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Abstract
Underwater image enhancement has attracted much attention due to the rise of underwater 
vision research in recent years. In real-world underwater scene, the images are always with 
color distortion and low brightness and contrast because of light scattering and absorp-
tion, which hinders the practical applications of underwater images. To improve the quality 
of visual underwater scenes, in this paper, we introduced a Multi-Task Cascaded Network 
(MTNet) for underwater image enhancement, which contains three cascaded sub-tasks, 
namely color reconstruction task, contrast reconstruction task and content reconstruction 
task. For each task, the color loss, Hue Saturation Value (HSV) loss, Structure Similarity 
Index Measure (SSIM) loss and image gradient loss are employed to train MTNet in an 
end-to-end way. Furthermore, we design an Adaptive Fusion Module (AFM) to fuse the 
feature maps from different reconstruction task adaptively. To verify the performance of 
MTNet, we conducted the comparative experiments on both synthetic underwater images 
and real world underwater images. Experimental results show that our proposed method 
achieves better performance in both quantitative and qualitative evaluations.

Keywords  Multi-task · Deep learning · Underwater image enhancement · Adaptive fusion

1  Introduction

Recently, underwater image enhancement has become a research hotspot in underwater 
vision [1], which has a wide variety of applications in marine archaeology [2], marine 
biology and marine ecological [3]. Recently, autonomous underwater vehicles have been 
widely employed to explore and develop the marine resources. However, the visual quality 
of underwater images hardly meets the expectations because the quality of the underwater 
images can be degraded by a lot of adverse effects, such as light scattering and wavelength 
dependent light absorption [4–6], which limits the performance of autonomous underwater 
vehicles to understand the underwater scene, as shown in Fig. 1. Therefore, it is necessary 
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to develop effective methods to obtain higher quality underwater images for pleasant visual 
perception.

To address the above-mentioned problem, a lot of underwater image enhancement 
methods have been proposed and made notable progress. Traditional underwater image 
enhancement methods can be mainly classified into two groups: non-physical model 
based methods and physical model based methods. The former improves the quality of the 
underwater images by modifying the pixel value in the image. The latter builds a degrada-
tion model for the underwater images and obtains high quality images by estimating the 
parameters of the model. Recently, a variety of learning based underwater enhancement 
methods have been proposed and can be organized into two main categories: CNN-based 
methods and GAN-based methods. These learning-based approaches own powerful non-
linear expression ability and generalization ability, which have achieved leading results in 
underwater image enhancement tasks.

Although learning based underwater image enhancement methods have achieved 
rapid development, there is still much room for improvement. Firstly, most of the exist-
ing CNN-based methods fuse the features directly by concatenating or residual opera-
tions such as [7, 8] which can’t reflect the interdependencies of the features at different 
scales. Furthermore, the CNN-based underwater image enhancement methods usually 
apply SSIM loss, L1 loss, or perceptual loss to train the network, aiming to impose the 
texture, structure, content and semantics similarity on the predicted images. However, 

Fig. 1   Samples of raw underwater images and its corresponding ground truth. Top row: raw underwater 
images; Bottom row: the corresponding ground truth underwater images
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the degraded underwater images are always with color distortion and low contrast 
because of light absorption and scattering, these methods haven’t introduced specific 
color loss and contrast loss to correct the color casts and improve the contrast, which 
limits the enhancement quality of the degraded underwater image. Furthermore, the 
existing CNN-based underwater image enhancement methods have not simultaneously 
paid attention to the multiple factors that affect the visual perception of underwater 
images.

Given the above mentioned problems, in this paper, we proposed a Multi-Task Cas-
caded Network (MTNet) for underwater image enhancement, which contains three cas-
caded sub-tasks, namely color reconstruction task, contrast reconstruction task and con-
tent reconstruction task, as shown in Fig. 2. To correct the color casts, we introduced 
specific color loss to the color reconstruction task, which pays attention to the differ-
ence in colors between the images while eliminating texture and content comparison. 
To improve the contrast, we transformed the RGB color space to the HSV color space 
because the RGB color space can’t directly reflect the contrast and brightness of the 
underwater image. HSV loss is used to learning the mapping function of saturation and 
brightness. To learn the texture and structure similarity from the ground truth image 
and sharpen the predicted underwater image, SSIM loss and image gradient loss are 
used for content reconstruction. Furthermore, we introduce an Adaptive Fusion Mod-
ule (AFM) to fuse the feature maps from different reconstruction task. The comparative 
experiments are conducted on both synthetic underwater images and real world under-
water images. Experimental results show that our proposed method achieves better per-
formance in both qualitative and quantitative evaluations.

In summary, the main contributions of this paper can be listed as follows:

• We proposed a MTNet for underwater image enhancement, which contains three cas-
caded sub-tasks, namely color reconstruction task, contrast reconstruction task and con-
tent reconstruction task, aiming to reconstruct the color, the contrast and the content of 
the underwater image.

Fig. 2   The architecture of MTNet
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• In MTNet, AFM is designed to fuse the feature maps from different reconstruction 
task.
• To correct the color casts, we introduced specific color loss to the color reconstruction 
task, which pays attention to the difference in colors between the images while eliminat-
ing texture and content comparison. For contrast reconstruction, HSV loss is used to 
learn the mapping function of saturation and brightness. SSIM loss and image gradient 
loss are used to learn the content similarity.
• The comparative experiments are conducted on both real world underwater images 
and synthetic underwater images with both the full-reference and non-reference met-
rics. . Both the qualitative and quantitative experimental results show that our proposed 
method achieves better performance for underwater image enhancement.

The rest of the paper is organized as follows: Sect. 2 discusses the related works. Sec-
tion  3 introduces the design of MTNet and loss function in detail. Section  4 conducts 
comparative experiments on both synthetic underwater images and real world underwater 
images and analyzes the experimental results with quantitative and qualitative evaluation. 
Section 5 is the conclusion of this paper.

2 � Related works

Due to the importance of underwater image quality, a lot of underwater image enhance-
ment methods have been proposed in recent years. Existing approaches can be classified 
into the following categories.

2.1 � Non‑physical model based methods

Non-physical model based methods aim to produce high quality underwater images with-
out constructing any physical model by modifying image pixel values. The classical meth-
ods include White Balance (WB) color correction algorithm [9], gray world algorithm [10], 
Histogram Equalization (HE) algorithm [11] and fusion-based underwater image enhance-
ment algorithm [12, 13] improved the contrast and saturation of underwater images both in 
HSV color space and RGB color space. [14, 15] reduce the number of over enhanced and 
under enhanced regions by a Rayleigh-stretched process based on [13, 16] proposed a two-
step underwater image enhancement method which is used for image contrast enhancement 
and color correction. [17] applied Retinex algorithm to underwater image enhancement 
tasks, which consists of color correction, reflectance and illumination decomposition, and 
the enhancement of the reflectance and the illumination. [18] introduced an underwater 
image enhancement method via extended multi-scale Retinex. When non-physical model 
based methods are directly applied to the real underwater scene, there may be some prob-
lems such as color deviation and contrast deviation.

Image dehazing is close research area to the underwater enhancement. The image 
dehazing methods [19–23] are often used to enhance the quality of the underwater image. 
However, compared with the foggy image, the underwater image will suffer more serious 
distortion problems, such as reduced contrast and excessive blue-green. Therefore, the 
image dehazing methods fog removal method needs further improvement to achieve good 
results in underwater image enhancement tasks.
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2.2 � Physical model based methods

Physical model-based methods consider the image enhancement as an inverse problem, 
which constructs the underwater image degradation model and achieve image enhancement 
by estimating the parameters of the model. In 2006, [24] designed an adaptive filter to 
improve the underwater image quality based on the simplified Jaffe-McGlamery underwa-
ter model. [25] proposed to use Dark Channel Prior (DCP) and the wavelength-dependent 
compensation method to improve the visual perception of underwater images. [26] pro-
posed an Underwater Dark Channel Prior (UDCP) which can estimate the medium trans-
mission. Recently, [27] incorporated adaptive color correction to the model and proposed 
a Generalized Dark Channel Prior (GDCP). A Red Channel method is introduced in [28], 
which restores the colors associated with short wavelengths to recover the lost contrast of 
the underwater images. According to the relationships between inherent optical properties 
of water and the background color of the underwater images, [29] achieved better results 
for underwater image enhancement. According to the minimum information loss princi-
ple and optical properties of underwater images, [30] effectively improved the brightness 
and contrast of underwater images. Recently, [31] designed a physically accurate under-
water image formation model improved by [6] to correct the color of underwater images. 
These physical model-based methods follow the simplified image formation models which 
achieve good performance for simple scenes, but for complex actual underwater scenes, 
there is still visually unpleasing and unstable results.

2.3 � Learning based methods

Recently, deep learning has been widely employed in the field of computer vision. A 
variety of learning based underwater enhancement methods have been proposed because 
these learning-based approaches own powerful non-linear expression ability and gener-
alization ability. Learning based underwater enhancement methods can be organized into 
two main categories: GAN-based methods and CNN-based methods. [32]  introduced an 
underwater image enhancement model, called WaterGAN. WaterGAN first generates syn-
thetic training data from the in-air images and depth pairings. Then it uses a two-stage 
network to estimate the depth map and conducts color restoration. UWGAN [33] improved 
the WaterGAN and used Unet [34] to enhance the degraded underwater images. [35] pro-
posed UWCNN to reconstruct the clear underwater image with MSE and SSIM loss which 
is trained by ten types of synthetic underwater images. [36] introduced a new real world 
underwater dataset and designed a novel network called WaterNet, which takes the images 
generated by WB, HE and Gamma Correction as input. In [37], both RGB color space 
and HSV color space are applied to design the underwater image enhancement network 
UIEC^2-Net. More recently, an underwater enhancement network called Water CycleGAN 
[38] was proposed to improve the visual perception of the underwater images in a weakly 
supervised way. [39] introduced UGAN with simple structure using Generative Adversar-
ial Network, aiming to enhance the visual perception for autonomous underwater robots. In 
[40], a large scale underwater dataset was presented. What is more, the author proposed a 
conditional generative adversarial network which is suitable for real-time visually-guided 
underwater robots. The above-mentioned learning based underwater image enhancement 
methods have not taken into account the reconstruction of the color, the content and the 
contrast simultaneously.
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3 � Our approach

In this section, we will first introduce the structure of MTNet. Then, the details of each recon-
struction task and the design of AFM will be described. Finally, the design of loss function for 
each task will be described in detail.

3.1 � Network Architecture

As shown in Fig. 2, we divided the underwater enhancement into three cascaded sub-tasks, 
namely color reconstruction task, contrast reconstruction task and content reconstruction task. 
For each sub-task, an encoder-decoder network like Unet [14] is designed to achieve feature 
extraction and feature map reconstruction. Residual block is taken as the basic unit of the 
encoder-decoder network because it is helpful for the reuse of the features from different lay-
ers. For the encoder, 4 × 4 convolution with stride 2 is used to down-sample the input. For the 
decoder, we utilize transpose convolution to up-sample the feature maps, aiming to generate 
the output with the same size as the input SAR image. Each convolution is followed by a 
Leaky-Relu activation and Batch Normalization. To achieve feature fusion, skip connections 
are used to concatenate the feature maps in the encoder to the ones in the decoder.

For color reconstruction task, the color sub-network takes the raw underwater image as 
input. To correct the color casts, we introduced specific color loss to the color reconstruction 
task, which pays attention to the difference in colors between the images while eliminating 
texture and content comparison. The output of the color reconstruction sub-network is color 
map.

For contrast reconstruction task, the contrast sub-network is cascaded to the color sub-net-
work and takes the color map as input. To improve the contrast, we transformed the RGB 
color space to the HSV color space because the RGB color space can’t directly present the 
brightness and contrast of the underwater image. HSV loss is used to learning the mapping 
function of saturation and brightness. We referred to [37] to transform the RGB color space to 
the HSV color space. The output of the contrast reconstruction sub-network is contrast map.

For content reconstruction task, the content sub-network is cascaded to the contrast sub-
network and takes contrast map as input. To impose the texture and structure similarity on 
the predicted underwater image, SSIM loss is used for content reconstruction. What is more, 
to prevent producing blurry underwater images, image gradient loss is also introduced to the 
content.

As shown in Fig. 3, we design AFM to fuse the feature maps (color map, contrast map, 
content map) from different reconstruction task adaptively. To learn the importance of the 
feature maps from different sub-tasks, we first concatenate the color map, contrast map and 
content map in channel wise. Suppose xn

i,j
 and weightn

i,j
 are the feature and the weight in the 

position (i, j) at channel n. Three 3 × 3 convolutions are used to learn the mapping from xn
i,j

 to 
weightn

i,j
 . The channel of each convolution is 64, 64 and 9. Then we utilize softmax function to 

compute the learnable weight for each reconstruction task. The learnable weight of each task 
will meet the formulas (1) and (2).

where N represents the number of the feature maps in the network.

(1)
N∑

n=1

weightn
i,j
= 1
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weightn
i,j

 reflects the importance of the features for each reconstruction task. Therefore, the 
output enhanced underwater image can be represented by (3).

3.2 � Design of multi‑task loss function

The loss function of MTNet mainly consists of three sub-tasks, namely the color recon-
struction task, the contrast reconstruction task and the content reconstruction task.

For the color reconstruction task, to impose the color similarity on the predicted under-
water image, we applied Gaussian blur operator on the predicted and ground truth under-
water image to eliminate texture and content comparison and compute the L1 loss. Color 
loss can be computed by:

where X(⋅) represents the blurred images computed by a Gaussian blur operator, which can 
be written as:

where the Gaussian blur operator G(k, l) is written as:

(2)weightn
i,j
∈ [0, 1]

(3)
Output = weight[0 ∶ 3] × colormap

+weight[3 ∶ 6] × contrastmap

+weight[6 ∶ 9] × contentmap

(4)Lcolor = ‖X(
∧

Icolormap) − X(Icolormap)‖1

(5)X(I) =
∑

k,l

I(i + k, j + l) ⋅ G(k, l)

Fig. 3   The structure of AFM. reconstruction sub-task. The output of the content reconstruction sub-network 
is content map
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where A = 0.053, �x,y = 0 , �x,y = 0.
For the contrast reconstruction task, to further improve the contrast and saturation of 

the predicted underwater images, we transform RGB color space to HSV color space and 
compute the HSV loss as follows:

where H, S and V are the hue, saturation and value in the HSV color space, H ∈ [0, 2�) , 
S ∈ [0, 1] , V ∈ [0, 1] . With HSV loss, the luminance, saturation and color of the under-
water images can be refined through value-channel, saturation-channel and hue-channel, 
respectively.

For the content reconstruction task, we first apply SSIM loss to impose the texture 
and structure similarity on the predicted underwater image. The SSIM value is computed 
within a 11 × 11 patch for each pixel in the image as the following formula.

where �I(x) and �∧

I
(x) are the mean of predicted content map and the ground truth underwa-

ter image; �I(x) and �
∧
I

(x) are the standard deviation of predicted content map and the 
ground truth underwater image; �

I
∧

I
(x) represents the cross-covariance; c1 and c2 are set to 

0.02 and 0.03, respectively.
Then, the SSIM loss can be computed by

where N indicates the number of the underwater images of each batch.
To prevent producing blurry underwater images, we also introduce image gradient loss 

to the content reconstruction sub-task.

where IP and IG are the output content map and the ground truth underwater image.
According to the formula (3), we can get the predicted enhanced underwater image. To 

ensure our predicted enhanced underwater image are enough close to the real underwater 
images, we use L1 loss to preserve overall similarity, which can be represented as:

where Î and I are the predicted enhanced underwater image and the ground truth underwa-
ter image.

To preserve the semantic information, we also introduce the perpetual loss. The per-
petual loss is defined based on VGG network, which can be computed by

(6)G(k, l) = A × exp(−
(k − �x)

2

2�x
−

(l − �y)
2

2�y
)

(7)LHSV = ‖
∧

S
∧

V cos(
∧

H) − SVcos(H)‖1

(8)SSIM(x) =

2�I(x)�∧

I
(x) + c1

�2

I
(x) + �2

∧
I

(x) + c1
⋅

2�
I
∧

I
(x) + c2

�2

I
(x) + �2

∧
I

(x) + c2

(9)LSSIM=1-
1

N

N∑

i=1

SSIM(xi)

(10)
LGL =

∑
i,j
����IG(i, j) − IG(i − 1, j)�� − ��IP(i, j) − IP(i − 1, j)����

+����IG(i, j − 1) − IG(i, j)
�� − ��IP(i, j − 1) − IP(i, j)

����

(11)Ll1 = ‖Î − I‖1
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where N represents the number of each batch; CjHjWj are the channel, height and width of 
the feature map in jth layer; �j represents the specific jth layer of VGG-19.

Therefore, the total loss can be calculated by summing the loss at each scale.

where Lcolor is for the color reconstruction task, LHSV is for contrast reconstruction task, 
LSSIM and LGL are for content reconstruction task, Ll1 and Lper are for the predicted 
enhanced underwater image.

4 � Experiments

4.1 � Experimental setup

To demonstrate the performance of MTNet, we do the quantitative and qualitative experi-
ments with traditional underwater image enhancement methods and learning based under-
water image enhancement methods on both synthetic and real world underwater images. 
These comparative methods include Contrast Limited Adaptive Histgram Equalization 
(CLAHE), White Balance, Gamma Correction, Dark channel prior, UGAN, FUnIE-GAN, 
UWCNN, WaterNet, UIEC^2-Net. For fair comparison, we ran the source codes to gener-
ate the best results. In this section, we will introduce the comparative experiments and ana-
lyze the experimental results in detail.

Dataset   To evaluate the enhanced capacity of MTNet, we conduct comparative experi-
ments on both the synthetic underwater images and real world underwater images. We first 
evaluate the performance of MTNet on the synthetic dataset generated by RGB-D NYU-v2 
indoor dataset. We also conduct the comparative experiments on the real world underwater 
images from UIBE dataset [36] which owns a diversity of scenes and underwater content.

Implementation details  The experiments are implemented by an Intel i7-5930  k pro-
cessor, 32 GB RAM and 1 NVIDIA GeForce GTX 3090. For training, both the synthetic 
underwater images based on NYU-v2 and real world underwater images from UIEB 
are used as input. There are 2000 images in training set. The input images are resized to 
320 × 320. The models are conducted on Pytorch deep learning framework and trained by 
stochastic gradient descent (SGD) for optimization without any augmentation. For test-
ing, there are 90 real world underwater images and 90 synthetic underwater images in the 
testing set. The initial learning rate of our model is set to 0.0001, which will decrease to 
0.000001 during training. We set the batch size to 24 and the total epoch to 300.

Evaluation metrics  For full-reference indicators, we use the Peak Signal-to-Noise Ration 
(PSNR), Mean Square Error (MSE) and Structural Similarity (SSIM) to objectively evalu-
ate the enhanced capacity of MTNet. In terms of PSNR and MSE, the higher PSNR or the 
lower MSE represents the recovery underwater images is more close to the ground truth 
underwater image. For SSIM, the higher value denotes the texture and the structure is more 

(12)Lper=
1

CjHjWj

N�

i=1

‖�j(
∧

Ii) − �j(Ii)‖

(13)Ltotal = Lcolor + LHSV + LSSIM + LGL + Ll1 + Lper
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close to ground truth. Meanwhile, we also employ Underwater Image Quality Measure 
(UIQM) and Underwater Color Image Quality Measure (UCIQE) for non-reference under-
water image quality evaluation. In case of UIQM and UCIQE, higher value means better 
underwater enhancement performance.

4.2 � Performance comparison on synthetic underwater images

To evaluate the performance achieved by the proposed MTNet, We compare MTNet with 
several state-of-the-art underwater image enhancement methods on the synthetic under-
water testing set. The comparative experiments are conducted on the synthetic underwater 
testing set, which includes 90 underwater images.

Table 1 shows the quantitative comparison of different underwater enhancement meth-
ods in terms of MSE, PSNR and SSIM on the synthetic underwater testing set. The best 
enhancement results are in bold. It is obvious that our proposed MTNet obtains the best 
performance compared with both the traditional underwater enhancement methods and the 
deep learining based methods across all the full-reference metrics. In terms of SSIM, our 
proposed MTNet is 0.8943 higher than the second best enhancement method.

To further evaluate the enhancement performance of MTNet, we also employ UIQM 
and UCIQE for non-reference underwater image quality evaluation. Table  2 describes 
the average values on 90 testing underwater images. It is easy to see that our proposed 

Table 1   Full reference 
underwater image quality 
evaluation on synthetic 
underwater images

Ehancement method MSE SSIM PSNR(dB)

CLAHE 4732.5086 0.6029 13.6337
White Balance 6534.3900 0.6859 13.1364
Gamma Correction 5271.5483 0.5687 12.4780
Dark channel prior 3054.2229 0.6973 16.2842
UGAN 1837.2495 0.6406 18.7508
FUnIE-GAN 2998.3801 0.6522 17.7959
UWCNN 2694.7167 0.6997 18.1389
WaterNet 1741.7989 0.7651 18.6515
UIEC^2-Net 1272.5980 0.7989 20.9121
MTNet 1255.6526 0.8125 21.8064

Table 2   Non-reference 
underwater image quality 
evaluation on synthetic 
underwater images

Ehancement method UIQM UCIQE

CLAHE 2.8401 0.3524
White Balance 2.2567 0.4909
Gamma Correction 2.2435 0.3070
Dark channel prior 2.8305 0.4306
UGAN 3.2613 0.5011
FUnIE-GAN 2.8645 0.4758
UWCNN 2.9274 0.4279
WaterNet 2.9407 0.4859
UIEC^2-Net 2.5990 0.5051
MTNet 3.0251 0.5107
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method obtains higher UIQM than other underwater enhancement methods. Further-
more, MTNet achieves the second best UCIQE value, which is larger than most of the 
methods. Both the full-reference and non-reference metrics prove our proposed network 
has better capacity for underwater enhancement.

To qualitatively evaluate the detection performance of MTNet, Fig. 4 shows the visu-
alization of the comparative results on synthetic underwater testing set. It is obvious 
that the underwater images are always with color shift and low brightness and contrast 
because of light scattering and absorption. Most of the traditional underwater enhance-
ment methods are not sensitive to brightness and saturation and may introduce color 
casts.

Especially for complex underwater environment The deep learning based under-
water enhancement methods achieves relatively good enhancement performance. Our 
proposed MTNet can effectively hinder the color casts and improve the brightness and 
saturation of the underwater images even with complex underwater environment, which 

Fig. 4   Visualization of the comparative results on synthetic underwater testing set
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can produce a good and pleasant perception. The visual results in Fig. 4 agree with the 
non-reference metrics in Table 2.

4.3 � Performance comparison on real world underwater images

To further validate the performance of MTNet, we also conduct comparative experi-
ments on real world underwater images, which includes 90 testing images. The test results 
between MTNet and the state-of-the-art enhancement methods are described in Table 3. 
Similarity to Sect.  4.2, MSE, PSNR and SSIM are employed to evaluate the enhanced 
underwater images. Our proposed MTNet also achieves the best enhancement performance 
across all the full-reference metrics. Compared with the second best enhancement method, 
the PSNR and SSIM have been improved 0.0073 and 0.8494 by MTNet.

Meanwhile, we also use UCIQE and UIQM non-reference metrics to verify the perfor-
mance of MTNet. As shown in Table 4, our proposed method also performs the best in 
terms of UIQM on real world underwater dataset. Although the UCIQE value of MTNet is 
not the highest, it still achieves the second best.

Similarly, to qualitatively evaluate the performance of MTNet, Fig. 5 shows the visu-
alization of comparative results among different underwater enhancement methods on real 
world underwater dataset. The deep learning based enhancement methods outperform most 
of the traditional underwater enhancement methods. The enhanced images produced by 

Table 3   Full reference 
underwater image quality 
evaluation on real world 
underwater images

Ehancement method MSE SSIM PSNR(dB)

CLAHE 1561.0980 0.8159 19.5163
White Balance 1329.1862 0.8456 23.5742
Gamma Correction 2164.0459 0.7462 17.9730
Dark channel prior 2850.7680 0.7143 16.2015
UGAN 557.1345 0.7800 23.1740
FUnIE-GAN 1171.7098 0.8029 20.4427
UWCNN 1404.7385 0.8322 19.8689
WaterNet 1235.1448 0.8360 20.0336
UIEC^2-Net 486.7439 0.9048 24.5574
MTNet 448.7683 0.9121 25.4068

Table 4   Non-reference 
underwater image quality 
evaluation on real world 
underwater images

Ehancement method UIQM UCIQE

CLAHE 2.6975 0.4223
White Balance 2.5679 0.4341
Gamma Correction 2.4647 0.3547
Dark channel prior 2.6282 0.3847
UGAN 3.2885 0.4241
FUnIE-GAN 3.2696 0.4325
UWCNN 3.0355 0.3799
WaterNet 2.9394 0.4190
UIEC^2-Net 2.9871 0.4469
MTNet 3.0402 0.4470
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MTNet are natural without introducing aritificial colors and MTNet can effectively enhance 
the brightness and contrast, which is similiar to the ground truth underwater images.

To sum up, both the comparative experiments on the synthetic underwater testing set 
and the real world underwater testing set demonstrate our MTNet outperforms other state-
of-the-art underwater enhancement methods.

Fig. 5   Visualization of the comparative results on real world underwater testing set
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5 � Conclusion

In this paper, a multi-task cascaded network is introduced to improve the visual per-
ception for underwater image, which contains three cascaded sub-tasks, namely color 
reconstruction task, contrast reconstruction task and content reconstruction task. For 
each task, the color loss, HSV loss, SSIM loss and image gradient loss are employed 
to train MTNet in an end-to-end way. Furthermore, we introduce an AFM to fuse the 
feature maps from different reconstruction task adaptively. To verify the performance of 
MTNet, we conducted the comparative experiments on synthetic underwater images and 
real world underwater images with both the full-reference and non-reference metrics. 
Experimental results demonstrate that our proposed method can efficiently improve the 
underwater images quality and outperforms other underwater image enhancement meth-
ods in both qualitative and quantitative evaluations.
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