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Abstract
Virtualization is a powerful technique that allows numerous applications can execute on a 
single cloud server. The process is carried out by cramming software into Virtual Machines 
(VMs), so that many programs may execute in parallel which leads to an increase in speed. 
It reduces the overall cost of the cloud data centers by applying migration, and load balanc-
ing techniques on the virtual machines. However, the associated energy consumption and 
Service Level Agreement (SLA) breaches have been extremely high because of increased 
network traffic and the bandwidth requirements of the applications. To address this issue, 
the current study presented a novel approach based on the food selection technique used 
by honey bees to allocate and utilize resources to the VMs. The proposed Optimal Meta-
Heuristic Elastic Scheduling (OMES) integrates the Artificial Bee Colony algorithm with 
flower pollination to select VMs for specific clusters. The simulation is applied on 1000 
VMs and analyzed based on VM migration, energy consumption, and SLA violation per-
formance metrics. The comparative analysis performed against existing studies demon-
strates highest unit improvement of 0.47 for VM migrations, 0.485 for power consumption, 
and 0.305 for SLA-V.

Keywords  Artificial Bee Colony (ABC) · Cloud computing · Energy consumption · 
Service Level Agreements (SLAs) · Virtual Machine (VM)

1  Introduction

Cloud computing was designed to perform in the most efficient manner any processing 
engine could have ever imagined to be implemented. Considering the fast-working abili-
ties of the Data-centre (Dc), it was no wonder that complex computation tasks like Google 
Navigation, fast-speed video editing, and high-resolution image processing of the hyper-
structure images became a reality. Considering that one data center may consume power 
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equivalent to the power consumption of 25,000 households, a massive amount of power, 
green computing has gained popularity among cloud developers and researchers [1]. 
Hence, modern-day computing environments consider creating a power-balanced process-
ing system rather than creating a system that can speed up the computation. A Dc contains 
Physical Machines (PMs) used to execute the different tasks provided by users at a specific 
layer, especially service. The PMs are assisted by Virtual Machines (VMs) at the cost of 
hardware resources. The VMs uses PM’s hardware resources until a VM is associated with 
the PM. It becomes the responsibility of the scheduler to arrange VMs for the PM to com-
plete a particular set of processing queries. The scheduler sits in between the user layer and 
the processing.

The Dc takes requests from the user, passes them on to the scheduler with Turn Around 
Time (Tat), and is expected to complete them on time. Generally, the process is speeded 
up by arranging the scheduler to VMs for the PMs based on the VM’s working capabili-
ties and the user’s demand requirements. When a VM is supplied to a PM, the process is 
referred to as VM allocation. A VM is available over the PM for a specific time interval 
and then migrated to another PM to support scalability [2]. Overall, the VM to PM associa-
tion process is a subset of 4 steps.

1.	 VM is allocated to the desired PM.
2.	 Identification of the PM to migrate the VMs.
3.	 Identification of the PM to supply the migrated VMs.
4.	 Migration of the VM.

The allocation process was introduced in 2010 by Beloglazov and Buyya, considering 
power consumption as a dependent variable over allocation strategies and policies (Fig. 1). 
To allocate a VM to a PM, an allocation process was introduced to the world based on the 
bin packing algorithm by the researchers using the Modified Best Fit Decreasing (MBFD). 
MBFD identifies every possible PM with enough resources to compensate the considering 
VM. To allocate, MBFD computes the least likely power consumption and supplies the 
VM to the most petite consumption holder. The power consumption calculation has been 
observed to be evaluated by many methods [3].

1.1 � DVFS (dynamic voltage and frequency scheduling)

The frequency of DVFS strategies changes in response to the use of complex workloads. 
Since dynamic power is frequency-dependent, these policies help to minimize resource 
consumption dynamically. Underutilized resource power has been reduced using the DVFS 
to avoid SLA violations. To avoid performance degradation due to overprovisioning in 
dynamic workload environments, policies must manage the workload needs and adapt the 
operating server collection. Such a scheduling technique is the most efficient and energy-
viable available today. This technique reduces operating voltage and frequency to scale 
power according to the device’s changing workload. The switching operation is slowed by 
lowering the operating frequency and voltage, resulting in energy savings while also lower-
ing efficiency. The implementation of DVFS has been done as there is a direct relationship 
between the CPU power and its frequency, but in the case of using the DVFS for CPU, 
resources such as voltage and frequency are limited [4].

DVFS has primarily been used to improve the scheduling workload for the CPU’ having 
less energy used for servers. It is also viable for systems where tasks are noncritical (Wu 
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et al. 2014). Consequently, reducing voltage and CPU operating frequency slows down the 
switching operation process, which saves energy but negatively affects the system’s effi-
ciency. As a result, implementing DVFS-aware consolidation policies in Cloud Dc have 
enough potential and energy to shrink the energy consumed by the machines on which the 
workload is very high [5].

The term migration comes into action when the data center has to reschedule the VMs 
to save the PMs from overloading. The most efficient way to judge a PM for the overload 
parameter is to check the utilization factor and energy consumed by the PM. The cloud 
does not want to produce the best result. But instead, it would be happy to create an effi-
cient result that can be used to calculate the practical solution to a given problem set. The 
evaluation policy is a dual-threshold policy and has been opted for by many researchers 
and practitioners [6].

The famous migrations of VMs are live and non-live migrations. Before the migra-
tion process, the VM has to be switched OFF, and the various operating services 
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provided to the machines have been operated on demand. The knowledge of which VM 
is running depends upon the energy utilization, and the encapsulation process has been 
carried out to the target site if it is suspended.

Figure 2 shows that no open network connections are held during the migration, and 
all connections are rebuilt after the VM is restarted (a). Migration of Memory data and 
continuity of the network link are the two issues that must be resolved in live migration 
to prevent service interruption. Data migration is needed when the end-to-end sites do 
not share the exact storage mechanism. The process operated on the running VMs that 
are migrated would be disrupted by non-live migration. The most efficient way to judge 
a machine on the side of utilization is to check the voltage and energy consumed by 
the PM. Consequently, implementing a live machine reduces operating voltage and fre-
quency to scale power according to the workload in a device. Since several applications 
in a cloud data center run 24 h a day, this significantly limits its application field. As a 
result, most research is concentrated on live migration [7].

In contrast, to bundle the VMs into similar group architectures, Nishaat et  al. pre-
sented the Smart Elastic Scheduling Algorithm (SESA), which intends to bind the VMs 
as per their location preferences and the RAM associated along with the CPU utilization 
of the VMs. The work architecture of SESA uses enhanced k-means which are divided 
into the following significant steps as depicted below: -

1.	 Calculation of the total number of centroids required to accommodate the migrating 
VMs.

2.	 Initial placement of the VMs based on the Euclidean Distance between the attribute set 
utilized to analyze the VMs for the migration.

3.	 It is shifting the cluster group based on the changed centroid.

Allocating the VM group with the highest cluster density to the PMs, Where the allo-
cation process is considered only by MBFD.
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End User

Storage Storage
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Fig. 2   Migration types
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1.2 � Problem formulation

VM allocation and migration is one of the vital steps that must be implemented to support 
the elasticity in the network. When the load increases over a PM that becomes relatively 
high compared to the other PMs in the list, it becomes essential to migrate the VMs from 
one end to another, viz., from one PM to another PM. Migrating the VMs consumes power 
from the data center, so choosing the appropriate VM for the migration becomes essen-
tial. The proposed VM allocation and migration model is an extended version of the Bin-
packing problem, and good conditions have been expressed to avoid inequalities. The main 
objective of the underlying problem is to determine the number of nodes used to host the 
VM, and then power consumption and appropriate selection policy have been selected. The 
requested VMs by the user has been characterized as several servers or Physical Machines 
(PM) available to provide services in the data center as represented ‘PM.’ The consump-
tion power of the servers is assumed to have a limit as follows:

At each run, each PM is used to host several VMs and characterized by the current 
power consumed by the machines as PMi,current.

Since the main objective of this study is the minimum consumption of power by the 
data centers and the appropriate selection of VM policy, therefore key decision variables 
(i) have been defined for each server ( ESi ) which approaches 1 if server ‘i’ is applicable for 
VMs, and 0 if not selected. The main function is to place all the VMs within a minimum 
count of machines or servers expressed as follows:-

The optimization using the efficient technique has been done considering the linear con-
straints having the capacity limit for the respective server and VM can only be assigned to 
the server having resources not utilized efficiently. VMs allocation based on the remaining 
energy usage is illustrated as follows:-

•	 Each physical machine or server has a certain power limit ( PMi,max ) that is not exceeded 
at a certain level when hosting a VM and this will be used to determine the remaining 
capacity of the machine.

All the requests by the user have been fulfilled by the cloud within an SLA and VM is 
assigned to the requested one-to-one server:-

For servers, the condition has been verified as

The total count of servers is under the lower bound represented as

PMi,max,{i = 1, 2,… ..m}

(1)min K =
∑n

i=1
ESi

(2)
∑j

r=1
pmryri ≤ PMi,maxESi − PMi,current.∀ = 1, ..,m

(3)
∑m

i=1
yri = 1,∀i = 1, .., n

(
PMi,max

)
> PMi,current), and PMi,current ≠ 0,
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Thus, model inequality has been avoided by adding the following equation as fol-
lows: -

Further, the following set of conditions has been considered to determine the objective 
function as follows: -

This is subjected to the following equations: -

For easy reference, all the reference constants and variables are explained as follows: -

•	 In the given equation, j is the request size for requested VMs by the user, and n is the 
servers count in the data center.

•	 pmr represents the power consumption of yri
•	 yri is a bivalent variable that shows VMr is assigned to the server.
•	 ESi indicate whether the server ‘i’ is used or not.
•	 PMi,max indicates maximum power consumption of server i.
•	 PMi,current indicates the current power consumption of server i.

The problem of the presented work is to reduce energy consumption and optimize the 
VM selection policy to reduce overall power consumption. A lot of evidence of the usage 
of SI is presented to select the appropriate VMs in the literature and hence the problem 
extends to designing a novel fitness function utilizing the SI behavior.

1.3 � Contribution of the paper

This paper is inspired by the work presented by Nishaat et al. [8]. Though a good enough 
structure has been presented already, the contribution of the proposed work is listed as fol-
lows [8].

(4)Lower bound → ⌈
∑m

i=1
PMi,current

PMi,max

⌉

(5)
�m

i=1
ESi > ⌈

∑m

i=1
PMi,current

PMi,max

⌉

(6)min K =
∑n

i=1
ESi

(7)
∑j

r=1
pmryri ≤ PMi,maxESi − PMi,current.∀i = 1, ..,m

(8)
∑m

i=1
yri = 1,∀i = 1, .., n

(9)

∑m

i=1
ESi ≥ ⌈

∑m

i=1
PMi,current

PMi,max

⌉

ESi =

�
1, if the server i is used

0, otherwise

yri =

�
1, if the VMr is placed in server i;

0, otherwise
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1.	 The proposed work introduces a novel fitness function for adjusting the VM in the cur-
rent group and evaluating the possibilities of the VM being placed in other clusters.

2.	 The reallocation policy is based on MBFD as it is in SESA. Still, it gets sustainable 
improvements in allocating the VM to the PM based on the utilized slots and history 
of the PM while the VM was allocated to the PM. To utilize the previous experience of 
the PM after the reallocation of the VM, a monitoring unit is placed, underutilization 
model.

3.	 This paper outlines the issues related to VMP and illustrates the techniques for the 
appropriate placement of the VM.

1.4 � Organization of the paper

Rest the organization of the paper is structured into 5 sections. Section  2 discusses the 
distinguishing work done to improve the energy efficiency of cloud data centers based on 
virtualization. The integration of the Swarm Intelligence (SI) approach is discussed in Sec-
tion 3 to design a novel fitness function proposed in the paper. Section 4 is dedicated to the 
simulation analysis and discussion of the results. The derived conclusion and the future 
work are presented in Section 5. This is followed by the list of references that are cited in 
the paper.

2 � Related work

The last decade has witnessed the scientific community being focussed on achieving 
energy-efficient resource utilization for the cloud environment. Virtualization technology 
has been one of the most critical aspects of achieving this goal. Therefore, many research-
ers have also taken advantage of the optimization concept to achieve efficient resource allo-
cation with minimal CPU and power consumption [9].

Various approaches have been proposed in the literature to address the VM migration 
issues. The metaheuristic techniques based on the intelligent behavior of the species and 
best fit decreasing algorithms have been developed. The optimization techniques are based 
on the social behavior of the ants using the Ant Colony Optimization (ACO) approach, and 
bees, namely Artificial Bee Colony (ABC), particles namely Particle Swarm Optimization 
(PSO), firefly technique (FFA) also added. The past study also includes ML, deep learning, 
best fit decreasing (BFD) techniques, round robin, and Modified BFD (MBFD).

A BP-based heuristic is used to investigate a concrete method for controlling the number 
of VMs migrated [10]. The approach prevents the migration of VMs with consistent work-
loads, which decreases the number of migrations. Beloglazov et al. [11] propose a thresh-
old-based VM migration optimization after a first fit BP process [11]. A multi-dimensional 
space partition model coordinates different resource loads [12]. The authors divided the 
resource space into three categories: acceptance, protection, and forbidden domain. From 
the former to the latter, VM takes precedence. The given solution will effectively reduce 
the number of physical machines (PMs) required by maximizing the complementary 
resource requirement. Song et al. [13] present a robust technique that worked on the migra-
tion of VMs. Specifically, VM is categorized into four parts ranging from allocation of 
small to big. For the one-dimension case, and then packed according to the categories. It 
has been established that the algorithm is approximate. Only the algorithm can reduce the 
number of VM migrations batches. However, it cannot guarantee the number of VMs that 
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will be migrated [13]. A multi-capacity stochastic solution was proposed that was different 
from the existing multi-dimensional BP because it believed that that particular VM should 
only use a part of one resource allocated to one VM. Multi-capacity BP more realistically 
captures server resource characteristics. To reduce the number of stochastic resources used, 
a heuristic algorithm working on two stages is provided [14]. Heuristics based on BP are 
often widely used to save resources by reducing the number of services needed.

Similar, complementary, and remaining together are used to achieve a better result in 
maximizing nodes and bandwidth capital [15]. Shi et al. [16] want to increase CSP sales 
from an economic standpoint. They organize VM collections based on capacity and place-
ment constraints, such as security, anti-location, and co-location. A hybrid heuristic is pro-
posed based on BP and a spanning tree [16].

Beloglazov et  al. [11] proposed an MBFD technique in which the VMs are sorted in 
decreasing order, and the sorting of PMs was performed according to the power. FFD is 
used to complete the work after the sorting is completed. The drawback of MBFD is that 
it only considers a single target and cannot handle scalable data center situations. The heu-
ristic approach, which is based on the greedy algorithm to search and use fewer additional 
details, is typically used in conventional solution methods [11].

As previously mentioned, BP-based algorithms are unable to profile VM communica-
tion. It cannot also represent networked networks. Meta-heuristic (MH) algorithms, apart 
from the other general-purpose techniques, are worked on by shrinking the solution space 
linked to the universe population. MH algorithms will achieve efficiency as inspired by 
nature, as illustrated above. These algorithms’ work depends upon the fitness value gener-
ated during the complete delivery of food which is directly linked to the maximum output 
with static input. The species searching the food is linked to the determination of a solution 
by being kept and carried over to the next.

According to the literature review, a significant number of evolutionary methods have 
been explored to address the optimization problems of cloud data centers.

2.1 � Genetic algorithm

It is a classic heuristic algorithm that is inspired by generic evolutionary facts such as 
crossover, genetic mutation, and other operations. The solution’s consistency is assessed 
using a fitness function.

Mi et  al. [17] developed a GA-based technique based on the reallocation of VMs on 
heterogeneous PMs with evolving workloads. The method was based on using the request 
forecasting module to analyze the workloads assigned to the specific PMs. The proposed 
technique is a multi-objective optimization strategy that results in power conservation [17].

In their paper, Xu et al. [18] proposed a two-level control scheme for handling work-
load and VMPM mappings. This control system architecture was created to reduce overall 
resource waste and power usage while preventing hotspots. They used an enhanced GA 
with a fuzzy multi-objective assessment to achieve the goals mentioned earlier. The paper 
is aimed to use fuzzy logic, and the solution is further accessed using the fitness value. 
Using an optimization algorithm in conjunction with the GA avoids the problem of random 
crossover; thus, the scheme for handling workload is viable and provides better results. 
Fuzzy logic is used to measure the performance of the VM and PM mappings. The pro-
posed algorithm uses less energy, produces less heat, and wastes fewer resources [18].

Wang et  al. [19] modeled the VM problem using the elastic strategy. Their approach 
maximizes resource utilization, balances resource use across dimensions, and reduces 
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contact traffic. The proposed technique uses the GA to target the problem handled in the 
first two objectives and was converted to restriction in the last objective. Furthermore, they 
enhanced the conventional crossover approach by integrating the proposed technique with 
the GA, and thus the optimal solution was obtained using the fitness value. The solution is 
feasible for the next generation. Owing to the use of a single objective formula, the sug-
gested solution got better efficiency and the lowest contact with balance resources. The 
paper is limited to balancing resource use across different dimensions and reducing contact 
for viable resources. [19].

Wang et al. [20] proposed the two upper-level objective functions that occur in bi-level 
programming: reducing the gap problem, and it was solved using MOGA-based multi-
objective GA. The server’s energy usage and efficiency were taken into account. Two 
upper-level objective functions occur in their bilevel programming: reducing the gap. The 
proposed solution is also feasible for lower-level programming functions, which are used 
to minimize the number of differences in server resource usage before and after scheduling 
[20].

The NSGGA technique was introduced by Liu et al. [21] to solve the VMP problem. 
It was designed by introducing a novel approach in which the fitness function adjusted of 
the VM in the current group and the evaluation of the possibilities of the VM to be placed 
with a contact flow and balancing the resources. The authors used to merge NSGAII’s no 
dominated sorting function with GA’s grouping feature [21]. Sofia et al. [22] suggested a 
method for reducing energy use while maintaining consumer satisfaction. To find a collec-
tion of no dominated solutions, they used the DVFS method and the NSGAII optimization 
method [22].

Riahi and Krichen [23] suggested a VM migration approach using the Bernoulli simula-
tion in conjunction with the GA. Their main goal is to introduce a novel fitness function 
to adjust the VM to minimize the wastage of resources. GA’s fitness function is based on 
different weights, combining previously described goals into a single plan. The suggested 
solution has been successfully used to reduce the wastage of resources due to this work 
[23]. Yousefipour et  al. [24] proposed a mathematical model to lower costs and reduce 
power usage. Then, to solve the issue, they suggested an algorithm that is inspired by the 
genetic facts as a classic evolutionary heuristic technique that attempts to approximate the 
optimum solution using a series of operators on the population, such as crossover, muta-
tion, and selection. After that, a GA-based approach was used to solve the formulated prob-
lem. The amount of consumed energy at PMs was calculated to compute the consumed 
energy in cloud data centers [24].

2.2 � Particle swarm optimization (PSO)

PSO has the advantage of requiring fewer parameters and achieving much quicker con-
vergence. PSO’s use of cloud resource provision has been the subject of numerous 
publications.

Guo et  al. [25] proposed a robust solution using the PSO technique and interaction 
graphs to optimize time and cost. The data placement problem entails mapping all job data 
to all data centers. They attempted to allocate all task data to the Dc, where data is real-
ized using the graphs and labeled, indicating its significance [25]. Xu et al. [26] proposed 
IMOPSO, a multi-objective evaluation model for dynamic VM deployment that is used to 
optimize the time of migration from VM to PM and the optimal use of resources. The pro-
posed work realizes the CloudSim platform and promising results obtained [26].
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Wang et  al. [27] developed the PSO-based algorithm for the placement of VM. The 
algorithm is designed for data-intensive workloads in National Cloud Dc (NCDCs). The 
authors make no assumptions about server compatibility. The MBFD and BF algorithms 
are compared to the proposed PSO-based algorithm. In tree-like-topology-networked data-
centers, the algorithm is energy efficient. One drawback of this research is that it assumes 
that each VM runs a single operation [27].

To boost energy efficiency, Dashti and Rahmani [28] suggested a solution to allocate 
migrated VMs from overloaded PMs. They proposed a hierarchical architecture to meet 
the needs of consumers and providers, using QoS parameters and performance metrics 
have been measured [28]. Furthermore, Li et  al. [29] suggested a solution for managing 
resource utilization to cause the migration of VMs, reduce data center energy consump-
tion and improve resource utilization. The overloaded and under-loaded PMs are identified 
by avoiding the remigration process and thus attaining the proposed goal of reducing data 
center energy consumption and improving resource utilization [29].

2.3 � Ant Colony Optimization (ACO)

ACO algorithm has gotten much attention from researchers in the last few years for solving 
various NP-hard problems [43].

ACO-based VM placement algorithm is proposed in [33] to obtain a non-dominated 
solution set while reducing energy consumption. The results show that VMPACS can scan 
the solution space more effectively to find a solution that uses the fewest servers and makes 
the most available resources. As a result of this solution’s increased overall performance, 
less power is used [30]. Ferdaus et al. [31] use the ACO metaheuristic to VM to the PM 
based on the utilized slots and history of the PM while the VM was allocated to the PM. 
To utilize the previous experience of the PM after the reallocation of the VM, a monitoring 
unit is placed, underutilization model. This is a practical solution with an excellent compu-
tation time [31].

Wen et al. [32] developed an ACO-based distributed VM migration strategy. The goals 
of the developed solution are for the VM to be allocated to the PM. To utilize the previous 
experience of the PM after the reallocation of the VM, a monitoring unit is placed under 
underutilization model usage that is rational, as well as minimizing the number of migra-
tions. They independently track each host’s resource use, overcoming the limitations of 
other ACO approaches’ more uncomplicated trigger strategy and pheromone misuse. The 
authors identified positive and negative pheromones. When a host gets overloaded, all the 
VMs are sorted according to the average load. The tasks are migrated when the VMs are 
found with high load values. [32].

Tan et  al. [33] suggested a solution ACO-based VM placement algorithm using the 
threshold policy. They used the CPU use of physical nodes to calculate the SLA violation 
rate and set the threshold at 90%. They used the weighted coefficient approach to solve 
this problem, the proposed solution used the weighted function to avoid the M remigration 
problem, and the MinMax ACO system was used to improve performance. The findings 
show that the solution has a positive reception since it uses fewer resources than BFD [33].

Malekloo et al. [34] suggested a new method focused on the ACO metaheuristic, which 
was coupled with a probabilistic decision rule and a heuristic knowledge formula. To find 
the best solutions, they used the Pareto front process. They compare MOGA to three sin-
gle-objective algorithms, namely FFD, DVFS, and linear regression, for evaluation (LR). 
Because of its simplicity, the FFD solution obtained the highest power consumption while 
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taking the shortest execution time. In comparison to MOGA, MACO consumes less energy 
and generates better performance. However, neither of these algorithms achieved a lower 
energy communication rate [34].

A multi-resource overload scheme that is energy conscious has been suggested. ECVMC 
focused on consolidated placement, is a term coined by Li et al. [35]. Its main goal is to 
increase physical server resource usage, and thereby technique is energy conscious, and 
ECVMC realized to consolidate the placement. The simulation process was accurately car-
ried out using the base model, and the performance of the different algorithms was tested 
considering the other performance metrics. The consolidation process was carried out in 
different phases, and the migration model was accurately used to minimize the energy of 
the proposed solution.

Liu et  al. [36] suggested an ACO algorithm-based solution in conjunction with the 
Machine learning algorithm as Extreme Learning Machine (ELM). Because of its success 
in regression and large dataset classification applications, the ELM is recognized as an 
emerging learning algorithm. ELM is used to forecast the state of servers, and the process 
is speeded up by arranging the scheduler to VMs for the PMs based on the VM’s working 
capabilities and the user’s demand requirements [36].

2.4 � Ant Bee Colony (ABC)

The ABC algorithm, which is a swarm-based meta-heuristic algorithm, is inspired by bee 
actions. It considers potential solutions such as bee food to find a suitable food supply as an 
optimal solution [42].

The given equation represents the power utilized during the application of ABC tech-
nique in which it is assumed that employed bees (Beesemployed) having a valid solution with 
maximum information. However, scout bees still swarming to acquire information about 
the food source. Such swarming behavior has been linked with the VM allocation. An iter-
ation round has been simulated to determine the server having the least use of resources. 
Once the requirement is fulfilled then VM is allocated [50].

(10)
∑j

r=1
pmrABC ≤ PMi,maxESi − PMi,current.∀i = 1, ..,m

(11)
∑m

i=1
Beesemployed = 1,∀i = 1, .., n

Table 1   Ordinal Measures employed during the implementation of ABC for the selection of VMs

Maximum Number of Bees related to VMs 10,000
Minimum Number of Bees employed relative to VM’s 200
Load supplied for the VMs 10

6
MIPS

Total number of simulations per VM set 100
Maximum Number of simulations 10,000 × 10,000
Implementation tool Python
Platform Anaconda
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The condition is applicable for all VMs and the server allocation process is carried out 
accordingly. The ordinal measures are illustrated in Table 1.

In the past, several studies presented work on VM allocation and minimum SLA 
violation.

Jiang et al. [37] presented a model for evaluating energy performance that includes two 
controlling factors: GPU and CPU utilization rates. They chose the VMs that resulted in 
the most significant reduction in energy consumption using an ABC-based VM selection 
algorithm. They proposed a VM migration policy that is live using the ABC, in which the 
primary goal is to consolidate to perform live VM migration. The outcomes depict that 
the developed approach efficiently controls the VM migrations while using fewer resources 
than the current policy. Despite this, its poor scalability and long execution time remain a 
significant concern. Furthermore, Li et al. [35] formulated that VM migration needs to be 
considered by demonstrating the various constraints such as energy consumption, viola-
tions, CPU utilization (CU), and efficient resource utilization. The study includes the algo-
rithm that finds the best map between the machines by ensuring minimum energy con-
sumption. The results are promising but limited to mapping the VMs as fewer PMs are 
needed to serve requests. Moreover, the algorithm ensures service quality and maps VMs, 
reducing energy consumption [51].

2.5 � Firefly Algorithm (FFA)

The flashing behavior of fireflies inspired the FA, and another MH approach focused on 
swarm intelligence. It has a wide range of applications in different fields in a short period. 
The literature has shown to minimize the number of used PMs and achieve an optimum 
placement solution with the least amount of resource waste and energy use.

Li et al. [38] proposed a viable solution using the FA to place the VM at an appropriate 
PM. The authors had been used the weighted sum approach to achieve the desired objec-
tives, such as energy consumption and wastage of resources[38]. According to Kansal et al. 
[39], an FA optimization technique should be used. They try to find the best method to 
optimize energy efficiency by minimizing migrations [39].

Perumal and Murugaiyan [40] address the VMP by integrating the FFA with the 
fuzzy technique to solve the VM migration problem. They planned to address two criti-
cal issues in cloud data centers: virtual machine allocation and server consolidation. They 
also attempted to minimize the active PMs and obtain the optimal solution with the least 
amount of resource waste and energy use. As a result, all of the above priorities were con-
sidered simultaneously while determining the best location for the VMs. They set a 90 per-
cent memory and CPU power threshold for each PM to prevent resource consumption from 
exceeding 100 percent [40].

Yavari et al. [1] developed the VM consolidation technique using the FA, which is tem-
perature aware. The evaluation was done considering the five different metrics: reduction 
in energy consumption, violations of services, and migrations [1].

2.6 � Hybrid

The hybrid approach incorporates the metaheuristic techniques described above. Cho 
et  al. [41] proposed an ACOPS for load balancing in the cloud. Its goals are to maxi-
mize resource usage balance while receiving as many requests as possible. To schedule, 
the authors took into account both CPU and memory resources (Table 2). This algorithm 
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uses an accelerating phase called preselect, which checks each server’s remaining memory 
before scheduling to minimize the solution’s overall processing time and dimensions. The 
algorithm then uses PSO to boost the performance by generating a better solution using 
the global best solution. Here a fitness solution is used to resolve the local and interna-
tional challenges. In each iteration round, all the ants find out only the global best to update 
the best solution’s paths. This adds to the solution’s effectiveness instead of finding local 
and international gests. Finally, ACOPS, like other meta-heuristics, is terminated when the 
iteration exceeds a predetermined number of iterations or the global best solution remains 
constant across time. The authors cause the time complexity of ACOPS as a supplement to 
other ACO and PSO algorithms. Furthermore, the results show that the algorithm is good 
at balancing loads [41, 49].

In summary below (see Table 3), most studies target to minimize energy consumption 
only in terms of CPU, while storage is an important component of energy consumption in 
cloud-host machines. Some of the proposed approaches use VM migration mechanisms 
from overloaded host machines to underloaded hosts. However, these approaches do not 
define appropriate thresholds (set at runtime) to detect whether host machines are over-
loaded or underloaded. In addition, existing approaches do not consider the types of appli-
cations running on the VMs, which can lead to incorrect migration decisions that result in 
fewer energy savings and more SLA violations.

3 � Proposed work algorithm

This paper introduces the novel fitness function to place the VM in the respective clus-
ters, and the function is derived utilizing the attribute architecture of Swarm Intelligence 
(SI). The usage of SI has been observed in many recent articles [11–14]. The proposed 
algorithm identified that among most of the research cited articles, colony algorithms have 
significantly impacted the selection and migration policy. The selection procedure gets 
incorporated at the IaaS layer when a user submits the request to the server. The server 
handler passes the requests to the scheduler, and to support the elasticity, the VMs are 
migrated from one PM to another PM, as shown in the overall system model. SI intelli-
gence architecture is known for its up-bringing solution behavior for small data sets. Using 
natural computing could also have been another solution, but the computation complexity 
for a small group of values could be high. This is because the learning abilities of natural 
computing algorithm depends upon the co-relation for a bulk amount of data. Here, in the 
proposed solution system, one host could be assigned with few, many, or no VMs. Hence 
the moderation in the sample population leads us to use SI rather than a natural computing 
algorithm [52].

The proposed algorithm is based on Artificial Bee Colony (ABC) to continue the leg-
acy. ABC algorithm comprises three bee phases: the employed bee, the onlooker bee, and 
the scout bee. The proposed algorithm Enhanced Artificial Bee Colony (E-ABC) sequence 
divided the entire colony into k number of hives.

The algorithm is executed in the following steps.

	Step 1.	 Initiate a number of VMs and PMs to start the selection and placement process of 
VMs.

	Step 2.	 Apply MBFD algorithm for allocation of VMs.
	Step 3.	 Based on MBFD outcomes, identify the hotspot VMs.
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	Step 4.	 Aggregate the hotspot VMs from the overutilized PM.
	Step 5.	 The division of VMs is done into “k” number of clusters based on the architecture 

utilized in [8]
	Step 6.	 Initialize ABC algorithm and for each employed bee a onlooker bee is defined.
	Step 7.	 Call ABC fitness function. If fitness is satisfied, reject the migration otherwise 

migrate the VM.
	Step 8.	 Repeat the process until all the VMs are covered.
	Step 9.	 Create and store the information in a defined repository
	Step 10.	 Information stored in the repository is further used for reducing the computation 

complexity of the system.

The High-Level Architecture of Optimal Meta-Heuristic Elastic Scheduling is further 
illustrated using Fig. 3. The first step is to initialize an empty allocation table and divide 
the data into “k” number of clusters. As nectar or the food collection behaviour of honey 
bees is utilized in the proposed work. The information of various hosts for VM’s is updated 
using flower pollination. An index is selected from flower pollination and VM is migrated 
to the flower index.

The position of VM is validated and information is stored in a defined repository. Infor-
mation stored in the repository is further used for reducing the computational complex-
ity of the system. The proposed algorithm uses specifically E-ABC to reflect optimized 
metaheuristic elastic scheduling. In cloud computing, virtualization is done to manage the 
underlying resources of the workstation and hosts. The tasks are distributed among the 

Fig. 3   High Level Architecture of Optimal Meta-Heuristic Elastic Scheduling (OMES) [52]
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VMs so as to maintain the optimal performance of the PM by avoiding them getting over-
loaded. The process starts with the initialization of the number of VMs and PMs. This is 
followed by the sorting of the VMs using MBFD based on load, service quality etc.

It incorporates the requirements from the VMs and allocates the VM to the best pos-
sible PM that allocates the VM on minimum cost. The process holds unique significance 
as it helps in the identification of the hotspot VMs. The hotspot VMs are then aggre-
gated from the overutilized PM and divided into k groups. At this stage ABC is applied 
on each group and for each employed bee, an onlooker bee is defined. In case the bee 
fitness is satisfied, the VMs are not migrated and stay on the same PM otherwise VM 
is migrated to other PM. The process of refinement using ABC continuous until all the 
VMs are covered.

The outcomes of the process are further validated for service quality, energy con-
sumption, CPU utilization in the next chapter. The Fig. 4 depicts the flowchart for High 
Level Architecture of Optimal Meta-Heuristic Elastic Scheduling.

Algorithm OMES:
Input: Host List (HL), VM List (VL)
Output: Re-allocated List (RaL)
Initialize Ral = [ ]
Step1: Arrange Clusters based on the CPU utilization in decreasing order.
Step2: Tfg = k;
Where Tfg is the total number of fly groups k is the total number of groups.
Step3: For each Tfg in Tfg:

Start

Initiate VMs and PMs

Apply MBFD for 

allocation

Identify hotspot

Aggregate VMs from 

overutilized PM

Divide VMs into k 

groups

Initiate ABC

For each employed 

bee define 

onlooker bee

If fitness 

satisfied?

Reject for 

migration
Migrate

All VMs 

covered?

Stop

Yes No

Yes

No

Fig. 4   High level architecture flowchart of omes algorithm
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a.	 Arrange VMs in the decreasing order of utilization.
b.	 LI required (required flight intensity).

fx is the function that aggregates the three components of ABC i.e. the total amount of 
workload as ‘wL’, total passed memory set instruction as ‘tms’, and total power consump-
tion as ‘PC’.

Fstructure is the structure of fire-flies of every fly group.
For the normalization of the attributes using Eq. (11)

f2 Assembles the host out of HL to accommodate all VMs of one group to one host.
/* Arrangement of Onlooker Hives
Step 4: Activate f2

a)	 Gather information for available hosts.
b)	 Calculate f21 by applying Eqs. (15), (16), and (17).

The role of f3 is to segregate the hosts based on the information collected by F21 light 
intensity.

Step 5: f2.input = f2.Output

The proposed algorithm utilizes the flower Pollination concept and takes a time interval 
of (f0-fn).

Where n is the total number of intervals.
Which gives the actual behavior of the PMs and thieves of n other light attained intensi-

ties which could be from the current intensity values to program to the intensity a random 

(12)Fstructure.append = fx(wL, tms,PC)

(13)I. f out
1

= {wLn, tms,PCn}

(14)II. f out
2

= Grouped − Host

(15)f21 =
∫ hL.host_count

ni=0
WLni

∑hL.host_count

j=1
WLj

(16)f22 =
∫ hL.host_count

ni=1
tsni

∑hL.host_count

j=1
tmsni

(17)f33 =
∫ hL.host_count

ni=0
PCni

∑hL.host_count

j=0
PCni

(18)f1.Output =

{
f21

f22 + f33

}
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probability. If the probability is below 5, the fly intensity at the next time slot will be 
reduced by 10% and vice-versa.

Step 6: f2Oi = Prepare {f 2t0………tn
}

Step 7: Total intensity value desired = k.
Step 8: Apply the Nashaat rule over f2Oi
Where f2Oi is the preliminary output of f2.
Step 9: For each intensity group calculates the requirement of the group.

Step 10: For each hosts group in hL:
Step 11: If Costgroup.Satisfied (VM group, CPU demand).
Compute PCg =Allocated on group consumption.
Where PCg power consumption of group to accommodate VMs.

End if
Step12 (a): End for
Step 12 (b): Embed to RaL.
Step 13: Prepare RaL.
Step 14: Return RaL.
The proposed algorithm uses specifically Artificial Bee Colony. To validate the results, 

the evaluations over service parameters have been done and the illustration is given in the 
next section.

4 � Results and validations

Based on the analysis, the following parameters have been evaluated.
SLA-V: SLA-V has a lot of ways of measurement. In most of the research articles, the 

evaluation has been made on the base of power consumption. The proposed algorithm uses 
Eq. (19) to evaluate the SLA-V.

where, TPCUnderutilizedState represents Total Power Consumed for underutilized states and 
TPCOverutilizedState represents Total Power Consumed for over utilized states.

Migration count: It is the count of total number of migrations that took place in a given 
time interval.

Total consumed power: It is the total consumption of power in all states.
The illustration of the ordinal measures and the results are given by Tables 4 and 5.
The proposed work shows significant improvement due to the selection of appro-

priate VMs on the appropriate host by utilizing the idol time of the VMs at the hosts. 
As a result, more power is preserved as shown in Table 5 when analyzing over 10,000 

MinPCg = max(PC);mostsuitable = 0

if PCg < MinPCg
MinPCg = PCg

Mostsuitable

(19)SLA − V =
TPCUnderutilizedState + TPCOverutilizedState

Total Consumed Power
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VMs. The migration analysis shows that the average VM migrations observed for 
Nashaat et al. are 2802.18 which is 2123.18 using Masdari and Khezri. In comparison 
to these two works, the OMES achieved only 1637.41 migrations. This exhibits an aver-
age improvement of 1164.76 and 485.76 observed for OMES concerning Nashaat et al. 
and Masdari and Khezri, respectively. The unit improvement concerning the increase in 
the number of VMs is further illustrated in Fig. 5. It is observed that the unit improve-
ment in terms of VM migrations lies between 0.3838 and 0.4766 with an average unit 
improvement of 0.4275.

As the number of VMs increases, there is a considerable increase in power con-
sumption using existing works or the OMES. However, it is observed that the average 
power consumption of OMES is only 286.62 in comparison to 512.20 using Nashaat 
et  al. and 378.29 using Masdari and Khezri. In other words, this shows that the 
OMES exhibits 225.57 and 910.66 units less power consumption than Nashaat et al. 
and Masdari and Khezri, respectively. The unit-wise improvement observed against 
two existing works is illustrated in Fig. 6, which shows that the unit improvement for 
power consumption ranges from 0.376 to 0.485 for Nashaat et al. and from 0.202 to 
0.294 for Masdari and Khezri’s work. The average unit improvement demonstrated by 
OMES against Nashaat et al. and Masdari and Khezri is 0.435 and 0.243, respectively.

The quality of service delivered on the client side is determined by the number of SLA-
V. The SLA-V analysis of the OMES shows that it exhibits the least SLA-V with an aver-
age value of 0.7011 followed by Masdari and Khezri of 0.759 and Nashaat et al. of 0.769. 
This shows that OMES exhibits 0.058 and 0.068 less SLA-V as compared to the average 
SLA-V of Masdari and Khezri and Nashaat et al., respectively when analyzed over 10,000 
VMs.

The unit improvement in SLA-V observed for OMES against each variation in the num-
ber of VMs used for the experimentation is shown in Fig. 7. It is observed that the unit 
improvement lies between 0.0025 and 0.3059 when compared to Nashaat et al. and between 
0.0072 and 0.234 when compared to Masdari and Khezri. In other words, OMES exhibits 
an average unit improvement of 0.091 and 0.792 units against Nashaat et al. and Masdari 
and Khezri, respectively. The detailed simulation analysis of three critical criteria shows 
that the OMES successfully reduced the number of VM migrations even with an increase 
in the number of VMs in each step. Moreover, the comparative feature analysis shows that 
the proposed work exhibited maximum improvement against Nashaat et al.. Therefore, a 
glimpse of the feature analysis of the proposed work performed against Nashaat et al. work 
is also summarised in Table 6.

Table 4   Ordinal measures
Maximum Number of VMs 10,000
Minimum Number of VMs 200
Supplied Load 10

6
MIPS

Total number of simulations per VM set 100
Maximum Number of simulations 10,000 × 100
Implementation tool Python
Toolset Spyder
Platform Anaconda
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Further, it is observed that in comparison to the existing studies. OMES exhibits the 
least power consumption and SLA-Vs. when analyzed using 10,000 VMs. Table 7 illus-
trates the comparative analysis of CPU utilization by different techniques. The proposed 
technique shows the least CPU utilization.
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Fig. 5   Unit improvements for migrations
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5 � Conclusion

The Swarm Intelligence (SI) is aimed to find the best optimal solution in terms of VMs to 
minimize the need for a large number of migrations. In the paper, Enhance ABC is used 
as an SI technique that guides the selection of VM using the ABC fitness function and 
concept of flower pollination. The simulation studies were performed using 10,000 VMs 
evaluated in terms of SLA violations, energy consumption, and several VM migrations. 
The extensive experimentation and analysis show that OMES requires reduced VM migra-
tions that conserve unnecessary power consumption and exhibit the least SLA-Vs. It is con-
cluded that OMES indicates the most considerable unit improvement of 0.476 in terms of 
SLA-V, 0.485 for power consumption, CPU utilization least, and 0.305 for VM migrations 
compared with two existing studies. In the future, the author looks forward to integrating 
other SI techniques to design a hybrid optimization architecture to further reduce energy 
consumption by improving the VM selection process and minimizing VM migrations.
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Table 6   Comparative feature 
analysis of the proposed work 
against existing work

Feature Proposed OMES Nashaat et al

CPU Utilization √ √
RAM √ √
Processing Algorithm 

(k-means)
√ √

SI Algorithm ABC √

Table 7   Comparative Analysis of CPU utilization

Total Number 
of VMs

ABC + BA [42] ACO [43] CSA[44] DC-MFA [45] CPU-OMES

10 935 1323 1254 886.2 884.1
20 1679 1535 1203 1228 1179
30 1599 1095 1254 965 897
40 1599 1614 1502 1135 1132
50 985 1311 1140 1390 1299
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