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Abstract
The presence of small lesions is an important marker for determining whether a patient
will develop malignant tumors. Clinical practitioners could easily overlook the presence of
small lesions, meaning automated approaches are essential for screening test results. The
use of deep learning-based detectors for this purpose has so far been suboptimal as small
lesions easily lose the spatial information during the convolution operation, resulting in
unsatisfactory detection accuracy and limited application in clinical decision making. In
this paper, we propose a Cyclic Pyramid-based Small lesion detection Network (CPSNet),
which iteratively enhances the features in the parallel layer of the Feature Parallel Network
(FPN), the features learned in the loop are fused again with the initial FPN to compensate
for the inadequacy problem in the initial training. In addition, we propose an aggregated
dilation block (ADB) to capture small variations at different scales and a global attention
block (GAB) to adaptively recalibrate the channel-based feature responses while focusing on
the target spatial information and highlighting the most relevant feature channels. Extensive
experiments on eight organs included in the DeepLesion dataset show that our method has a
high detection accuracy(mAP=60.4) and a high overall sensitivity(80.5%), which is superior
to the state-of-art methods.

Keywords Deep lesion detection · Cyclic feature pyramid · Attention mechanism ·
Dilated convolution · CNN

1 Introduction

The number of deaths caused by malignant tumors has increased year by year (https://www.
ncc.go.jp/en/contact/index.html). Consequently, it is important that potential tumors are dis-
covered at an early stage so that effective diagnosis and treatment can occur. Computer-aided
diagnosis such as that available through imaging is an effective and common method for
detecting cancer. Clinical practitioners use images from tests such as Computed Tomography
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(CT) andMagnetic Resonance Imaging (MRI) to judge the existence of tumors based on their
medical knowledge and relevant laboratory report datar [1, 2]. However, it is not only oner-
ous for clinical practitioners to conduct the massive task of analyzing CT and MRI images
to detect potentially cancerous lesions, but the accuracy is affected by the experience and
ability of the individuals who are performing this task. To improve this situation, previous
research has focused on effectively automating and standardizing the detection of lesions in
CT images to alleviate the burden on clinical staff and achieve a higher diagnostic accuracy.
However, it is still difficult to effectively identify potentially cancerous small lesions in the
human body.

While there have beenmany attempts in the field of computer vision and image recognition
to use object detection techniques to detect potentially cancerous lesions [3, 4]. Recently,
prior methods have been developed for lesion detection. Tao et al. [5] introduced a dual-
attention mechanism to utilize 3D contextual information. A deep anchor-free one-stage
volumetric lesion detector (VLD) [6] incorporates pseudo-3D convolution to recycle the
architectural configurations and pre-trained weights from the off-the-shelf 2D networks. Li
et al. [7] designed a Slice Attention Transformer (SATr) block that can be easily embedded
into backbone to form hybrid network structures. Although these 3D methods have been
greatly improved, they bring huge computing costs due to utilizing 3D volumes or multiple
consecutive slices. Besides, it is difficult to obtain a high-quality 3D lesion detection dataset
annotated by veteran radiologists. By contrast, the applicability of 2D detectors is more
flexible. CenterNet++ [8] is a bottom-up detection method, which detects each object as
a triplet keypoint, which can locate objects with arbitrary geometry and perceive global
information. By decomposing the features into different frequency bands using learnable
wavelets, FEDER [9] can solve the problem of intrinsic similarity between foreground and
background.However, the abovemethods easily ignore small lesions due to feature interaction
is insufficient. Although Liu et al. [10] improved small lesion detection performance by
deepening the backbone network and selecting more size anchors, the performance is still
suboptimal for small lesion detection in terms of insufficient feature representation.

To fuse more semantic information upon the feature pyramid, we deepened the network
based on ResNet-101. After up-sampling, the output of residual blocks on each layer was
fused with the high-resolution topographic map to preserve as much spatial and semantic
information as possible at different scales. Subsequently, the backbone was improved by
iteratively enhancing the features of the parallel layers of the FPN as part of the input features,
and the features learned in the loopwere fusedwith the initial Feature Parallel Network (FPN)
again. A Multi-scale Response (MSR) block was implemented to facilitate lesion detection
across fine granularity. In theMSR, anAggregateDilationBlock (ADB) andGlobalAttention
Block (GAB) were combined to further increase the receptive fields of top-down paths in
the feature pyramid using regional correlations in each pyramidal feature generation block,
which were focused on different lesion responses in the feature map. Experiments show that
the accuracy of our network significantly improves o the original two-stage network. The
main contributions of this work can be summarized as follows:

1) A cyclic learning method is proposed to address the problem of inadequate training
of focal feature information in one-way learning during the training process of object
detection network.

2) An Aggregated Dilation Block (ADB) is proposed to alleviate the shortcomings of the
low-resolution feature layer in the network due to the large receptive field and fuzzy
features of small lesions.
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3) The Global Attention Block (GAB) is designed to reduce the influence of background
noise and highlight the foreground features, which is effective for detecting obscure
objects at different scales.

2 Related work

In this section,we introduce several representative deep object detection frameworks and their
characteristics. Then, works about dilated convolution are introduced to enlarge receptive
field. Finally, we list attention mechanism methods and summarize their drawbacks.

2.1 Object detection

The first two-stage detector R-CNN was proposed by Girshick et al. [11] by integrating
segmentation algorithms [12, 13] into AlexNet [14], which classified each candidate loca-
tion on the generated region proposal. Yang et al. [15–17] designed fusion operations and
improved the ability of context-aware by incorporating 3D adjacent slice information. To
better model long-distance feature dependency, Li et al. [7] introduced a plugand-play trans-
former block to form hybrid backbones. Meanwhile, one-stage detectors [18, 19] have been
proposed to implement real-time object detection in recent years. Zhao et al. [20] proposed
the MVP-Net, which is a multi-view FPN with a position-aware attention mechanism to
assist universal lesion detection. Liu et al. [10] made improvements to the original YOLOv3
by data augmentation, feature attention enhancement and feature complementarity enhance-
ment. CenterNet++ [8] detected each object as a triplet keypoints, which enjoys the ability
in locating objects with arbitrary geometry and to perceive the global information within
objects. In summary, two-stage detectors show excellent performance while single-stage
network has a great advantage in speed.

2.2 Dilated convolution

Networks [14, 21, 22] reduce the resolution of input images by successive down-sampling
layers as a solution to obtain global predictions with sufficient semantic representation.
However, tasks like object detection require higher resolution output in order to identify
and localize object instances. Recently, methods involving dilated convolution [23, 24] have
shown better performance in the object detection task with the aim of extracting image
features over a larger perceptual field without loss of resolution. Yu et al. [23] developed
an extended convolution-based module that combines multi-scale contextual information for
semantic segmentation. DeepLabs [25, 26] proposed a module using cascaded or parallel
extended convolution to further improve the performance of target segmentation on multiple
scales. By setting different dilation rates, contextual information at multiple scales could be
captured. In order to expand the perceptual fieldwhilemaintaining the spatial dimension of the
featuremap, the backbone network of DetNet [27] uses expanded convolution to significantly
improve the detection accuracy of large objects. Although the methods mentioned above all
use dilated convolution to increase the size of the perceptual field, our proposed ADBmodule
makes full use of multiple branching dilated convolution outputs to enhance the detection of
multiple scale lesions better.
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2.3 Attentional mechanism

In artificial neural networks, the attention mechanism generally refers to focused attention
to improve the efficiency of the network. Bahdanau et al. [25] utilized an attention-like
mechanism to simultaneously translate and align machine translation tasks, allowing the
application of attention mechanisms to the field of natural language processing. Cheng et al.
[26] proposed intra-attention to focus on all positions in a sequence to obtain a response at
a position in the sequence. Vaswani et al. [28] further argued that machine translation mod-
els can achieve superior performance through self-attentiveness. Nonlocal neural network
(NLNet) [29] was designed to model pixel-level pairwise relations with an attention mecha-
nism. Based on NLNet, Zhang et al. [30] proposed a Self-Attentive Generative Adversarial
Network (SAGAN) that allows attention-driven remote dependencymodeling for image gen-
eration tasks. Additionally, [31] obtained the feature weights of each channel in the feature
map by global average pooling, which enables the model to give different attention to each
channel in the feature map. Most of the above approaches recalibrate the feature maps by
assigning attention weights or focus only on the location information of the object, without a
comprehensive combination to increase the semantic attention and location attention to small
objects.

3 Methods

The structure of proposed framework is illustrated in Fig. 1. We respond to the difficulty of
small lesion detection with a series of improvements. Many small lesions are not obvious in
CT images,we thusmake themclearer throughmathematicalmorphology.Additionally, since
the network is one-way learning during training, there is inadequate training of lesion feature
information. By using a cyclic pyramid structure, the network can recursively learn feature
information (Section 3.2). Since the network is unable to actively learn the lesion region, we
then feed the output features of each Res-Block layer into the MSRmodule (including ADB,
GAB) to enhance the network’s ability to actively focus on the lesion region (Sections 3.3 and
3.4). The output of the MSR is subsequently fed into the RPN, and the network undergoes
Softmax loss (detection of classification probability) and Smooth L1 loss (detection of frame
regression) to train classification probability and bounding box regression.

Fig. 1 The framework of the proposed lesion detection method
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3.1 Feature extraction network

Faster R-CNN [32] is a classic two-stage object detection algorithm. Our algorithm, based on
Fast R-CNN introduces the RPN, a region proposal box generation algorithm, which greatly
improves object detection speed. The detection part is divided into four steps: i) input the
whole image into CNN for feature extraction; ii) generate the anchor box by RPN; iii) the
RoI pooling layer makes each RoI generate a feature map with a fixed size; iv) Softmax Loss
and Smooth L1 Loss are used for classification and Bounding box regression, respectively.

In a traditionalConvolutionNeuralNetwork (CNN), the featuremapgoes throughmultiple
down-sampling operations from the input network to the output process, and the spatial
information reduces as the network deepens, which means that the features are no longer
recognizable and thus leads to poor detection of small objects by the traditional CNN.

To address this issue, the backbone is deepened to enhance the network’s ability to extract
richer semantic information. Conv2_x, conv3_x, conv4_x, conv_x, conv6_x, and conv7_x
blocks are used to build the feature pyramid, the corresponding layers of which are P2, P3,
P4, P5, P6 and P7. The corresponding bottom-up feature maps are convolved by 1× 1 kernel
to reduce the number of channels. Feature maps from P2-P4 can help the network find and
locate small lesions. With the deepening of the network, information from small objects
will be dismissed because of the down-sampling operation. Conv6_x and onv7_x help to
bring deep semantic information into the higher resolution feature map in the upper layer, by
improving the feature extraction capability of the backbone, and fuse with the upper layer
feature map after up-sampling when constructing FPN.

3.2 Cyclic feature pyramid network

Since the one-way learning of the object detection network in the training process provides
inadequate training of focal feature information, a cyclic learning approach is proposed to
provide secondary learningof the image featuremap.Through this repeated learning approach
effective features that have not been fully learned are extracted. The Cyclic Feature Pyramid
(CFP) architecture consists of three parts: a principal backbone and two auxiliary FPNs (F1,
F2), as shown in Fig. 2. Among them, the backbone consists of ResNet with each stage
consisting of several convolutional layers, and the two auxiliary FPNs are composed of the
same Feature Pyramid built based on the backbone.

Fig. 2 The structure of CFP based on the proposed MSR module
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In a traditional convolution network with only one backbone, the i_th stage takes the
output (xi ) of the previous ith stage as input, and we denote the bottom-up i th stage by Hi ,
this process can be expressed as formula (1):

xi = Hi (xi−1), i ≥ 2 (1)

In contrast, in CFP, we have innovatively adopted an auxiliary FPN (F1) to strengthen the
backbone by iteratively feeding the output features of the feature pyramid (F1) as part of the
input features to the backbone of the network in a stage-by-stage manner. More specifically,
the input of the i-th stage of the backbone is a fusion of the output of the previous i − 1 th
stage of the backbone and the i th stage features of the parallel FPN. Where, ∀i ∈ {1, . . . , I },
fi denotes the i th feature output of RFP is shown in the following equation:

fi = Fi ( fi+1, xi )

xi = Hi (xi−1, fi )
(2)

where Fi denotes the up-sampling and feature fusion operations in the i th stage of the
backbone corresponding to the feature pyramid. CFP is a network architecture implemented
based on this recursive iterative operation,∀i ∈ {1, . . . , I } ,∀i =∈ {1, . . . , S}, c = 1, . . . ,C :

fc,i = Fc,i ( fc,i+1, xc,i )

xc,i = Hc,i (xc,i−1, fc−1,i )
(3)

where C is the count of unfolding iterations, and we use the superscript c to denote the c-th
operation in the unfolding step. Based on this, we improve the ResNet backbone to allow
it to use both the front layer input x and the parallel layer feedback f of the FPN as input
features.

For the object detection task, we first build feature pyramids F1 and F2 based on the P2-
P7 layers of the backbone. The features in each layer of the F1 pyramid are fused from the
previous feature layer after up-sampling and the backbone parallel layer features, we feed
it into the original backbone parallel layer to learn again, so that the wrong information in
the backpropagation of the object detection can be relearned and adjusted in time when it
is passed in the second cycle, while the features of the lesion area are relearned through the
cyclic pyramid structure to strengthen the sensitivity of the network to lesion features.

3.3 Aggregated dilation block

In the process of generating feature pyramids based on residual blocks, the imbalanced
problem between spatial and semantic information appears. To this end, we build a feature
pyramid network constructed by multiple scale output of res-block in the top-down pathway.
Dilated convolution is introduced in the ADB module by using a multi-branch structure to
adapt to the receptive field of feature maps with multi-scales through different dilation rates.
In each parallel dilated convolution branch, the feature map is enhanced by the cascade con-
volution kernels with different dilation rates. After the convolution of each layer, the output
is non-linearized by the activation function to prevent gradient explosion and bring more
differential representations for feature transformation. To some extent, weighted combina-
tions in the multi-branch dilated convolution process could eliminate the noise left behind
in low-resolution images. Then the output features of each branch with the original image
are concatenated and get an aggregated feature map. The feature map output by the ADB
module has a larger receptive field.
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In ADBmodule, f ∈ RW×D is used to describe the architecture of this module, whereW
and D represent the width and depth of ADB, respectively. The dilation rate of specific layer
in ADB is expressed as fi j , where i = 1, 2...,W and j = 1, 2, ..., D represent the index of
width and depth, respectively. The aggregated dilated operation is shown as follows:

F(x) =
W∑

i=1

Ti (x | fi1, fi2, . . . , fi D) (4)

where Ti(x) represents the cascade-transformation.
As shown in Fig. 3, the parallel structure branch inside the ADB module is connected

in series with convolution kernels with different dilation rates, and the output multi-scale
feature map restores more detailed spatial information of the instance. It also provides more
long-range context information for the construction of a feature pyramid. The receptive field
of each layer is expressed as follows:

Ai0 = 1 (5)

k̄i j = ki j + (
ki j − 1

) × (
fi j − 1

)
(6)

Ai j = ri, j−1 × ki j − (
ki j − 1

) ×
⎛

⎝Ai, j −
j−1∏

k=1

sk

⎞

⎠ (7)

where Ai j denotes the receptive field, ki j denotes the kernel size and represents sk the stride.
From the formulas, the size of the receptive field extracted by the convolution kernel with

different dilation rates is also different. Usually in the feature extraction network, that is, in the
backbone, dilated convolution helps us identify the large object from the enlarged receptive
field [27]. However, we add dilated convolution follows the output of the feature pyramid,
expecting to provide more context spatial information to improve the detection accuracy of
small lesions.

conv 1x1

conv 1x1

conv 1x1

softmax

LN Re
LUF a
vg

F1(x)

F2(x)

F3(x)

1x1xC

1x1xC/r

1x1xC

MSR
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Position Attention Channel Attention

Wv1 Wv2

Fig. 3 The structure of MSR module. The detailed architecture of the Multi-Scale Response (MSR) module
consists of two parts: Aggregated dilated block (ADB) in the blue box and Global attention Block (GAB) in
the orange box
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3.4 Global attention block

The traditional attention mechanism allows the network to focus on the object region during
the training process, but during the learning process for small objects, the spatial information
of the object will be lost at a deeper level with the down-sampling effect of the network, and
the effect of the attention mechanism disappears at that time.

Based on this deficiency, we propose a Global Attention Block (GAB), which allows the
network to focus more on spatial features as well as channel features. Each GAB consists
of two parts: a spatial attention block and a channel attention block. Object detection needs
to be extremely sensitive to changes in spatial location, so our proposed spatial attention
block uses a self-attentive mechanism to model remote dependencies which enhances the
network’s global understanding of the visual scene. In addition, inspired by SENet [31], a
channel attention block is introduced,which aims to focus on the feature informationwe need.
The input feature map x is converted into three paths: F1, F2 and F3, whereFh(x) = Whx ,
∀h ∈ {1, 2, 3}. Firstly, obtaining the attentionmap of the long-range correlation between each
position in the feature map through Si j , where Si j = F1 (xi )T ⊗ F2

(
x j

)
. Si j is transformed

into Ai j by so f tmax , where Ai j = so f tmax(si j ) represents the relationship between the
position of i and j in the feature map, and then Ai j and F3 are multiplied to query the
response relationship between pixels on the feature map.

zi =
H×W∑

j=1

Ai, j ⊗ F3
(
x j

)
(8)

where i and ⊗ denote the index of query position and matrix multiplication, respectively.
After the spatial attention block,we compress the global information into channels through

global average pooling, the main difference between the SE block and GAB is the fusion
module, which reflects the goals. The SE block uses re-adjustment to re-calibrate the impor-
tance of the channel, but it does not fully simulate the long-range correlation. The long-range
correlation is captured by using addition to aggregate the global context to all positions. The
detailed architecture of the GAB is formulated as follows:

yi = xi + Wv2 ReLU (LN (Wv1z)) (9)

where, Wv1 ∈ R
C
r ×C ,Wv2 ∈ RC× C

r In order to obtain the lightweight attribute of the
channel attention block, the parameters of the module are changed from C to C/r. Where r
is the bottleneck ratio, setting r too large will lose feature information, while too small will
consume a lot of computation, so it is necessary to strike a balance between two costs, and
we found when r = 4, the model performs best.

4 Experiments

4.1 Dataset

The DeepLesion dataset is the largest open dataset of multi-category, lesion-level labeled
clinicalmedicalCT images ever published by theNIHClinicalCenter.By training deep neural
networks on this dataset, it will be possible to obtain a large-scale universal lesion detector that
can more accurately and automatically measure the size of all lesions in the patient’s body,
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allowing initial assessment of cancer system-wide. The dataset contains 32,735 labeled lesion
instances from 4,427 independent, anonymous patients. The dataset covers a wide range of
lesions involving the lung (LU), liver (LV), mediastinum (ME), kidney (KD), pelvis (PV),
bone (BN), abdomen (AB) and soft tissues (ST). We used 70% samples of the dataset for
training, 15% for validation, and 15% for testing.

Traditional image pre-processing operations only flip, offset and crop the image, but this
does not help for detection of small objects. The features of small lesion regionsmust become
larger and sharper to be more easily detected. Therefore, we took advantage of binary image
processing. By constructing corresponding mathematical morphological structure elements
suitable for the DeepLesion dataset, the maximum and minimum areas can be efficiently
found in the image, and the noise in the CT scan can be reduced making the lesion more
visible. The DeepLesion dataset, is roughly divided into two categories: dark background
with light lesion areas and the opposite, of which we selected example CT images of the
lung and liver organs. Figure 4 shows the images obtained after different morphological
processing methods on light and dark representations of tumors. In CT images with a dark
background, the expansion operation enlarges the lesion area and facilitates network detection
of small lesions, while in images with a light background, the tumor part of the image
after erosion processing not only becomes larger, but also retains a large amount of texture
information.

4.2 Evaluationmetric

We chose two evaluation metrics in our subsequent ablation and comparison experiments.
One metric is mean Average Precision (mAP) when Intersection over the Union threshold
= 0.5, which is used to measure object detection accuracy. Another metric is the average
sensitivity values at different false positive rates (FROC) of the whole testing set.

4.2.1 Mean average precision

TheAverage Precision (AP) is defined as the approximate area under the precision-recall (PR)
curve of a certain class. Hence, mean Average Precision (mAP) is the mean value of APs
added up by each class. For single-class detection tasks, mAP is equal to AP. The all-points
interpolationmethod, suggested by PASCALVOC2012 and extensively adoptedwill be used

(a) (b) (c) (d) (e)

Fig. 4 Output of different colors tumors after morphological operations. Organs with representative light and
dark colors of lesions in the dataset are shown. Where, (a)-(e) represent the labeled image, erosion, dilation,
opening and closing respectively. First row is lung CT image and second row is liver CT image
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to scatter and finally draw the PR curve, the progressive recall value and its corresponding
precision value which should be calculated, according to all positive predicted boxes with
confidence score sorted fromhigh to low. The paired recall and precision values are calculated
from the current number of true positives (TPs) and false positives (FPs).

precision = T Ps

T Ps + FPs
= T Ps

All Detections

recall = T Ps

All Ground Truths

with P =
{
T P , if IOU(p,GT ) ≥ threshold
FP , if IOU (p,GT ) < threshold

(10)

where, I OU (p,GT ) stands for the intersection over union between certain predicted box p
and ground truth box GT, while the threshold is set to 0.5 by default.

AP =
1∑

r=0

(rn+1 − rn) ∗ pinterp (rn+1)

with pinterp (rn+1) = max
r̂ :r̂≥rn+1

p(r̂)

mAP = 1

Nc

Nc−1∑

c=0

APc

(11)

where, the middle equation indicates searching for the precision envelop at the right side of
recall point, to gradually obtain the final estimated area under the PR curve.

4.2.2 Sensitivity at various FPs per image

Different from the constant AP metric, another stricter metric we employ is the sensitivity
(recall) at various FPs per image. As its name implies, it is a metric to evaluate the capability
of detector under various strict levels. To implement this, one should set a different confidence
threshold, to distinguish positive samples from negative ones before doing non-maximum
suppression (NMS). For example, if the confidence threshold is set from 0.001 to 0.01, there
would be an increase of recall and a reduction in precision due to a change in TPs and
FPs (10). Hence, by continuously changing the threshold, we can obtain recall values under
different FPs per image. The metric fixes FPs per image (usually 0.5, 1, 2, 4 and 8), to see
whether the detector could find more true positives under the same fault tolerance.

4.3 Implementation details

Experiments were conducted on a Workstation with IntelCore i7, 2.7GHz CPU, 8GB RAM
under Ubuntu 18.4, and an NVIDIA GTX 2080 video processing card with 11GB memory.
We set training learning rate to 0.008 and training momentum to 0.9; the training batch was
128, the mini batch was 2; and the learning process was 12 epochs. The initialization weights
for P1-P5 are set according to the ImageNet pre-trained model. For the deepened network
part, we randomly initialize parameters. The input images are resized to 512 × 512. The
optimization algorithm was stochastic gradient descent (SGD), which took about 60 hours
to train our detector.
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4.4 Experimental results

4.4.1 Sensitivity at various FPs per image

In this section, we performed a comprehensive experiment to analyze the effective-
ness of the proposed method. Table 1 compared the detection results of Faster-RCNN
[32], Faster-RCNN+CFP, Faster-RCNN+CFP+ADB, Faster-RCNN+CFP+GAB and Faster-
RCNN+CFP+MSR on the DeepLesion dataset. As seen for the detection task on eight organs
in the dataset, Faster-RCNN+CFP with a cyclic pyramid structure gains some accuracy on
top of Faster-RCNN, with 6% improvement in mAP, which reflects that the idea of repeated
learning of features is necessary. On this basis, we added theADBmodule, andTables 1 and 2
show that themAP improved by 3.8 percentage points based on the recall improvement, espe-
cially for the AP improvement of small nodal organs is the most obvious, in order to prove
the effectiveness of ADB from several indicators, in Table 3 we have improved the Map by
the average sensitivity values at different false positive rates to demonstrate the effectiveness
of our module. From Figs. 5 and 6, by introducing PR Curve and FROC Curve, we can
visualize the effectiveness of our proposed CFP, ADB, and GAB module. Last, we show
the experiment of adding Global Attention Block (GAB), see the last row of Table 1, where
the fusion module of ADB and GAB are collectively called Multi-Scale Response (MSR), it
increased by more than 2%. In summary, the proposed method improves by 12% compared
to the original Faster R-CNN.

While the traditional detection method has a high accuracy for general detection, each
module presented here addresses the problem of insufficient detection of small objects in the
original model. The ADB module improves the sensitivity of multiple scales to the object
based on the global attention mechanism to focus on learning the small object features cap-
tured in the previous stage. The increase of mAP in Table 1, we can observe the effectiveness
of the MSR module, which helps improve the original network. From Fig. 7, it can be seen
that our proposed method has better results for all sizes of lesions under the premise of better
detection for small lesions.

The proposed network consists of four main components: Faster R-CNN, CFP, ADB and
GAB. In Tables 1, 2 and 3, Baseline denotes the original Faster R-CNN model, and Baseline
+ CFP denotes the method of circular pyramids mentioned in Section 3.2. To assess the
validity of each module, we performed ablation studies on the DeepLesion dataset. From
Table 1, we can see that the original model was improved by more than 12% on mAP. Based
on the coarse lesion types provided by DeepLesion for each CT slice, we calculated the AP
for each lesion type. Besides, the table shows that the AP values were increased by different
magnitudes for different sites. Table 3 shows the average sensitivity values for the entire test

Table 1 mAP and AP of each lesion type on the official split test set of DeepLesion

Methods Total BN AB ME LV LU KD ST PV

Baseline 0.484 0.524 0.391 0.512 0.549 0.582 0.419 0.436 0.368

Baseline+ CFP 0.541 0.525 0.508 0.544 0.556 0.589 0.435 0.445 0.411

Baseline+ CFP + ADB 0.579 0.529 0.531 0.559 0.571 0.667 0.522 0.465 0.527

Baseline+ CFP + GAB 0.560 0.527 0.534 0.554 0.569 0.644 0.520 0.451 0.509

Baseline+ CFP + MSR 0.604 0.542 0.539 0.575 0.577 0.665 0.538 0.476 0.541

Bold entries indicate the best performance
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Table 2 Recall and mAP on the
official split test set of
DeepLesion

Methods recall mAP

Baseline 0.836 0.484

Baseline+ CFP 0.849 0.541

Baseline+ CFP + ADB 0.851 0.579

Baseline+ CFP + GAB 0.841 0.520

Baseline+ CFP + MSR 0.869 0.604

Bold entries indicate the best performance

set at different false positives rates. Through comparison between different configurations,
the proposed method achieves the highest sensitivity at different false positives rates. We
plotted the FROC curves to make the results more intuitive, see Fig. 6.

4.4.2 Comparison with other methods

In this section, we compared our proposed detector with other state-of-the-art detectors
by comprehensively analyzing the detection accuracy tradeoff on the DeepLesion dataset.
Table 4 shows the detection sensitivity of each method at different FPs for each image.
Typical two-stage detectors, i.e.,MaskR-CNN [34],which have completely inferior detection
sensitivity per FP per image than ours. Other single-stage methods like RetinaNet [19] and
YOLOv3 [33], outperform our method in terms of detection efficiency, but our accuracy is
far superior to them. The most challenging counterparts are ULDor [35] and 3DCE [36],
which also use a two-stage pipeline in their network. ULDor [35] uses pseudo-masking and
hard negative example mining strategies to improve the accuracy. Unfortunately, it does not
give much attention to the issue of scale imbalance as well as attention mechanism, and they
cannot detect lesions well when the proposal is very similar in appearance to its surrounding
tissue, thus the result is still not as good as ours. In 3DCE [36], 3D contextual information
is introduced during training and testing than us. Most of these sliced feature maps can be
cached into memory and reused for the next inference. 3DCE [36] achieved the best results
among the differentmethods using 27 input slices. Its sensitivity at 8 FP per image (a common
comparison criterion) is 89.1%, while ours is 89.4%, indicating that the proposed detector
still performs better than this method, although we do not take the strategy of 3D context
enhanced strategy. Figure 8 shows the visual comparison of our proposed deep learning
network with the state-of-the-art proposed detection methods. To make the comparison more
intuitive, we draw the FROC curves of several methods at the top of Fig. 9, from which we
can see clearly that the sensitivity of our method is better than other methods.

Table 3 Ablation w.r.t.
Sensitivity(%) at various FPs per
image on the official split test set
of DeepLesion

Components 0.5 1 2 4 8

Baseline 0.531 0.635 0.730 0.814 0.850

Baseline+ CFP 0.546 0.657 0.739 0.820 0.867

Baseline+ CFP + ADB 0.614 0.682 0.767 0.841 0.876

Baseline+ CFP + GAB 0.630 0.701 0.752 0.857 0.866

Baseline+ CFP + MSR 0.661 0.754 0.831 0.883 0.894

Bold entries indicate the best performance
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Fig. 5 Ablation PR Curve on test
set of official split test set of
DeepLesion

The comparison of mAP and APs is shown in Table 5, and similar phenomena and trends
can be found. In particular, paper [36] proposed a detection method based on 3D slicing,
although it sacrificed a lot of time and resources in the training process, our mAP (60.4%)
was still much higher than its (54.4%). Secondly, our detector performed slightly worse than
3DCE with 9 slices in detecting lesions of mediastinum, but again had excellent realizations
on other sites. In conclusion, compared with other state-of-the-art detectors, our proposed

Fig. 6 Ablation FROC Curve on test set of official split test set of DeepLesion
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Fig. 7 Lesion detection results for sample CT images of various methods. Each row from top to bottom
represents the label image, our proposed method, Faster R-CNN, respectively

Table 4 Comparison of the proposed method with state-of-the-art methods on the DeepLesion test set

Methods FPs per image Average
0.5 1 2 4 8

RetinaNet [19] 0.458 0.542 0.625 0.698 0.742 0.595

YOLOv3 [33] 0.520 0.626 0.719 0.795 0.843 0.700

Mask R-CNN [34] 0.398 0.527 0.656 0.777 0.852 0.642

ULDor [35] 0.529 0.648 0.748 0.844 0.861 0.726

3DCE, 3, slices [36] 0.569 0.673 0.756 0.816 0.858 0.734

3DCE, 9, slices [36] 0.593 0.707 0.791 0.843 0.878 0.762

3DCE, 27, slices [36] 0.625 0.733 0.807 0.857 0.891 0.782

Liu et al. [10] 0.633 0.704 0.787 0.851 - 0.744

CenterNet++ [8] 0.648 0.739 0.799 0.868 0.883 0.787

DN-DETR [37] 0.652 0.732 0.808 0.869 0.898 0.792

ours 0.661 0.754 0.831 0.883 0.894 0.805

Lesion detection sensitivity values are reported at different false positive (FP) rates
Bold entries indicate the best performance
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Fig. 8 Visual comparison of our proposed deep learning network with state-of-the-art detection methods,
experimental results on DeepLesion dataset. From left to right, Ground Truth, RetinaNet, YOLOv3, Mask
R-CNN, ULDor and our proposed method

method has advantages in terms of detection accuracy and sensitivity, with the premise that
it performs well in detecting normal size lesions, it also meets the need for better detection
of small lesions in the medical field.

Our CPSNet shows better performance for medical lesion detection, especially for the
detection of small lesions.However, ourmethod embraces one shortcoming: theMSRmodule
introduces multi-branch dilatation convolution operators and attention mechanisms, which
undoubtedly increase the computing costs and reasoning time.

Fig. 9 FROC Curves of various methods
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Table 5 Comparison of the proposed method with state-of-the-art methods on the DeepLesion test set

Methods Total BN AB ME LV LU KD ST PV

YOLOv3 [33] 0.468 0.371 0.372 0.587 0.524 0.562 0.373 0.403 0.435

RetinaNet [19] 0.510 0.539 0.430 0.555 0.524 0.612 0.424 0.455 0.421

3DCE, 3 slices [36] 0.506 0.434 0.424 0.522 0.543 0.633 0.426 0.421 0.423

3DCE, 9 slices [36] 0.544 0.492 0.468 0.577 0.564 0.663 0.480 0.441 0.470

Ours 0.604 0.542 0.539 0.575 0.577 0.665 0.538 0.476 0.541

Lesion detection sensitivity values are reported at different false positive (FP) rates
Bold entries indicate the best performance

5 Conclusion

In this paper, we proposed a cyclic pyramid-based small lesion detection network to enhance
the detection of lesions on feature maps of different sizes. This encompasses an ADBmodule
to augment the detector’s awareness of feature map scale variation - providing finer size
estimates of the feature map to capture the response to scale under different receptive fields,
and a GAB module to effectively choose meaningful responses. Extensive experiments on
the DeepLesion dataset showed that: our CPSNet has a 60.4 mAP value and a 80.5% overall
sensitivity, which is superior to the state-of-art methods. Due to the fact that multi-branch
dilatation convolution operators and attentionmechanisms are introduced into our framework,
which decreases the reasoning speed. Thus, our future work is to designed amore lightweight
network through knowledge distillation. Besides, we also utilize Neural Architecture Search
NAS to explore a more suitable backbone architecture for lesion detection.
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