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Abstract
Nowadays, Deep learning (DL) techniques have been proven successful as learning tech-
niques in various research fields ranging from computer vision to social networks. The 
approach of DL is flourishing in the field of recommender systems (RS). Researchers have 
deployed metadata or auxiliary information using DL approaches in diverse applications in 
the last decade to achieve better recommendation accuracy. Thus, the metadata plays a vital 
role in obtaining a better user-item interaction. At the same time, existing techniques are 
based on fixed user and item factors. Therefore, the model does not correctly identify actual 
latent factors representation, resulting in a high prediction error. To handle this problem, a 
user metadata embedding using a deep autoencoder RS model called “Metadata Embed-
ding Deep AutoEncoder (MEDAE)” based collaborative filtering is proposed. MEDAE 
model takes embeds user metadata such as demographics along with the rating data. The 
MEDAE model consists of an embedding layer, Encoder, and Decoder. The embedding 
layer generates embedding or latent features of the users, items, and metadata; Encoder 
receives concatenated features of the user, item, and metadata, then encodes the inputs and 
passes them to the decoder; and the decoder reconstructs the output. To test the effective-
ness of proposed model Root Mean Squared Error and Mean Absolute Error measures are 
used. Different architectures (like Big-Small-Big (BSB) (5), BSB (3), Small-Big-Small (3), 
and SBS (5)) of the MEDAE model are evaluated on MovieLens datasets along with differ-
ent parameters such as activation functions (ELU and SELU) and regularization and results 
concluded that the MEDAE with SBS (3) and ELU + SELU component improves 4% of 
RMSE and 2% MAE over the baseline methods.

Keywords  Collaborative Filtering · Recommender System · Deep Learning · Metadata · 
Autoencoder

1  Introduction

A recommender system (RS) is a sub-category of an information retrieval system that 
determines a particular item’s ranking or user preference. RSs are a collection of meth-
ods that assist users with finding recommendation-based items. Recommendations or 
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suggestions are often geared toward assisting the decision-making process, whether 
choosing the next music to listen to, reading a news story, watching the next movie, 
or applying for a job. RS addresses these problems by filtering out the vast majority of 
irrelevant items in the catalog in order to display a few highly relevant items that the 
user may find interesting.

Nowadays, recommendation systems (RSs) play a vital role in e-commerce industry 
and online platforms such as social-networking, YouTube, Facebook, and etc. Big com-
panies like Netflix, Flip-kart, Spotify, and Amazon use filtering techniques i.e., recom-
mender systems (RSs) to recommend useful products to an intended user. It should be 
possible for the RS to predict user preferences based on previous interactions, such as 
viewing product pages called implicit feedback or leaving reviews for movies, called 
explicit feedback. Amazon, Flipkart’s product recommendations, movie recommenda-
tions of Netflix, and Spotify’s music suggestions are all examples of successful RS.

Therefore, the performance of the RSs has made huge impact on the success of these 
companies. According to the collection of data and the way these data being recom-
mended, the approach of RSs can be classified into two parts: collaborative filtering 
(CF) and content based (CB) recommendations [1, 2]. CB techniques consider contex-
tual data that is date, time, and location [3]. The disadvantage of the CB technique is 
that it usually requires detailed profiling of every item in the database, which is not 
always possible. Additionally, similarity computations are limited by domain knowledge 
as well as to the explicit characteristics (e.g., genres or directors) rather than more inter-
actions between the attributes.

On the other hand, CF technique recommends items to the active users based previous 
history of users; hence CF approaches are well known for personalized recommendations. 
Specifically, CF technique analyze the user’s interest and preferences of similar users and 
predict the items accordingly to the users. In designing RSs, the objective is to enhance the 
prediction accuracy of RSs. The prize contest of Netflix is an example of this problem [4], 
Netflix conducts a prize contest on the substantial improvement of prediction accuracy of 
the RS technique. This is a traditional collaborative filtering problem: Infer the unobserved 
entries in an interaction matrix of Rm×n whose (i, j), jth item given by ith user. The prediction 
performance is measured by RMSE.

Collaborative filtering is a widely used approach in recommender systems, which 
involves making recommendations to users based on the preferences of similar users. Deep 
collaborative filtering is a variant of this method that uses deep learning techniques to 
model user-item interactions.

However, there are several limitations to deep collaborative filtering. One limitation is 
that it requires large amounts of data to train the model effectively, which can be a chal-
lenge for smaller businesses or startups. Additionally, the model may suffer from overfit-
ting if there are not enough diverse examples to learn from. Another limitation is that deep 
collaborative filtering is mainly based on the past behavior of users and does not account 
for changes in their preferences over time. This means that the model may not be able 
to make accurate recommendations if users’ preferences change frequently. Furthermore, 
deep collaborative filtering may not be effective in recommending items that are outside of 
users’ known preferences. For example, if a user has only interacted with a specific genre 
of movies, the model may not be able to recommend movies from other genres that the 
user might enjoy. Finally, while deep collaborative filtering has shown promising results in 
some applications, it is not without its limitations. To overcome these limitations, research-
ers are exploring new techniques such as incorporating contextual information and incor-
porating additional data sources to improve the accuracy of recommendations.
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In recent years, Deep Learning (DL) has emerged as significant technique in image 
processing, computer vision, and various diverse fields of computer science [5]. The suc-
cess of DL techniques motivates many researchers to deploy the DL approach in RSs to 
improve the prediction task of CF. The prediction task of RSs is measured by using several 
deep learning techniques. At the same time, auto-encoder (AE) based RSs are not consid-
ering the metadata of users or items. Thus, embedding user metadata into the deep AE RS 
model is of particular interest. Therefore, we first formulate the problem as follows and 
then design the model. The detail notations that are used in this article is shown in Table 1.

Let UN
u=1

  and  IM
i=1

 be the N users and M items. Let O (u, i, rui) denote the log of the 
users’ past interactions. The objective of RS is to suggest a list of items to the intended 
users according to his/her preferences. In several cases, O contains implicit data only that 
is the interaction rui if exists; otherwise considered as missing. We denote  Õ as a set of 
unobserved triples and be an augmented interaction pair that considers some data sampled 
from O′ . Let Ou represent the set of item choices of user u in the training set, and Õ be the 
unknown choices of user u. Hence items in Õu are the candidates to be suggested to the 
user u . The goal of the RS is to suggest a subset of items from the candidate set to each 
user u . The estimated values are most likely to be 1. In some cases, the range of rui between 
1 to 5 or {0, 1} . In this paper, we consider the range of rui 1 to 5.

Deep neural networks have been included into CF models with promising results to 
improve recommendation accuracy. Deep learning has transformed the area of recommen-
dation systems in recent years.

1.1 � Challenges in traditional collaborative filtering

It has proven effective to provide suggestions based on user-item interactions using tradi-
tional CF techniques like matrix factorization and neighborhood-based approaches. Mak-
ing precise forecasts is difficult with these approaches due to data sparsity and the cold 

Table 1   List of notations

Symbols or Notations Descriptions

UN
u=1

Set of N users

IM
i=1

Set of M items
O(u, i, rui) Log of user’s past interactions

Õ Set of unobserved tuples

pu User latent factors
qi Item latent factors
r̂ui Estimated ratings of uth user to ith item
J� Cost function or objective function
Sij Similarity score of I and j item
f (), g() and h() Activation functions

W, W̃ Weight vector at input an out layer

b, b̃ Biases

X ∈ RN Aggregate features of user, item and user metadata
L(x, x�) Loss function
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start issue, which affects new goods or users with little to no interaction data. Furthermore, 
these techniques often provide poor suggestions since they find it difficult to recognize 
intricate patterns and semantic representations in the data.

1.2 � Enhancements through deep autoencoders

Researchers have looked at integrating deep autoencoders (AEs) into the recommendation 
pipeline to solve the shortcomings of conventional CF approaches. AEs are strong unsuper-
vised learning models that encode information into a latent space and then reconstruct it 
to develop an effective data representation. Collaborative filtering can catch complex user-
item patterns and provide more precise suggestions by using the expressive potential of 
AEs.

1.3 � Leveraging metadata for improved recommendations

The integration of information related to users and goods is another essential component 
of enhancing CF. To provide better suggestions, metadata such as user demographics, item 
features, and contextual data might offer useful insights. Particularly for users with little 
interaction data, adding information to CF models may help the system better manage the 
cold start issue and increase the accuracy of recommendations.

1.4 � Research objectives

In this paper, we integrate deep autoencoders with metadata embedding to improve collab-
orative filtering for recommender systems. In order to capture rich feature representations, 
our suggested model, Metadata Embedding into Deep Autoencoder (MEDAE), learns from 
both user-item interaction data and auxiliary metadata. We want to solve the "cold start" 
issue and increase suggestion accuracy by adding information, even for people or things 
with few interaction data.

This work aims to increase the state-of-the-art in collaborative filtering-based recom-
mender systems by integrating deep autoencoders with metadata, giving users more precise 
and tailored suggestions across a range of disciplines.

In this paper, the prediction task of collaborative filtering is investigated with the help 
deep structure of AutoEncoder. The main motivation behind this work to embed the meta-
data of the user such as gender, age and occupation along with the rating data in the pro-
posed system. For this purpose, we design a Metadata Embedding Deep AutoEncoder 
(MEDAE) based CF model to enhance the prediction task of the CF based recommenda-
tions. Basically, MEDAE model receives an aggregate feature vector of user-items, and 
metadata, then estimates the predicted rating score to an item. In the encoder part, MEDAE 
uses a deep AutoEncoder (AE) to encode the interactions of user and items. Whereas the 
second part of the MEDAE model decodes as well as reconstructs the interactions or rat-
ings given by the user to an item. The MEDAE is a generalization of several baseline mod-
els with a flexible structure. We deploy the idea of Deeprec [6]. In addition to this, we 
integrate user metadata by using deep structure of AE to improve the prediction task of CF.
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1.5 � Objectives of the paper

The following are the objectives of the paper:

1.	 To conduct background study and enlighten literature review with regard to Recom-
mendation Systems (RS) and Autoencoders;

2.	 To propose novel methodology titled “Metadata Embedding Deep AutoEncoder 
(MEDAE)”, to integrate user metadata into a Deep AutoEncoder, to improve the col-
laborative filtering prediction task;

3.	 To demonstrate and prove that MEDAE is a generalization of several baseline models 
but with a more flexible structure;

4.	 To test and validate the MEDAE model with different architecture such as BSB (512, 
256, 512), BSB (512, 256,128, 256, 512), SBS (256, 512, 256) and SBS (128, 256, 512, 
256, 128) along with average rating and default rating;

5.	 And, to compare the proposed model to know the impact of different components such 
as batch size, dropout and activation functions with various existing techniques.

1.6 � Organization of paper

The rest of the article is structured as: Related work on applying neural network methods 
to RSs is enlightened in Sect. 2. Section 3 elaborates the materials and methods, that sup-
ports for designing the proposed method. Section 4 discuss about materials and methods 
and Sect. 5 describes our proposed model and learning algorithm in detail. Experimental 
results for the components analysis and performance comparisons are presented in Sect. 6. 
And finally, Sect. 7 concludes the paper with future scope.

2 � Related works

In this section, we discuss similar literatures that are closely related to our proposed work.
Sedhian et al. [7] proposed a novel method called Autorec, where the authors used the 

autoencoder concept to encode the interactions and try to reconstruct partially observed 
ratings at the output layer. Wang et al. [8] used the Auto-Encoder for RS and improved the 
performance by replacing a Bayesian AE with a Topic Model component, which was uti-
lized for learning the latent factor representations of the articles. A recurrent recommender 
framework was proposed by Wu et al. [9] and the Autorec model used a vanilla autoen-
coder (AE) structure and does not consider any metadata of users or items.

A loss function based on the corrupt input and reconstruction error was proposed 
by Strub and Jeremie in 2015 [10] to train stacked denoising auto-encoders (SDAE). 
Li et  al. [11] decreased computational costs associated with deep learning by using a 
marginalized denoising autoencoder and discuss a hybrid deep CF (DCF) to tackle the 
sparsity of CF. The researchers studied the latent features and side information through 
the deep learning and improved the performance of CF. Wang et  al. [12] proposed a 
hierarchical Bayesian technique called collaborative deep learning (CDL), which allows 
two-way interaction between content representation and collaborative filtering. Later, 
Collaborative deep ranking (CDR), an extended version of CDL, was proposed by Ying 
et al. [13]. Further, Wu et al. [14] improved the performance of the autoencoder-based 
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model by adding noise or corrupted inputs, such as collaborative denoising auto-encoder 
(CDAE). CDAE resolves top-n suggestions by integrating user bias and can general-
ize many CF techniques by examining pairwise and pointwise loss functions. Alameda-
Pineda et al. [15] elaborated a non-linear matrix completion approach for the classifica-
tion task by predicting unknown labels by considering rank minimization approach.

In a study by Zhang et al. [16], various types of transformations were proposed over 
multi-field categorical data, such as Factorization machines, RBM, and denoising AE. 
Kim et al. [17] applied CNN to detect localized features in text and images in recom-
mendation systems and concluded that CNN overcomes the limitation of bags-of-words 
through weight filters. Zhang et al. [18] enhanced the RS model with the help of con-
volution, visual knowledge, and denoising auto-encoders. Zhang et  al. [19] proposed 
an efficient hybrid collaborative filtering model via contractive auto-encoders titled 
“AutoSVD ++ ” to capture implicit user feedback and meta information of item to 
enhance rating prediction of CF. Using deep neural networks (DNN), Volkovs et al. [20] 
learned a mapping from content to existing latent features to tackle the cold-start prob-
lem. In comparison, DNN produces a wide variety of mobile app suggestions, whereas 
linear model’s overgeneralization generates irrelevant recommendations. Zheng et  al. 
[21] portrayed user behavior using parallel convolutional neural networks on user-item 
feedback, before utilizing a final shared interaction.

He et  al. [22] proposed neural collaborative filtering (NCF) to enhance the predic-
tion task of CF and used multi-layer perceptron along with general matrix factoriza-
tion (GMF) to find the interaction between the user and item and only considered user 
ID and item ID. The NFM approach was proposed by He & Chua [23] as a modifica-
tion to the classical factorization machine by introducing a bi-interaction pooling layer. 
This modification enabled the extraction of low-dimensional feature interaction vec-
tors, leading to impressive results. Nevertheless, the implementation of this technique 
requires side information during feature representation learning, which may be difficult 
to acquire in real-world scenarios.

He et  al. [24] used NeuMF to incorporate Multilayer Perceptron (MLP) in place of 
dot product, which was commonly used in Matrix Factorization (MF) methods, to enable 
the learning of high-order matching functions. While MLP was capable of handling high 
capacity and nonlinearity, it was unable to capture low-order feature interactions. To over-
come this limitation, NeuMF combined the strengths of both MF and MLP by merging 
their prediction vectors in the final layer. This allows for the learning of both linear and 
nonlinear matching functions.  Shang et  al. [25] introduced probabilistic MF with users’ 
demographic information to address CF’s sparsity; in their model, they observed differ-
ent items with the same domain and consider the users with similar demographics across 
the domain. Further, Shang et al. [26] used a randomized latent factor model to handle the 
computational burden and improve CF’s prediction accuracy. Yoon and Lee [27] used the 
word2Vec approach to enhance the performance of RS, but didn’t use the autoencoder con-
cept while learning the feature vector of user-item.

Wang et  al. [28] developed an RS framework called neural graph collaborative filter-
ing to exploit the interactions in graph structures during the embedding process but didn’t 
used any metadata of either user or item. Xiao et al. [29] discussed the Bayesian deep col-
laborative MF to exploit the user-item latent factors from user’s social interactions along 
with the rating matrix to alleviate the sparsity of CF. He et al. [30] introduced light GCN 
to learn user-item embeddings in the form of interactive graphs and also used the weighted 
sum of embedding as final embedding, but didn’t used any auxiliary information. Pan et al. 
[31] developed a sparse stacked denoising AE to handle the data scarcity and imbalance 
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problem for social network. Further, authors included MF and deep learning framework to 
improve the accuracy of the RS.

Zhang et al. [32] deployed the attention based probabilistic MF technique to overcome 
the sparsity issue of the social RS. However, authors ignored the metadata and time-sen-
sitive factor of rating data. Nisha and Mohan [33] included social information into a DL 
model to learn the social data with the help of embeddings. At the same time, authors nei-
ther considered the item’s nor user’s meta information, therefore, utilizing an auxiliary data 
in a deep learning model becomes challenging. Aljunid and Dh [34] discussed an efficient 
deep learning technique on collaborative RS (DCLRS) to handle the sparsity of CF. In their 
approach, authors transferred explicit rating data into implicit. At the same time, authors 
only considered ID of user-item at the training phase without incorporating any auxiliary 
data of users-items.

Nahta et  al. [35] discussed metadata embedding using deep learning for handling the 
cold-start problem of CF and augmented user metadata and item genre with rating data 
and fed them to the deep structure of a neural network to estimate the prediction. Jena et al. 
[36] designed a neural model for movie recommender systems based collaborative filter-
ing and used seven layers’ neural architecture to estimate the rating prediction of an item 
for a particular user. Tahmasebi et al. [37] proposed a hybrid social movie RS by utilizing 
deep AE to alleviate the accuracy of movie RS and deployed each user’s social influence 
to enhance the prediction of RS. Shambour [38] proposed a deep learning technique for 
multi-criteria RS and employed AEs to exploit the non-trivial and hidden representation 
among users w.r.t multi-criteria preference for more accurate suggestions. Yengikand et al. 
[39] discussed the Deep-MSR model to address the problem in dot products for describing 
the various latent factors. Authors exploited MLP and stacked AE to learn the item and 
user hidden features from the interaction matrix and concluded that including user prefer-
ences and item, features will outperform the baselines.

Behera and Nain [40] demonstrated a nonlinear non-negative MF model to tackle the 
sparsity issue of CF and extended this by integrating item metadata into the deep collabo-
rative framework to improve the sparsity problem of CF [41]. Mercheri et al. [42] proposed 
a movie RS using auto-encoder to handle the data sparsity and then enhance the accuracy 
of RS using a pre-trained RBM model. Ratnakanth and Poonkuzhali [43] employed CF 
along with deep AE to predict users’ ratings for suggesting certain tourist places in India 
to travelers. Liu and Wang [44] developed a novel RS for CF using dual AE called CFDA. 
The authors used dual AE to extract the latent factor of users and items and then minimized 
the error with the help of these representations.

Bougtub et al. [45] proposed a hybrid RS using a deep autoencoder to handle Cf’s spar-
sity and scalability issues. In their approach, authors learned the user’s preference through 
the auto-encoder and reconstruct the unknown ratings. Further, they applied SVD ++ to 
keep the correlation information between latent factors. Alagappan and Victor [46] pre-
sented an efficient graph-based web page RS to overcome CF’s overspecialization and 
sparsity problem and deployed AE to cluster the preference vector of users based on visited 
web pages and suggested the web page with the highest score. Jalali and Hosseini [47] 
discussed a hybrid dynamic model for RS that utilized deep AE to accommodate the new 
user and item relationship over time. Mainly the authors deployed user ratings and social 
interaction between users to compute the similarity score for different users at different 
time stamps. Also, they thought that user behavior over time would help to update the simi-
larity matrices, which decreases the error and increase user satisfaction. A movie recom-
mendation with the temporal feature was proposed by Behera and Nain [48] to improve the 
personalization recommendation.
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A unique technique for forecasting subsurface water level utilizing remote sensing photos 
was proposed by Stateczny et al. [49]. To obtain more accuracy than earlier techniques, an 
ensemble classifier and an enhanced hydro index value was deployed. A novel approach for 
enhancing the quality of medical photographs was presented by Ahmed et al. [50] by utiliz-
ing the MICQ unsupervised machine learning algorithm. A novel technique for cross-lingual 
handwritten character recognition employing an LSTM with elephant herding optimization 
was enlightened by Guptha et al. [51] and demonstrated that the proposed technique can out-
perform on a dataset of handwritten characters from several languages.

Using a hybrid features-based independent condensed nearest neighbor (ICNN) model, Praveena 
et al. [52] suggested a novel technique for content-based medical image retrieval (CBMIR). The 
authors demonstrated that their technique can reach state-of-the-art performance by evaluating it on 
a dataset of medical photos. Ahmed et al. [53] suggested a novel approach for enhancing medical 
picture quality utilizing an unsupervised machine learning algorithm known as MICQ. The authors 
demonstrated that their technique may greatly improve the quality of the photos by evaluating it on 
a collection of medical photographs. A novel approach for content-based image retrieval (CBIR) for 
histopathology pictures of liver cirrhosis was put forward by Guptha et al. [54]. To outperform ear-
lier techniques, the authors combined an adaptive regularized kernel fuzzy C-means method with an 
earth mover’s distance-based methodology.

An innovative technique for improving random forest was put out by Kamalalochana and 
Guptha [55] to identify illness in photos of apple leaves. To improve accuracy over earlier 
techniques, the authors used a genetic approach to adjust the random forest model’s param-
eters. A novel strategy for identifying liver lesions using ROBUST machine learning was put 
out by Sundari et al. [56] The authors improved accuracy over existing techniques by combin-
ing features and machine learning algorithms. Using smartphones and a cheap hardware kit, 
Ahmed et al. [57] suggested a novel telemedicine strategy for remote patient monitoring. The 
authors demonstrate the efficacy of their strategy in raising the standard of care for patients in 
distant locations by evaluating it in a real-world context.

A thorough analysis of wireless technology for remote patient monitoring was presented by 
Nirmala et al. [58]. Authors illustrated the benefits and drawbacks of various technologies and 
provide suggestions for further study.

As compared to the literature elaborated above, the proposed model is a generic model 
that can embed user metadata using AE for the rating prediction task of a collaborative rec-
ommender system. At the same time, we adapt the deep structure of AE that can learn the 
metadata along with the user and item information for estimating rating of an item given by 
the user. Further we found that the baseline method such as deep-AE uses 0 as default rat-
ing, while auto-rec uses 3 as default rating. Therefore, we have tried different default rating 
from 0–5 and consider their average as final default ratings. Also, we observed that deep-AE 
uses largest layer in the middle and smaller at the beginning and the end that is SBS archi-
tecture. Whereas, Auto-rec uses big-small-big (BSB) architecture. Therefore, in our work we 
have used both architecture with different depth and found that the SBS (3) architecture with 
average rating as default rating and combination of SELU + ELU activation function performs 
better compared to other architecture and baseline methods.

3 � Materials and methods

In this section, we explore the materials and background methods that support for design-
ing the proposed methodology and conducting experiments.
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3.1 � Materials

3.1.1 � Datasets

The datasets used for the experimental purpose are shown in Table 2. ML-100 K1 data-
set contains 100 K ratings in which 943 users provide ratings to 1682 movies within the 
range of 1–5. Each client has rated at least 20 items. 1 M2 file has 1,000,209 (1 M) ratings 
of 3,900 films given by 6,040 users. Amazon Movies (Amovies)3 dataset was bigger and 
sparser compared to the MovieLens datasets.

The sparsity indicates percentage of interaction in the database or in the rating matrix. 
Mathematically sparsity is defined in Eq. 1.

3.1.2 � Data per‑processing

The raw data file is separated by: without headers. We transform the raw data file into a 
CSV with headers, which can be easily imported using Pandas. All the user and movie ID 
will be subtracted by 1 for zero-based index. The snippet shows the preprocessing for rat-
ing data and similar preprocessing is applied to users’ data and movies data (Figs. 1, 2).

The function data Preprocessor is used for this transformation. The init_value is the 
default rating for unobserved ratings. If average is set to True, the unobserved rating will 
be set as the average rating of the user.

(1)Sparsity =
No. of users × No. of items

Total No. of ratings

Table 2   Description of datasets Datasets No. of items No. of users % of Sparsity

ML-100 K 943 1682 93.69
ML- 1 M 3952 6040 95.81
Amovies 69,629 15,067 99.91

Fig. 1   Code snippet of preprocessing rating data

1  https://​group​lens.​org/​datas​ets/​movie​lens/​100K/
2  https://​group​lens.​org/​datas​ets/​movie​lens/​1M/
3  http://​jmcau​ley.​ucsd.​edu/​data/​amazon/

https://grouplens.org/datasets/movielens/100K/
https://grouplens.org/datasets/movielens/1M/
http://jmcauley.ucsd.edu/data/amazon/
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3.2 � Methods

Most of the machine learning (ML) models have two parts: (a) model definition and (b) 
cost or objective function.

The first component formulates the relationship between the input and output. Whereas, the sec-
ond component is to optimize the parameters and find the best parameters during training. Generally, 
RS models are defined as per Equation r̂ui = f

�

WTz + b̃

�

= W̃Th
�

WTr̃u + Xu + b
�

+ b̃ = W̃T(
∑

r̃uiW + Xu)
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�
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�
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�
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�
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∑
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�
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�
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�

+ b̃ = W̃T(
∑

r̃uiW + Xu) 

r̂ui = f

�

WTz + b̃

�

= W̃Th
�

WTr̃u + Xu + b
�

+ b̃ = W̃T(
∑

r̃uiW + Xu) 

r̂ui = f

�

WTz + b̃

�

= W̃Th
�

WTr̃u + Xu + b
�

+ b̃ = W̃T(
∑

r̃uiW + Xu).

where r̂ui be the estimated rating of uth user on ith product, and �  represents model param-
eters that are to be learned during training. The function J� corresponds to the objective 
function that shows the behaviour of output on input. Some of the RS models reviewed in 
this section are- Latent Factor Model (LFM); Similarity Model (SM); Factorized Similar-
ity Model (FSM) and SVD ++ .

3.2.1 � Latent Factor Model (LFM)

LFM model factorizes the interaction matrix rui into user 
(

pu
)

 and item 
(

qi
)

 latent factors 
[1, 59, 60]

Further, hierarchical [61, 62] and factorize machine [63] models the rui with help of side 
features of user/items.

3.3 � Similarity Model (SM)

In SM [64], the interest of user for an item i is modeled as the weighted sum of similarity 
score between ith and jth user and the preference for item j . Though it is similar to item-
based collaborative filtering, however, it does not use item similarity techniques to find 
predicted scores, instead, SM learns a similarity score from data [65].

(2)r̂{ui} = J�(u, i)

(3)r̂ui = JLFM
�

(u, i) = pu ⋅ q
T
i

Fig. 2   Snippet of rating data after preprocessing raw data
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3.3.1 � Factorized Similarity Model (FSM)

The main drawback of the SM models is impractical because of the quadratic relationship 
between parameters and items. To handle this a low-rank approximation technique that is 
FSM is used.

3.3.2 � SVD ++ 

SVD ++ [64] is the combination of FSM and LFM. This model considers implicit feedback 
as an additional feature along with explicit data such as ratings.

4 � Proposed Methodology: MEDAE

Inspired by deep autoencoder [6] we integrate the meta-features of the user into the deep 
autoencoder (MEDAE) and trained the model with much deeper. Figure 3 shows the archi-
tecture of the MEDAE model. To enable this, we use SELUs [66] activation function with 
a high dropout rate. Basically, an autoencoder (AE) is a neural network that has two units 
an encoder and a decoder. The encoder encodes the given input (x):RN

→ RK Whereas 
decoder(z) decodes z into RK

→ RN.
The objective of AE is to achieve K latent space of data in such a way that the errors 

between input and output are minimized [67]. The AE with linear activation and code layer 
is capable to gain PCA [68] transformation in the encoder. However, our approach has 
both encoding and decoding parts with a feed-forward network such that it computes l = 
g
(

WTx + b
)

 where g is a nonlinear function.
In the forward pass, the MEDAE model takes augmented features vectors of users, 

items, and user metadata s.t   X = f (U, I,D) and X ∈ RN , where N denotes a number of 
movies. However, X is very sparse matrix, while the output of the decoder, f (X)∈ RN is 
dense and contains predictions for all movies in the corpus.

During training, an input x ∈ Rn is very sparse because very few users have interacted 
with all product. Whereas, autoencoder’s output f (x) is dense. Let’s consider an ideal sce-
nario of f  ; such that f (x)i = xi,∀i ∶ xi ≠ 0 and f (x)i accurately estimates all user’s future 
preference for itemsi ∶ xi = 0 . That is if a user interacts with a new item k (i.e., generat-
ing a new vectorx′) such that f (x)k = x�

k
 and f (x) = f (x�) . Therefore, the scenario, y = f (x) 

should be a fixed point of a well-trained AE: f (y) = y.
To explicitly enforce fixed-point constraint and to be able to perform dense training 

updates, we augment every optimization iteration with an iterative dense re-feeding steps 
as follows:

(4)r̂ui = JSM
�

(u, i) =
∑

rui ⋅ Sij

(5)r̂ui = Jp,q(u, i) =
(

∑

rui ⋅ pu

)T

⋅ qi

(6)r̂ui = Jp,q(ui) =
(

∑

rui ⋅ pj + pu

)T

⋅ qi
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(1) In forward pass, compute dense f (x) and loss according to Eq. 9. (2) In backward 
pass, compute gradients and perform weight update for each iteration.

4.1 � Training MEDAE

During training the MEDAE model takes an input sample x (i.e., aggregate of user-id, 
movieid, and user metadata) and maps it into latent dimensions of z.

At the decoder end the model mapped back z into the original input space to recapture 
the input vectors. Therefore, the output value is estimated as defined in Eq. 8.

where the training consists of applying Adam optimizer to minimize the loss i.e., mean 
squared error as defined in Eq. 9.

(7)z = g
(

WTx + b
)

(8)r̂ = f
(

W̃Tz + b̃
)

(9)

L(x, x�) =
1

n

∑n

i=1
xi − xi�

2 =
1

n

∑n

i=1
xi − �

�

Wzi + b
�2

=
1

n

∑n

i=1
xi − �

�

W�

�

W̃xi + b̃

�

+ b
�2

i.e.,
argmin

W, W̃, b, b̃

1

n

∑

L(x, x�)

Fig. 3   Illustration of Metadata Embedding Deep AutoEncoder
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4.1.1 � Generalization of MEDAE with another model

MEDAE is a generalization of model-based CF models. The representation given in 
Sect. 3.2 can be treated as a special case of this architecture. Specifically, if we choose the 
identity or linear function for both g(x) and f (x) inputs. The output value of  r̂ui in Eq. 8 
becomes:

The detailed procedure for MEDAE is shown in Algorithm 1.

5 � Experimentation, results and analysis

5.1 � Experimental setup

We utilize standard datasets of Movielens in our experiments that are commonly used 
for validation of MEDAE. All datasets contain user metadata such as gender, age, occu-
pation, and zip code. To test and validate the proposed approach, the system comprises 
of CPU with Intel Core 8th generation and NVIDIA RTX 3080 graphics. The experi-
ment is done on UBUNTU 20.04 and uses Python 3.7 version with Keras. Further, we 
split the data into random 90%–10% train-test sets, and hold out 10% of the training set 
for validation. We used a fixed random_state = 999,613,182 for reproduction. When we 

(10)r̂ui = f
(

WTz + b̃
)

= W̃Th
(

WTr̃u + Xu + b
)

+ b̃ = W̃T (
∑

r̃uiW + Xu)

Algorithm 1: Algorithm for MEDAE model
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use train_test_split from sklearn, it is possible that reviews of one user are all split into 
one the training or test set and cause bias to avoid this we use Stratify with user_id. For 
example, if all the reviews of user ‘A’ are put into the training set, then during test time, 
there is no test data for this user. The test RMSE will be 0 for user ‘A’. On the other 
hand, if all reviews are put into test set, then there is no review for this user during train-
ing time and cause the RMSE higher.

5.2 � Performance metrics

We adopt two standard evaluation protocols that is the root mean squared error (RMSE) 
and mean absolute error (MAE) to measure the prediction error of the proposed approach. 
A low RMSE or MAE value indicates better results. The RMSE and MAE [69] are defined 
as follows:

5.3 � Techniques compared and results

Autoencoder [70]  has been widely adopted into Collaborative Filtering (CF) for recom-
mendation system. A traditional CF problem is inferring the missing rating in an M × N 
matrix R where Rij is the ratings given by the ith user to the jth  item. The experimental out-
comes are compared with baseline techniques discussed in Sect. 5.3.1.

5.3.1 � Techniques compared

The performance of the MEDAE model is compared against the following baseline models:

•	 RBM [71] Restricted Boltzmann Machine is a two-layer deep learning architecture that 
can be applied in RS.

•	 AutoRec [7] A novel AE model for collaborative filtering that has significantly improved 
the performance over RBM.

•	 Deeprec [6] is a deep AE based collaborative filtering; which introduce the deeper archi-
tecture for modelling the CF.

•	 CDAE [9] is a collaborative denoising AE for a Top-N recommendation
•	 SSAERec [72] It is a deep CF model that uses a stacked sparse AE into MF.
•	 NCF [22]: Neural collaborative filtering uses matrix factorization and multi layer Percep-

tron for finding the prediction task of recommender system.
•	 MEDCF [35]: Metadata embedding into deep collaborative filtering (CF) to improve the 

performance of CF based recommender system.

(11)RMSE =

√

1

T

∑
(

rui − r̂ui
)

(12)MAE =
∑

(

rui − r̂ui
)

T
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•	 DeepNMF [40]: it uses non-negative embedding features into the input layer of deep neu-
ral architecture to handle the prediction task of collaborative filtering.

•	 MEDCRS [41]: It embedded item metadata into the deep architecture of collaborative rec-
ommender system (CRS) to enhance the performance of CRS.

5.3.2 � Results

Here, we discuss the quantitative analysis of the results in terms of Root Mean Square 
and Mean Absolute Error as discussed in Sect. 5.2 of the MEDAE model along with 
the state-of-the-art models.

Table 3 shows the quantitative result comparison of the MEDAE model and state-
of-the-art models on MovieLens datasets.

Table 3   Performance comparison 
of MEDAE and benchmark 
models on MovieLens (ML) 
datasets

The proposed model (MEDAE) improves the prediction task due to 
the embedding of contextual information of the user by at least 2% and 
2.2% compared to the state-of-the-art model in Tables 3 and 4, respec-
tively

Method ML-100 K ML-1 M

RMSE MAE RMSE MAE

Autorec [7] 0.995 0.768 0.923 0.735
RBM [71] 0.965 0.738 0.874 0.686
Deeprec [6] 0.922 0.722 0.871 0.681
CDAE [9] 0.964 0.758 0.917 0.723
SSAER [72] 0.912 0.723 0.847 0.672
NCF [22] 0.931 0.728 0.868 0.669
MEDCF [35] 0.908 0.718 0.851 0.673
DeepNMF [40] 0.917 0.725 0.903 0.711
MEDCRS [41] 0.889 0.705 0.845 0.664
MEDAE 0.872 0.692 0.837 0.658

Table 4   Performance comparison 
of MEDAE and benchmark 
models on Amovies dataset

The proposed model (MEDAE) improves the prediction task due to 
the embedding of contextual information of the user by at least 2% and 
2.2% compared to the state-of-the-art model in Tables 3 and 4, respec-
tively

Methods RMSE MAE

Autorec [7] 0.916 0.734
RBM [71] 0.892 0.691
Deeprec [6] 0.879 0.676
CDAE [9] 0.857 0.667
SSAER [72] 0.806 0.624
NCF [22] 0.808 0.629
DeepNMF [40] 0.815 0.632
MEDCF [35] 0.753 0.602
MEDAE 0.731 0.583
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It is found from Table 3 that the proposed model significantly improves the RMSE 
over the baseline models. That is MEDAE model improves the 4% and 2% of RMSE 
compared to the previous best model on ML-100 K and ML-1 M datasets respectively. 
We believe that MEDAE learns more features by embedding the metadata with the 
help of a deep autoencoder, hence the prediction task of the collaborative recom-
mender system.

Similarly, Table 4 shows the performance comparison of MEDAE model with the 
baseline models. It is found that MEDAE model is improved RMSE of 2.2% and MAE 
of 2% over the best model i.e., MEDCF. Moreover, our model significantly outper-
forms compared to the baseline model due to embedding the metadata of users through 
the deep architecture of AE.

Further, we conducted the experiment with an average rating and zero as the default 
rating. It is observed that, when the model goes deeper, the zero default rating con-
verged faster and with less noise. However, when we take a look at the loss graph 
depicted in Fig. 4 the gap between training and validation is larger in the zero default 
setting. This means when we use zero as the default rating, the model is easier to 
overfit.

5.3.3 � Effect of batch size

Next, we verify the effectiveness of various batch sizes on the model performance 
as shown in Fig.  5. It can be noted that with increasing the batch size of the model 
improves the prediction accuracy significantly in terms of RMSE. Whereas Over-fit-
ting may result from batch sizes that are too high, but too-small batch sizes may lead 
the network to converge slowly.

5.3.4 � Effect of dropout

We examine the effect of different dropout ranging from 0.2 to 0.8 with a batch size of 
256 and epochs of 500, experimenting the model with SBS architecture of n, 128, 256, 
512, 256, 512, n. That is three layers in the encoder (128, 256, 512), a coding layer of 
512 and three layers in decoder of 256, 512, n. However, we found that the model with 

Fig. 4   MEDAE model loss in 
terms of training and validation
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this architecture, quickly over-fits if trained without regularization. To overcome this, 
we trained the model with several dropout values ranging from 0.2 to 0.8 and, interest-
ingly, we found that the dropout rate of 0.8 gives the best among all. Figure 6 shows the 
performance of dropout probability w.r.t RMSE.

5.4 � Result analysis/ Discussion

In this paper, we analyze the result in terms of following research questions (RQ):

RQ1: Does the MEDAE outperform state-of-the-art CF methods in terms of predic-
tion accuracy?
The MAE and RMSE outlined in Table 2 reveals that the MEDAE model obtained 
the lowest MAE and RMSE value; hence our model outperformed the baselines on 
all datasets. This is because MEDAE incorporates metadata of users such as age, 
gender, and occupation to learn more features for obtaining the interaction of user-
items. Whereas Autorec, RBM, Deeprec, and CDAE have not considered any auxil-
iary information. Compared to the AutoRec, RBM, and Deeprec baseline approaches, 

Fig. 6   Effects of dropout. The model with a 0.2 dropout clearly shows a worse result. While MEDAE with 
drop probabilities of 0.6 and 0.8 result in RMSE of 0.8709 and 0.8569 respectively

Table 5   Comparison of MEDAE with different architectures

Architectures Shape (depth) No.of parameters Test RMSE Train RMSE

[512, 256, 512] BSB (3) 4.3 M 0.856 0.746
[512, 256, 128, 256, 512] BSB (5) 4.4 M 0.869 0.827
[256, 512, 256] SBS (3) 2.3 M 0.857 0.760
[128, 256, 512, 256, 128] SBS (5) 1.3 M 0.868 0.840
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MEDAE has a 12.26%, 9.23%, and 4.93% improvement of RMSE value respectively 
on ML-100  K. Whereas our model improves RMSE of 9.03%, 4.13%, and 3.83% 
compared to AutoRec, RBM on ML-1 M. Compared to the other baseline recommen-
dation approach, MEDAE obtained better outcomes.
RQ2: Is the depth of the model architecture affects the performance of the model?
To justify the impact of the model architecture on the performance of the model, we 
conduct the experiment by considering different architectures as shown in Table 5 of 
the MEDAE model. We found that adding more layers will not help for both small-big-
small (SBS) and big-small-big (BSB) shape rather the model gets over-fitted. Therefore, 
in our experiment, we consider SBS (3) because it produces fewer parameters to train a 
model and can mitigate over-fitting.
RQ3: How does the activation function affects MEDAE?
Similarly, to the impact of activation function on MEDAE, we conducted the experiment 
by considering different activation functions and the result as shown in Table  6 It is 
noticed that the MEDAE model obtains better results for a combination of SELU + ELU 
activation functions at the same time the default rating is set to average.

6 � Conclusion and future work

In this paper, we propose a metadata embedding into deep Auto Encoder (MEDAE) archi-
tecture to enhance the prediction task of collaborative filtering. Specifically, we designed 
different architecture that is SBS and BSB with different depth such 3 and 5 of MEDAE. 
At the same time, we consider average rating as default rating along with ELU and SELU 
activation function. The MEDAE receives an aggregate feature of item, user and metadata 
of user and obtain the rating prediction task of a collaborative filtering-based recommender 
system. To know the effectiveness of the MEDAE model we conduct several experiments 
on Movielens datasets and observed that the MEDAE model with SBS (3) structure and 
SELU + ELU activation function outperforms the baselines at least 4%.

Further, we will be extended the model by considering other auxiliary information 
such as knowledge base and temporal information. This information gains more attention 
in user’s preference and makes better personalization. Similarly, we only considered the 
historical rating information along with the metadata of the user. Whereas we do not con-
sider the short and long-term preferences of users. Therefore, this model can be extended 
by embedding the contextual state of long and short-term preference is another domain to 
enhance the personalization of the recommender system.

Table 6   Comparison of MEDAE 
with different architectures

Default Rating Activation Function Test RMSE Train RMSE

0 ELU, ELU 0.856 0.746
Average ELU, ELU 0.869 0.827
Average SELU, ELU 0.857 0.760
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