p = bp (a, b > 0) ⇒ a = b,

b ≤ a ⇒ p

√
a p + bp

2
= a ⇒ a p + bp

2
= a p ⇒ bp = a p (a, b > 0) ⇒ b = a.

T f m3) tK(a, b) =
p
√

a p+bp
2 +K

max{a,b}+K =
p
√

bp+a p
2 +K

max{b,a}+K = tK(b, a).

T f m4) Let us prove inequality

tK(a, b) · tK(b, c) ≤ tK(a, c). (2)

(2)⇔
p
√

a p+bp
2 +K

max{a,b}+K ·
p
√

bp+cp
2 +K

max{b,c}+K ≤
p
√

a p+cp
2 +K

max{a,c}+K

⇔
p
√

(a/K )p+(b/K )p
2 +1

max{a/K,b/K}+1 ·
p
√

(b/K)p+(c/K)p
2 +1

max{b/K,c/K}+1 ≤
p
√

(a/K)p+(c/K)p
2 +1

max{a/K,c/K}+1 . For simplicity of writing, we
introduce the replacements: A = a/K, B = b/K,C = c/K, so we get

p
√

Ap+B p

2 + 1

max{A, B} + 1
·

p
√

B p+C p

2 + 1

max{B,C} + 1
≤

p
√

Ap+C p

2 + 1

max{A,C} + 1
. (3)

We have six cases: 1) A ≤ B ≤ C, 2) A ≤ C ≤ B, 3) B ≤ A ≤ C, 4) C ≤ B ≤ A,

5) C ≤ A ≤ B, 6) B ≤ C ≤ A, it is enough to examine the first three because from
changing the place A and C : tK(A, B) · tK(B,C) ≤ tK(A,C) ⇔ tK(C, B) · tK(B, A) ≤
tK(C, A) follow the remaining three.

1) (3) ⇔
p
√

Ap+B p

2 + 1

B + 1
·

p
√

B p+C p

2 + 1

C + 1
≤

p
√

Ap+C p

2 + 1

C + 1

⇔ p

√
Ap + B p

2
· p

√
B p + C p

2
+ p

√
Ap + B p

2
+ p

√
B p + C p

2
+ 1

≤ B p

√
Ap + C p

2
+ B + p

√
Ap + C p

2
+ 1,

which is true because it is:

i) p

√
Ap + B p

2
· p

√
B p + C p

2
≤ B p

√
Ap + C p

2
⇔ (Ap + B p)(B p + C p) ≤ 2B p(Ap + C p)
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⇔ (B p)2 + ApC p ≤ B p Ap + B pC p

⇔ 0 ≤ B p(C p − B p) − Ap(C p − B p)

⇔ 0 ≤ (B p − Ap)(C p − B p)

⇔ �,

i i) p

√
Ap + B p

2
+ p

√
B p + C p

2
≤ B + p

√
Ap + C p

2

⇔ p

√
B p + C p

2
− B ≤ p

√
Ap + C p

2
− p

√
Ap + B p

2
= f (A)

f ′(A) = 1

p
(
Ap + C p

2
)
1
p −1 · 1

2
pAp−1 − 1

p
(
Ap + B p

2
)
1
p −1 · 1

2
pAp−1 =

1

2
Ap−1[( A

p + C p

2
)
1
p −1− (

Ap + B p

2
)
1
p −1]≤0 ⇒ f ↓ ∧A≤ B ⇒ f (A)≥ f (Amax )=

f (B) = p

√
B p + C p

2
− p

√
B p + B p

2
= p

√
B p + C p

2
− B;

2) (3) ⇔
p
√

Ap+B p

2 + 1

B + 1
·

p
√

B p+C p

2 + 1

B + 1
≤

p
√

Ap+C p

2 + 1

C + 1

⇔ (C + 1)( p

√
Ap + B p

2
+ 1)( p

√
B p + C p

2
+ 1) ≤ (B + 1)2( p

√
Ap + C p

2
+ 1)

⇔ C p

√
Ap + B p

2
· p

√
B p + C p

2
+ C p

√
Ap + B p

2
+ C p

√
B p + C p

2
+ C

+ p

√
Ap + B p

2
· p

√
B p + C p

2
+ p

√
Ap + B p

2
+ p

√
B p + C p

2
+ 1

≤ B2 p

√
Ap + C p

2
+ B2 + B p

√
Ap + C p

2
+ B + B p

√
Ap + C p

2
+ B + p

√
Ap + C p

2
+ 1,

which is true because it is:

i) C p

√
Ap + B p

2
· p

√
B p + C p

2
≤ B2 p

√
Ap + C p

2
⇔ C p(Ap + B p)(B p + C p) ≤ 2B2p(Ap + C p)

⇔ B2pC p + B p ApC p + B pC2p + ApC2p ≤ 2B2p Ap + 2B2pC p

⇔ �,

because B p ApC p ≤ B2p Ap ∧ B pC2p ≤ B2pC p ∧ ApC2p ≤ B2pC p,

i i) C + p

√
Ap + B p

2
≤ B + p

√
Ap + C p

2
(4)

⇔ f (A) = p

√
Ap + B p

2
− p

√
Ap + C p

2
≤ B − C
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f ′(A)= 1

p
(
Ap+ B p

2
)
1
p −1 · 1

2
pAp−1− 1

p
(
Ap+ C p

2
)
1
p −1 · 1

2
pAp−1= 1

2
Ap−1[( A

p+ B p

2
)
1
p −1−

(
Ap + C p

2
)
1
p −1] ≤ 0 ⇒ f ↓ ∧0 ≤ A ⇒ f (A) ≤ f (Amin) = f (0) = p

√
0p + C p

2
−

p

√
0p + B p

2
= 1

p
√
2
(B − C) ≤ B − C,

i i i) C p

√
Ap + B p

2
≤ B p

√
Ap + C p

2
⇔ C p Ap + C pB p ≤ B p Ap + B pC p ⇔ �,

iv) C p

√
B p + C p

2
+ p

√
Ap + B p

2
· p

√
B p + C p

2
+ p

√
B p + C p

2

≤ B2 + B p

√
Ap + C p

2
+ B ⇔ p

√
B p + C p

2
[C + p

√
Ap + B p

2
+ 1]

≤ B[B + p

√
Ap + C p

2
+ 1] ⇔ �,

because p
√

B p+C p

2 ≤ B ⇔ B p + C p ≤ 2B p ⇔ �, and inequality (4);

3) (3) ⇔
p
√

Ap+B p

2 + 1

A + 1
·

p
√

B p+C p

2 + 1

C + 1
≤

p
√

Ap+C p

2 + 1

C + 1

⇔ p

√
Ap + B p

2
· p

√
B p + C p

2
+ p

√
Ap + B p

2
+ p

√
B p + C p

2
+ 1

≤ A p

√
Ap + C p

2
+ A + p

√
Ap + C p

2
+ 1,

which is true because it is

i) p
√

Ap+B p

2 · p
√

B p+C p

2 ≤ A p
√

Ap+C p

2
⇔ (Ap + B p)(B p + C p) ≤ 2Ap(Ap + C p)

⇔ ApB p + ApC p + B2p + B pC p ≤ 2A2p + 2ApC p

⇔ �,

because ApB p ≤ A2p ∧ B2p ≤ A2p ∧ B pC p ≤ ApC p,

ii) p
√

Ap+B p

2 ≤ A ⇔ Ap + B p ≤ 2Ap ⇔ �,

iii) p
√

B p+C p

2 ≤ p
√

Ap+C p

2 ⇔ B p ≤ Ap ⇔ �.

The function F(K) = a+K
b+K , where a, b, K > 0, a < b, is monotonously increasing, so

t(a, b, K1) ≤ t(a, b, K1 + K2), t(b, c, K2) ≤ t(b, c, K1 + K2),
i.e., (2) implies:

tK1(a, b) · tK2(b, c) = t(a, b, K1) · t(b, c, K2) ≤ t(a, b, K1 + K2) · t(b, c, K1 + K2)

≤ t(a, c, K1 + K2) = tK1+K2(a, c).

T f m5) Obviously, t(a, b,−) is a continuous function (by parameter K). ��
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Remark 3 The inequality (2) does not corect in the case when p < 1. This is easy to see by
taking for example that p = 1

3 and a = 1
3 , b = 1

2 , c = 3
4 K = 10, or K = 0.7.

Some fuzzy metric spaces satisfy the inequality (2), which is the case in the previous
theorem. If p ∈ (0, 1), although (2) is not valid, it does not mean that the inequality of the
triangle is not true, but the proof cannot be carried out as in the theorem.

Each of these mappings contains a parameter K whose meaning is the distance tK(a, b)
from point a to point b is one fuzzy set defined the domain of parameter K. Especially if K is
a constant positive number then the value is distance a crisp number.

By proving this theorem, we confirmed that the proposed function is a distance. When we
apply this distance to the CMFD problem, we get that a and b are the pixel values within the
blocks, and the sum of all these values within the block represents the distance between the
two blocks. K and p are parameters that can be varied. More details in the following sections.

4 Methodology

The p−median problem and its extensions are useful to model many real word situations.
Problem clustering can formulated as:

min
∑
i

∑
j
di j xi j

Subject to∑
j
xi j = 1, ∀i

xi j < y j ∀i, j∑
j
y j = p,

xi j , y j ∈ {0, 1} .

Where are values xi j and y j binary. xi j = 1 if object i belongs to the cluster j, 0 otherwise.
y j = 1 if object j represented cluster, 0 otherwise.

Proposedmetaheuristics applied toCMFD the problemare given in the step-by-step below:

Step 1: the tested image a RGB color image we turn it to grayscale
Step 2: Input image is divided into blocks different dimension (see next section)
Step 3: For the each block calculated a feature vector
Step 4: We used metaheuristic to solved problem CMFD (next step)

Step 5. 1: When used VNS metaheuristic
Initialization: We calculate based on the proposed fuzzy metric the distance
between each block and thus create a distance matrix. We also define a stop
criterion, in this case it was until the values of the objective function are repeated
consecutively. We choose the initial solution x (in this case, two blocks represent-
ing the clustering centroids) and set STOP = 0 see Fig. 1.

Step 5. 2: When used BCO metaheuristic see Fig. 2

We used the fuzzy metric presented in the section above for the image processing problem
by incorporating it into a metaheuristic. From metaheuristics, we used VNS methods and
BCO.Wechosemetaheuristics for several reasons. Firstly, because the p-median is np difficult
problem, and secondly, because they have their own parameters, the variation of which can
help us reach the best possible results.
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Fig. 1 VNS algorithm

5 The experimental evaluation (Results)

The RVNS, BVNS, and BCO methods are implemented in the C# programming language
on the HP-15-d055 computer, running Windows 10 Pro. Due to the stochastic nature of the
method, 200 restarts were performed. and the maximum execution time is set as the stop
criterion, B = 7, NC = 3. It is set to the operating time of the CPLEX commercial solver
whenever it finds the optimal solutions or to five minutes for the examples from the literature.

When it comes to the blocks themselves, the proposed method is the block-based method,
because it works on non-overlapping blocks of the image that is of interest. The possibility
of this method for detecting copy-move changes is analyzed, and the influence of the block

Fig. 2 BCO algorithm
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Table 1 The results obtained when the image is divided into blocks of dimensions 8 × 8

Pic. [17] BVNS p = 1 RVNS p = 1 BCO p = 1
P R P R P R P R

I 87.62 99.48 90.12 92.56 98.73 99.48 100 100

II 100 97.53 100 98.11 100 100 100 100

III 26.58 94.85 96.32 97.12 98.85 100 96.32 97.12

IV 63.32 88.47 77.56 89.77 77.56 89.77 77.56 89.77

V 59.25 98.68 66.22 96.34 64.92 98.68 66.22 96.34

VI 49.80 100 87.31 100 100 100 100 100

VII 95.19 96.25 98.99 97.40 96.01 96.25 98.99 97.4

VIII 62.53 97.30 59.31 100 66.09 100 71.32 100

IX 41.49 93.37 56.34 94.11 54.67 95.37 56.34 94.11

size on the detection performance of falsified regions, in terms of the false positive FP (False
Positive) and the false negative FN (False Negative), is also investigated. The block size
varies from 8 × 8, 16 × 16 to 32 × 32 pixels (Tables 1, 2 and 3). All the described methods
and algorithms in this part of the research were applied to a specific example of a publicly
available database https://www5.cs.fau.de/research/data/image-manipulation/ (Fig. 3) and
compared with the results from the literature [17].

The performance of the proposed methods is most often measured in terms of precision
and recall. The precision indicates the probability that the blocks which have been changed,
have really been detected. The revocation indicates the probability (possibility) of detecting
the altered blocks in an image. The true positive (TP) is the number of blocks that have
been modified, which have been classified as modified. The false positive (FP) represents the
number of original (authentic) blocks that have been classified as modified, while the false
negative (FN) represents the number of the blocks that have been modified but classified as
original (authentic):

Precision = TP/(TP + FP) (5)

Revocation = TP/(TP + FN) (6)

Table 2 The results obtained when the image is divided into blocks of dimensions 8 × 8

Pic. [17] BVNS p = 2 RVNS p = 2 BCO p = 2
P R P R P R P R

I 87.62 99.48 91.20 99.48 90.12 99.48 100 100

II 100 97.53 100 100 100 100 100 100

III 26.58 94.85 100 100 100 100 100 100

IV 63.32 88.47 80.06 92.91 84.76 92.91 84.76 92.91

V 59.25 98.68 70.62 98.68 70.62 98.68 70.62 98.68

VI 49.80 100 100 100 100 100 100 100

VII 95.19 96.25 98.99 97.40 98.99 97.40 98.99 97.4

VIII 62.53 97.30 79.02 100 77.99 100 100 100

IX 41.49 93.37 71.88 95.01 71.88 95.01 71.88 95.01
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Table 3 The results obtained when the image is divided into blocks of dimensions 16 × 16

Pic. [18] BVNS p = 1 RVNS p = 1 BCO p = 1
P R P R P R P R

I 91.67 100 90.12 92.56 98.73 99.48 100 100

II 95.83 97.87 100 98.11 100 100 100 100

III 73.08 95 96.32 97.12 96.32 97.12 100 100

IV 81.48 95.65 77.56 89.77 77.56 89.77 96.97 100

V 86.95 99.56 66.22 96.34 64.92 98.68 66.22 96.34

VI 92.36 100 87.31 100 100 100 100 100

VII 97.36 97.36 98.99 97.40 96.01 96.25 100 100

VIII 89.32 96.35 59.31 100 66.09 100 59.31 100

IX 95.48 96.65 56.34 94.11 54.67 95.37 56.34 94.11

Column Pic. tells which picture was considered. The second column shows the results
from the corresponding work. The other columns show the results obtained by the above
method and the fuzzy metric parameter p.

R - Revocation (%)
P -Precision (%)
We used that the value of the parameter in the fuzzy metric is K = 1.

Fig. 3 Images tested I, II, III, IV, V, VI, VII, VIII, IX
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Table 4 The results obtained when the image is divided into blocks of dimensions 16 × 16

Pic. [18] BVNS p = 2 RVNS p = 2 BCO p = 2
P R P R P R P R

I 91.67 100 91.20 99.48 90.12 99.48 100 100

II 95.83 97.87 100 100 100 100 100 100

III 73.08 95 96.32 100 100 100 100 100

IV 81.48 95.65 80.06 92.91 84.76 92.91 96.97 100

V 86.95 99.56 70.62 98.68 70.62 98.68 70.62 98.68

VI 92.36 100 100 100 100 100 100 100

VII 97.36 97.36 98.99 97.40 98.99 97.40 100 100

VIII 89.32 96.35 79.02 100 77.99 100 79.02 100

IX 95.48 96.65 71.88 95.01 71.88 95.01 71.88 95.01

Tables 1, 2, 3 and 4 show the results of the proposed algorithmswhenwevary the parameter
p from the proposed T fuzzy metric. When looking at and analyzing the proposed approaches
of this research are either better andhave achieved the same success.When the average success
was calculated, the proposed methods were more successful. BCO proved to be better than
VNS. A similar conclusion can be made in Tables 5 and 6 when comparing VNS and BCO
because no results were found for 32× 32 blocks in the literature. We were not able to make
a comparison. The results achieved with these methods can be seen in the picture Figs. 4, 5,
6 and 7.

The graphical presentation (Figs. 1, 2, 3, 4 and 5) aims to visually show on different blocks
the success of the proposed methods in this paper in relation to the results from the literature.

6 Conclusion

The application of the metaheuristics, based on new class of fuzzy metrics, to the problem
of the copy move forgery detection images in comparison with the methods applied to the
researcher in other papers has shown greater success it.

Table 5 The results obtained
when the image is divided into
blocks of dimensions 32 × 32

Pic. BVNS p = 1 RVNS p = 1 BCO p = 1
P R P R P R

I 90.12 92.56 98.73 99.48 100 100

II 100 98.11 100 100 100 100

III 100 98.12 100 95.78 100 100

IV 77.56 89.77 77.56 89.77 96.97 100

V 66.22 96.34 64.92 98.68 66.22 96.34

VI 87.31 100 100 100 100 100

VII 98.99 97.4 96.01 96.25 100 100

VIII 61.12 100 66.09 100 59.31 100

IX 56.34 94.11 54.67 95.37 56.34 94.11
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Table 6 The results obtained
when the image is divided into
blocks of dimensions 32 × 32

Pic. BVNS p = 2 RVNS p = 2 BCO p = 2
P R P R P R

I 91.2 99.48 90.12 100 100 100

II 100 100 100 100 100 100

III 100 100 100 100 100 100

IV 80.06 92.91 84.76 92.91 96.97 100

V 70.62 98.68 70.62 98.68 70.62 98.68

VI 100 100 100 100 100 100

VII 98.99 99.02 98.99 97.4 100 100

VIII 79.02 100 77.99 100 79.02 100

IX 71.88 95.01 71.88 95.01 71.88 95.01

Fig. 4 Revocation 8 × 8

Fig. 5 Precision 8 × 8
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Fig. 6 Revocation 16 × 16

The proposedmethodswith fuzzymetrics that we have presented in this research represent
an advantage because in their basis there are parameters (metaheuristic and in fuzzy metrics)
that can be adjusted and works on their optimality to further improve the performance of
the proposed method. In this paper, as an example, we illustrated the changes in the metric
parameter by two values. It is also possible to adjust the parameters of the heuristic method
and in that way try to make the time success of the algorithm higher.

Further research is considered in the direction of researching the impact of the application
of some other fuzzy T−metrics and S−metrics on the problem of clustering. It is expected
that by varying the parameters in the fuzzy metrics as well as in metaheuristics, better results
are obtained than before, and in relation to other techniques with which comparisons are
made.

The advantages of this research in relation to others is that it gives the possibility to “find
out” about fuzzy metrics. This type of distance is characterized by the parameters that appear

Fig. 7 Precision 16 × 16
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in it (K and p) and allow choosing the best distance for a specific example of application.
There are many other distances that give good results in specific applications, but they are
neither metric nor fuzzy metric.
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