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Abstract
The fast-growing web technology is more focused on developing optimized image com-
pression tools to increase the efficiency of search engines and data validation. The wavelet-
based progressive image compression is a more popular compression technique used in 
standard JPEG 2000 codec design for multimedia image applications. The embedded zero 
tree wavelet coding (EZTW) is one of the lossy wavelet-based image compression which 
produces a high compression rate by neglecting redundant coefficients during encoding. 
However, singular value decomposition (SVD) is a lossless image compression, where 
high energy compaction and adaptability for local variance made its reconstruction quality 
high with a shortcoming compression ratio. In this proposed hybrid technique, the mean 
extracted image is segmented into blocks were subjected to SVD and modified EZTW 
compression. In addition, adaptive thresholding and rank selections by using an optimizer 
algorithm help in scoring high compression rates and effective edge reconstruction. The 
comparative study of the proposed technique with the art of work shows an enhancement in 
PSNR scores, significantly obtained at 24.64 dB even at high compression rates (90:1) for 
boat images.

Keywords Image compression · singular value decomposition (SVD) · modified embedded 
zero-tree wavelet (MEZTW)

1 Introduction

Internet usage has become a vital part of our daily life and almost two third of the global 
population is interconnected with web applications [1]. The web-based devices such as 
smartphones and tablets influence each individual connected across the world and upraise 
the demand for designers to develop advanced data processing tools [2]. In general, web 
contents include high-resolution images, text, audio, and video data which are larger in 
volume and require more transmission time for its communication. Image compression 
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is a conventional method to reduce the size of data without disturbing the architecture of 
the system [3]. The wavelet-based progressive image compression is one of the prominent 
algorithms used in current compression technology available in both lossy and lossless 
methods [4].

Motivation Even substantial wavelet methods are effective in high-quality reconstruction 
despite having limitations on storage and transmission bandwidth. The ability of feature 
extraction in JPEG 2000 from the region of interest dealt with compression ratio, even 
at low bandwidth transmission is quite impressive and made this codec ideal for internet/ 
network applications. Hence, revisiting the old compression algorithm and reducing all its 
constraints for generating the best possible image quality reconstruction with a high trans-
mission rate is a rousing step in compression technology.

Problem Statement Shapiro’s Embedded Zero Tree Wavelet coding (EZTW) provides 
tunable resolution in embedded bit stream with wider dynamic range, and less error [5]. 
However, they consume a lot of computer processing power and provide the best results. 
There is a tradeoff in achieving quality reconstruction at dynamic range and no such tuning 
options for quality enhancement. Achieving low bit rate transmission, high compression 
ratio, and preservation of image quality during reconstruction are the key factors we are 
focusing on in this work.

Literature review The quest for efficient lossless image coding is always critical at low 
bandwidth transmission in network applications. The spatial-based image compression is 
a very primitive method, achieving compression either by eliminating the recursive pixels 
or by predicting the neighborhood pixels in adaptive lossless compression [6]. The mul-
tiresolution property of wavelet transform made it a robust compression algorithm in iden-
tifying redundant sub-bands and their removal [7]. The multiresolution scaling and adap-
tive thresholding property in Wavelet transform for image reconstruction made remarkable 
changes in image compression technology. The JPEG and JPEG2000 are prominent com-
pression standards that use discrete cosine and wavelet transforms as conventional methods 
for image compression [8, 9]. JPEG compression has the substantial disadvantage of block-
ing artifacts and information reliance in an Image [10]. The EZTW is an efficient wavelet-
based image compression that produces a fully embedded bitstream with high compres-
sion performance [5]. Later, much revolutionary research happened in compression coding 
using the EZTW algorithm, which includes Set Partition Hierarchical Tree (SPIHT), 
Embedded Block Coding Technique (EBCOT), Wavelet Difference Reduction (WDR), and 
Advanced WDR (ASWDR) [11–15]. Many attempts were made to hybridize the EZWT 
algorithm to reduce its constraints and enhance the compression performance suggested in 
the literature [16–20]. In [21], the author proposed a hybrid image compression algorithm 
that uses WDR with SVD followed by resolution enhancement using stationary wavelet 
transform (SWT) and discrete wavelet transform (DWT). Whereas, the low-frequency sub-
band is decoded by inverse WDR and the high-frequency sub-band by matrix multipli-
cation. As a result, the quality of a reconstructed image is significantly improved with a 
reduced embedded bit stream. In [22], a blended compression algorithm using SPIHT with 
SVD retains image quality by effective edge reconstruction and block-based SVD for low-
frequency sub-bands during reconstruction. With the above literature survey, we can say 
the hybridization of dynamic image compression with SVD will perhaps improve the com-
pression performance.
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Contribution This proposed work made an effort to enhance the traditional EZTW algo-
rithm by using Segmentation based adaptive EZTW with SVD for tunable compres-
sion rates. In this algorithm, compression speed is increased by increasing the correlation 
between wavelet coefficients and dividing the entire image into small chunks, and then com-
pressing it into an embedded bit stream. In SVD, the distribution of singular values and their 
percentage of ranks are augmented by an optimizing algorithm. Meantime, adaptive EZTW 
compresses the image with an optimal threshold value targeting edge recovery. This hybrid 
algorithm found significant improvement in terms of PSNR and tested with standard test 
images and compared with Basic EZTW with Huffman coding, SPIHT, and JPEG.

This paper is organized as follows: proposed hybrid compression algorithm is explained 
in section II. Section III describes the functional block of the proposed hybrid compression 
method. The quality metrics, experimental outcomes, and result analysis are explained in 
sections IV, V then followed by a conclusion in section VI.

2  The proposed hybrid compression algorithm

In this proposed algorithm, the image is compressed in two different stages, using SVD and 
modified EZTW(MEZTW) as follows,

2.1  Compression using SVD

The general, SVD considers the image frame as a two-dimensional matrix of m x n pixels. 
Each pixel has its grey scale intensity ranging from 0 to 255. The SVD detaches the matrix 
into three product matrices UαVT, where U and V are the orthogonal matrices of m x n and 
n x n, respectively, and α is a non-negative and diagonal matrix of m x n [23]. Here com-
pression is achieved by selecting the minimum number of ranks in the diagonal matrix to 
approximate the original image during the reconstruction process.

Here we refine the SVD in two additional steps:

• Calculate the mean value of the image matrix, then subtract the image matrix by its 
mean value before SVD and then add the mean value during reconstruction.

• Divide the mean extracted image matrix into sub-block to use the irregular density 
of the original image. Select the suitable percentage of the sum of the singular value 
instead of the predetermined value [24].

Consider for an image J, the segmentation-based rank one SVD process is given by.

a. A matrix ‘S’ is obtained by subtracting the original image matrix ‘J’ from its mean 
value.

b. Define the block size (256 × 256,512 × 512……..) for segmentation.
c. Apply the forward SVD for each sub-blocks of matrix ‘S’ by using Eq.2.

(1)S(m, n) = J(m, n) − mean(J)
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  Where Au is m × m matrix of orthogonal eigenvectors of A × AT, Av is a transpose 
of is n × n matrix consisting of orthogonal eigenvectors of AT × A and A∝ is m × n 
diagonal matrix of singular values, square root of eigenvectors AT × A. Further, the 
average rank of matrix P is calculated from SVD by using some nonzero singular 
values in A∝.

d. The average rank matrix is calculated by using Eq. 3

  Where, ∝i is the ith singular value and ui, vi are the corresponding left and right sin-
gular vectors.

e. The specific percentage of ranks is calculated by using Eq. 4 and Table 1

Where ′Pk
′ is the average rank matrix, ′σk

′ is a variance of singular values for each sub-
blocks of the image.

Table 1 provides a piece of information on the selection of percentage rank, and singu-
lar value for block size 8 × 8 from updated singular values 25% to 85% (concerning edge 
preservation index).

f. Apply the Inverse SVD for reconstruction

Where, Tu is m by n, Tv is K1 by n, and α1 =  diag (r1, r2, r3, .…, rk1)

g. Recombine all sub-blocks to get S(m,n), then add the mean value to reconstruct the 
original image.

*Rank one updated SVD exploits the distribution of singular values in the diagonal 
matrix. This singular value distribution varies along with image complexity.

(2)
[

Au,A∝,Av

]

= svd[S(m, n)]

(3)P =
∑min(m,n)

i=1
∝
i
u
i
v
i

(4)Specified percentage
(

Sp
)

=

(

p1 + p2 + p3 +…⋯ + pk
)

(

�1 + �2 + �3 +…⋯ + �k
)

(5)B(m, n) = svd
(

Tu, T�
k1, Tv

)

(6)J−1(m, n) = S(m, n) + mean(J)

Table 1  Average ranks and their 
percentage for given singular 
values of boat image

singular values Avg. ranks % of avg. ranks

95 1.000 0.125
85 1.000 0.125
70 1 .120 0.130
55 1 .022 0.127
25 2.340 0.134
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2.2  Compression using MEZTW

The low bit rate is a major problem in EZTW coding because of scalar quantization 
which generates a sequence of zero and non-zero symbols [25, 26]. The probability of 
zeros in overall symbols is always high and so low bit rate transmission is difficult. But 
somehow it is possible by designing adaptive quantizers and encoders. A new modified 
adaptive threshold compression algorithm used in [27] shows a possible way for con-
serving the significant subband and killing unwanted zeroes in an embedded bit stream. 
It uses parent-child relations in decomposed wavelet coefficients using adaptive thresh-
old and creates a new data structure with zero trees to encode the symbols.

The source image is decomposed by using pyramid decomposition [28] with Debau-
chee’s wavelet filters at level 3 as shown in Fig. 1a. Scan the complete image by using 
raster scanning order then classify the coefficients as

a. Parent: Coefficients at crude decomposed scale. (Each parent has four offspring)
b. Child: Coefficients correspond to the same spatial location at the next bigger scale of 

parallel direction.
c. Descendent: Coefficients Child’s offspring.

The initial threshold of EZTW is calculated by using the formula for decomposed 
wavelet coefficients I(m,n),

Significance mapping If a wavelet coefficient ‘z’ is said to be significant if∣z ∣  > T0, oth-
erwise coefficient is considered insignificant. And also, symbols are classified as shown in 
Fig. 1b based on their status as follows,

• Zero tree roots: Coefficient and child are zero.

(7)T0 =
[

log2(max(I))
]2

Fig.1  a Wavelet Pyramid decomposition of sub-band with parent-child relation; b flow of Significant map-
ping for wavelet coefficients
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• Isolated Zero: The coefficient is insignificant but has significant descendants.
• Positive Significant: Coefficient values with a positive sign greater than the threshold value.
• Negative Significant: Coefficient values with a negative sign greater than the threshold value.

2.3  Optimizer for Adaptive threshold

A coarse compressed image is obtained from the first iteration with initial threshold and aver-
age ranks. The optimizer algorithm is designed in a way that image quality can be adopted by 
using a modified threshold value for required quality at a fixed compression ratio.

• The adaptive threshold for MEZTW is calculated by computing the median of the 
ordered list of reconstructed block coefficients φ using Eq.8.

  Whereas, n is the number of values of the data set from the reconstructed image. 
Then, carry out the significance test and repeat the process until the required bit rate 
is achieved. These symbols are encoded by a Huffman encoder, and finally, a lengthy 
compressed bit stream is obtained.

• With the help of a first-level reconstructed image, a specific percentage is normalized 
by Eq.9

  
  then sort the ranks left to right based on significance 

(

S+
p1

≥ S+
p2

≥ …… .., S+
pmin

≥ … .0
)

 
and eliminate less significant specific ranks and apply for image blocks in the second itera-
tion. The application of adaptive ranks is more effective in minimizing the noise and pre-
serving the edge information in the image block.

3  Process flow of the proposed compression method

In this proposed method, the SVD compression is used for mean extracted source image blocks 
followed by the MEZTW encoder to get a compressed bit stream. Meantime, the optimizer 
calculates the average ranks and adaptive threshold value based on a reconstructed image in 
the first iteration to reduce the size of a bit stream. This process will continue until all blocks of 
the original image are compressed and reconstructed for a defined bit rate Fig. 2 and 3.

It takes the following steps,

a. Preprocessing: The original image is scaled down to standard size (1024 × 1024) to 
perform compression on a standard-size image. The mean subtraction method is the 
most common normalization process to increase inter-pixel relations and streamline 
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the compression bit stream. The geometric interpretation is to Centre the significance 
pixels around the origin along each dimension by removing the mean across each unique 
feature in the image using Eq. 1.

b. Segment the image matrix into blocks of standard size (256 × 256 or 512 × 512). This 
step will help in increasing the coding efficiency of compressors.

c. SVD Compression: Apply SVD compression using Eq.2 and 4 with the application of 
adaptive ranks.

d. The application of MEZTW compression for given blocks:

Fig. 2  Pipeline view of proposed MEZTW with SVD algorithm

 Mean extracted Block1    Mean extracted Block3

 Mean extracted Block2  Mean extracted Block4

Fig. 3  mean extracted blocks of Lena image
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Let, B(m,n) = db4 wavelet coefficients of blocks

• l = level of wavelet subtrees in a significant Mapping
• l _ max  = maximum decomposition level of significant mapping
• Qn(.) = n bit linear quantizer
• AST _ Enc(.) = Adaptive significant tree symbol encoder
• ES = Encoded symbol.
• K(m, n) = Spatial oriented tree of root B(m, n)
• P3 = subtree of K(m, n)at level 3
• βs(m, n) = Significant Coefficient of subtree P3
• Z(m, n) = encoded positions of βs

Step1: Calculate the minimum number of bits required to encode decomposed coefficients

Apply n-bit quantizer:

Step2: Apply Adaptive threshold from eq.8.
Step3: Significant mapping:

Step4: Bitstream based on coefficients significance:

(10)n =
[

log2{max |B(m, n)|}
]

(11)BQ(m, n) = Qn{B(m, n)}

if (|Q[B(m, n)]| > |B(m, n)|)

Ref Bit = 1;

else

Ref Bit = 0;
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Step5: Update the Threshold. Tadp = Tadp

2
 and repeat step 3.

e. The embedded bit stream is decoded by the Huffman decoder followed by Debouches 
4 wavelet reconstruction filters.

f. The optimizer algorithm calculates the finest ranks and threshold using eq. 9 and 10 for 
both compression sub-blocks.

g. Use inverse SVD for all sub-blocks using Eq. (5) and add the extracted mean value.

4  Quality metrics

There are several metrics available to evaluate the quality of reconstructed image, but in this 
paper, we use three common error metrics peak signal-to-noise ratio (PSNR), structural simi-
larity index mode (SSIM), and edge-preserving index (EPI) to measure the performance of the 
proposed algorithm. PSNR is given as,

Where M, N is the size of the image and  Io is the original image  Ir is a reconstructed image, 
Q is 255 for the grayscale image. Variation of brightness in a reconstructed image amplifies 
the PSNR values. Measuring only PSNR is not the best choice to evaluate the image quality, 
therefore we use SSIM as an improved version of PSNR and measures clears the inconsist-
ency in human visual perception. It is defined as [26],

x and y correspond to two image blocks that need to be measured,μx, μyare average 
and σxσyare the variance of x, y respectively. σxy Is the covariance of x and y.C1 = (K1L)2, 
and  C2 = (K2L)2 Are variables of the stabilization factor. L = dynamic range, K1 = 0.01, 
K2 = 0.03It measures the similarity index of the reconstructed image concerning the original 
image.

The edge preservation is a quantitative measure, calculated by using the formula for refer-
ence grayscale image I(x,y),

Where Î(m, n) is the estimated pixel intensity of the reference image, I (m, n) and Î(m, n) 
are the mean value of the reference image in the region of interest.∆I(m, n) is a highpass 
filtered version of I(m, n), obtain from the  3 × 3 pixel standard estimate of the Laplacian 
operator [29].

(12)MSE =
1

MN

∑M,N

i,j=1

(

Ir(m, n) − Io(m, n)
)2

(13)PSNR = 10log10
(

Q2∕MSE
)

(14)SSIM(x, y) =

(

2�x�y + C1

)(

2�xy + C2

)

(

�2
x
+ �2

y
+ C1

)(

�2
x
+ �2

y
+ C2

)

(15)EPI =
𝜏

(

ΔI − ΔI, Δ̂I − Δ̂I
)

√

𝜏

(

ΔI − ΔI,ΔI − ΔI
)

𝜏

(

Δ̂I − Δ̂I, Δ̂I − Δ̂I
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5  Simulation results and discussions

The proposed compression algorithm is evaluated by using standard test images collected 
from (8-bit grayscale test images) from the SIPI database, which is shown in Fig. 4.

The tabulations in Table 2, 3, 4, 5, 6, 7, 8, 9 and 10 shows a comparative study of the 
proposed method with EZTW, SPIHT, JPEG, and WDR_SVD in terms of PSNR, SSIM, 
and EPI at compression ratio 30:1,70:1,90:1 respectively.

Tables 2, 3 and 4 show that the PSNR values of the proposed method are improved 
from the basic EZTW method and compete with other algorithms. The PSNR value 

OriginalImage With S = 25(r=0.125) With S = 55(r=0.125)

With S = 70(r=0.130) With S = 85(r=0.127) With S = 95(r=0.134)

Fig. 4  SVD Compressed block4 Image using different levels of singular values ‘S’ with Average ranks ‘r’

Table 2  PSNR comparison for fixed CR 30:1

Images EZTW(DB) SPIHT(DB) JPEG(DB) WDR_SVD(DB) MEZTW_
SVD(DB)

Artificial 27.54 29.34 28.43 27.98 28.60
Big_Building 25.95 26.85 27.94 28.67 28.86
Boats 28.39 29.27 30.43 31.01 31.30
Bridge 27.33 26.35 27.79 28.24 28.13
Deer 31.78 38.32 39.45 34.78 32.07
Fireworks 34.02 33.29 34.24 36.09 35.09
Goldhill 28.88 30.20 31.09 30.67 32.13
Lena 29.26 33.24 34.77 31.65 32.38
Peppers 30.38 31.28 30.87 30.33 32.59
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of the proposed method for boat image is 0.8 dB, 0.2 dB, and 2 dB higher than the 
WDR_SVD, JPEG compression technique at compression ratios 30:1, 70:1, and 90:1 
respectively.

Tables 5, 6 and 7 shows SSIM values of the proposed method and other algorithms at a 
compression ratio of 30:1, 70:1, and 90:1. The SSIM value of the proposed method at 30:1 
was found satisfactory compared to other algorithm except for deer and Lena images. The 
deer and fireworks have a rich number of artifacts and compression with high CR value 
coarsely removes that feature during reconstruction Fig. 5.

However, in Tables 8 and 9, the EPI value of the proposed method is comparatively 
higher than that of other methods, but images of firework, artificial, etc. have a set of 
large significant information, and preserving all of them give less EPI. The edge-preserv-
ing capacity of the proposed method is retained even at a high compression ratio can be 
observed in Table 10.

Figure 6 shows a graphical comparison of the proposed method with the art of work for 
Boat images in terms of PSNR, SSIM, and CR. This graphical comparison shows that the 
PSNR and SSIM of the proposed method compete with other algorithms in achieving high 
reconstruction quality.

Table 3  PSNR comparison for fixed CR 70:1

Images EZTW(DB) SPIHT(DB) JPEG(DB) WDR_SVD(DB) MEZTW_
SVD(DB)

Artificial 22.51 25.61 26.42 27.22 24.22
Big_Building 21.84 24.02 25.06 26.41 24.41
Boats 23.21 26.44 26.59 26.24 26.70
Bridge 21.85 23.35 23.54 23.27 23.45
Deer 28.48 33.06 34.73 34.56 29.20
Fireworks 23.25 25.06 24.69 27.89 23.60
Goldhill 24.08 27.42 27.51 26.59 27.21
Lena 24.29 29.61 28.32 27.36 27.45
Peppers 24.28 29.66 28.99 29.21 27.34

Table 4  PSNR comparison for fixed CR 90:1

Images EZTW(DB) SPIHT(DB) JPEG(DB) WDR_SVD(DB) MEZTW_
SVD(DB)

Artificial 20.34 21.94 23.78 23.54 22.03
Big_Building 18.34 20.96 20.75 20.03 21.23
Boats 21.16 23.07 22.12 23.65 24.69
Bridge 19.14 20.45 20.34 20.09 21.23
Deer 24.18 27.46 25.09 24.98 25.13
Fireworks 19.44 24.39 22.14 19.67 19.61
Goldhill 21.85 24.24 24.32 24.63 24.99
Lena 21.24 24.94 24.98 24.73 24.75
Peppers 20.87 24.74 24.66 23.99 24.08
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5.1  Computational complexity

The extraction of the mean from the image increases inter-pixel relation and partition of the 
image into subblocks for SVD to enhance coding efficiency and time reductional process. 
The steps in level two compression using adaptive specific ranks in SVD and encoding of 
blocks in MEZTW with significance mapping for adaptive thresholds are an addon for this 
algorithm. There is an uncertainty between reconstruction quality PSNR and bit per pixel 
(BPP) since high PSNR favor a larger number of encoding bit stream. Hence, the compu-
tational cost is associated with the range of significant mapping in MEZTW and the opti-
mization process. This algorithm attempts to reduce the range of embedded bit stream with 
the optimal threshold at a high compression rate of 90 but, a smaller bitstream affected the 
quality of the decoded image and SSIM.

It is shown in Fig. 7. The firework image is compressed by the proposed method at 
compression ratios 30:1, 70:1, and 90:1 respectively. In Fig. 8 the boat image is com-
pressed by using EZTW, SPIHT, JPEG, and the proposed method at a fixed compression 
ratio of 50:1. From Fig.  8 we can observe the perceptual quality of the reconstructed 
image by the proposed compression algorithm is efficient and improved from basic 
EZTW algorithm.

Table 5  SSIM values for fixed 
CR 30:1

Images EZTW SPIHT JPEG WDR_SVD MEZTW_SVD

Artificial 0.845 0.818 0.819 0.839 0.846
Big_Building 0.768 0.712 0.733 0.746 0.767
Boats 0.802 0.789 0.763 0.799 0.806
Bridge 0.862 0.828 0.852 0.865 0.841
Deer 0.907 0.957 0.942 0.965 0.908
Fireworks 0.924 0.892 0.904 0.901 0.932
Goldhill 0.820 0.776 0.791 0.818 0.821
Lena 0.867 0.881 0.868 0.832 0.858
Peppers 0.893 0.785 0.799 0.789 0.880

Table 6  SSIM values for fixed 
CR 70:1

Images EZTW SPIHT JPEG WDR_SVD MEZTW_SVD

Artificial 0.519 0.690 0.664 0.658 0.621
Big_Building 0.522 0.577 0.594 0.556 0.525
Boats 0.573 0.676 0.655 0.635 0.576
Bridge 0.616 0.711 0.705 0.709 0.619
Deer 0.786 0.920 0.912 0.774 0.787
Fireworks 0.620 0.772 0.694 0.723 0.778
Goldhill 0.537 0.668 0.523 0.511 0.537
Lena 0.656 0.804 0.798 0.605 0.646
Peppers 0.695 0.753 0.656 0.666 0.695
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Table 7  SSIM values for fixed 
CR 90:1

Images EZTW SPIHT JPEG WDR_SVD MEZTW_SVD

Artificial 0.371 0.512 0.440 0.475 0.542
Big_Building 0.372 0.421 0.463 0.475 0.380
Boats 0.478 0.540 0.490 0.489 0.568
Bridge 0.491 0.548 0.498 0.499 0.569
Deer 0.734 0.842 0.759 0.766 0.745
Fireworks 0.545 0.671 0.643 0.654 0.742
Goldhill 0.447 0.544 0.581 0.533 0.450
Lena 0.565 0.682 0.564 0.587 0.568
Peppers 0.580 0.638 0.632 0.646 0.590

Table 8  EPI values for fixed CR 
30:1

Images EZTW SPIHT JPEG WDR_SVD MEZTW_SVD

Artificial 32.6 34.8 39.7 36.4 37.0
Big_Building 33.4 36.9 44.2 40.0 39.3
Boats 30.3 29.2 34.6 34.7 35.3
Bridge 41.5 40.9 41.8 40.7 42.1
Deer 44.5 43.8 47.8 45.6 48.0
Fireworks 26.7 28.6 32.2 31.7 30.4
Goldhill 30.6 33.2 33.4 32.9 33.6
Lena 41.5 42.1 45.7 44.7 44.9
Peppers 48.8 49.2 50.3 52.3 53.7

Table 9  EPI values for fixed CR 
70:1

Images EZTW SPIHT JPEG WDR_SVD MEZTW_SVD

Artificial 20.2 23.4 24.6 23.9 24.7
Big_Building 26.2 26.7 29.0 28.8 30.4
Boats 28.4 28.5 28.8 29.7 30.2
Bridge 30.5 30.9 32.3 31.8 33.1
Deer 33.6 32.6 33.9 34.3 34.7
Fireworks 20.6 21.4 24.1 23.6 22.8
Goldhill 20.6 19.4 20.4 20.8 21.4
Lena 31.1 32.2 35.6 33.6 34.9
Peppers 35.9 32.4 36.6 37.1 38.3
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Fig. 5  Test images (a)Artificial; (b)Big_building; (c)Boat; (d)Fireworks; (e)Goldhills; (f)Lena; (g) Bridge; 
(h)Deer; (i)Pepper

Table 10  EPI values for fixed 
CR 90:1

Images EZTW SPIHT JPEG WDR_SVD MEZTW_SVD

Artificial 10.3 9.9 11.4 12.2 15.4
Big_Building 12.2 15.4 19.7 18.9 20.5
Boats 13.6 17.1 20.4 24.6 26.8
Bridge 20.5 23 25.1 24.5 25.6
Deer 18.4 20.1 22.5 22.3 22.8
Fireworks 7.4 6.5 14.3 16.2 16.7
Goldhill 16.6 19.4 20.4 19.8 20.6
Lena 19.7 20.3 21.6 20.4 22.8
Peppers 13.6 15.5 18.7 19.3 21.4
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Fig. 6  Graphical comparison of the proposed method with the art of work in terms of PSNR, SSIM v/s 
Compression ratio, (a) PSNR v/s Compression ratio, (b) SSIM V/s Compression ratio

(a)                                  (b) 

\ 

(c) (d)

Fig. 7  a Uncompressed fireworks image is compressed by compression ratios of (b) 30:1; (c) 70:1; (d) 90:1 
using segmentation-based rank one updated SVD_EZTW method
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6  Conclusion

The scaled SVD and EZTW are progressive image compressions that found significant 
improvement from current compression algorithms. The above result and discussion show 
this algorithm is an efficient image compression method for multimedia image compres-
sion applications. The determination of the advanced level of spots in SVD and low bit 
rate coding in MEZTW improves the PSNR estimation at a fixed compression rate. The 
one significant improvement we observed in this algorithm is at a high compression rate 
the image quality preservation was not worse than other algorithms. Even though the 
SSIM performance of the proposed technique is less contrasted with SPIHT and JPEG 
at a high compression ratio. Since in MEZTW compression at a high compression ratio, 
the unwanted image information is eliminated, even a few significant sub-bands were 
also neglected for low bit rate transmission. This algorithm efficiency can be enhanced by 
reducing time complexity at the point of segmentation and optimizer by using a neural 
network to compute the average ranks and thresholds. This technique effectively preserves 
edge information even at a high compression rate. In general, the proposed technique fun-
damentally improves the traditional way of the EZTW algorithm and is also relatively 
higher than SPIHT and JPEG aside from some points.
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(a) (b)

                              (c) (d)

Fig. 8  Original Boat image compressed by (a) EZTW; (b) Basic SPIHT; (c) JPEG; (d) proposed method at 
compression rate 50:1

https://sipi.usc.edu/database/database.php?volume=misc
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