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Abstract
Biomedical research heavily relies on automated image classification to enhance under-
standing of protein structure and function. This study proposes a novel approach for auto-
mating biomedical image categorization, addressing the challenges posed by intricate geo-
metric correlations among various categorical biological patterns. The proposed model 
incorporates modified histogram normalization (MHN) for image pre-processing, utiliz-
ing bi-cubic interpolation and a high boost filter to enhance image resolution and contrast. 
For segmentation tasks, the study introduces the multi-scale dense dilated semi-supervised 
U-Net (MDSSU-Net), which combines a convolution block and skip connection path 
within an enhanced encoder-decoder framework. The semi-supervised U-Net approach 
allows us to train the model with limited labelled data, significantly reducing the need for 
extensive annotations. To classify cancer cells in textured bio-images, we employ Grey 
Level Co-occurrence Matrix (GLCM) and Haralick’s feature extraction, which describes 
pixel intensity relationships within images. The task of automatic cancer classification is 
particularly challenging, considering the numerous histopathological images that require 
analysis to detect subtle abnormalities. For an accurate evaluation, we utilize performance 
metrics such as Dice Coefficient (DSC), Mean Intersection Over Union (MIOU), recall, 
precision, accuracy, sensitivity, specificity, and F1-score. The Elephant Herding Optimiza-
tion (EHO) method is employed to design a unique convolutional neural network, known 
as C-Net, for the classification of biological images. The experimental results demonstrate 
the superiority of the proposed model. The MDSSU-Net segmentation framework show-
cases improved performance, efficiently handling diverse segmentation challenges. Moreo-
ver, the semi-supervised U-Net training approach significantly reduces the dependence on 
labelled data, enhancing the model’s adaptability to various biomedical datasets. In can-
cer cell classification, the combination of GLCM and Haralick’s feature extraction proves 
highly effective, enabling the automatic detection of cancerous cells with high accuracy. 
The C-Net design, utilizing EHO optimization, outperforms other network architectures, 
achieving superior classification results for complex biological images. This automating 
biomedical image classification, contributes to the broader adoption of automated image 
analysis in modern biological studies and diagnostic procedures.
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1  Introduction

Today’s healthcare system relies heavily on medical imaging to carry out non-invasive 
diagnostic treatments. This entails creating functional and illustrative models of the inter-
nal organs and systems of the human body for use in clinical analysis. Its varieties include 
molecular imaging, magnetic resonance imaging (MRI), and ultrasonic imaging. X-ray-
based approaches, such as conventional radiography, computed tomography (CT), and 
mammography, are also included. In addition to these medical imaging modalities, clinical 
images are increasingly being utilised to diagnose a variety of disorders, particularly those 
that are skin-related [1, 2]. By separating various tissues, organs, lesions and biological 
structures, biomedical image segmentation is a current topic of research in medical analy-
sis that can support surgical planning, medical diagnosis, and treatment. Typically, pathol-
ogists perform segmentation manually. This procedure is laborious and time-consuming. 
The price of manual segmentation is rising, along with the quantity and variety of medical 
images. Therefore, it is essential to automatically segment biomedical images. The com-
plexity of the biomedical objects’ structures, as well as the low contrast, noise, and other 
impacts brought on by different medical imaging modalities and procedures, make this 
technique difficult [3].

The expense of manual segmentation is increasing in tandem with the growth in the 
quantity and variety of medical images. Consequently, automatic segmentation of bio-
medical images has become essential. This task is difficult, nevertheless, for several rea-
sons, including the complicated differences in the structure of the biomedical items and 
the low contrast, noise, and other effects brought on by different medical imaging modali-
ties and procedures [4, 5]. Low image quality and the absence of standardised annotation 
techniques for different imaging modalities can affect annotation quality. The quality of 
annotations can also be affected by other elements, such as the annotator’s attention span, 
display type, image-annotation software, and data misinterpretation due to lightning cir-
cumstances. A faster, more accurate and more dependable alternative to manual image seg-
mentation is an automated computer-aided segmentation-based diagnostic system that can 
transform clinical operations and enhance patient care. Computer-aided diagnosis will ease 
the burden on experts and lower the overall cost of attention [6, 7].

In biomedical image segmentation, U-Net architectures are typically employed to auto-
mate the prevention and analysis of target regions or sub-regions. Deep convolutional neu-
ral networks, residual neural networks, and adversarial networks are examples of advanced 
deep learning approaches. For establishing computer-aided diagnostic tools for the early 
detection and treatment of illnesses like brain tumours, lung cancer, Alzheimer’s, breast 
cancer, etc., using various modalities, U-Net-based approaches have recently demonstrated 
performance at the cutting edge in various applications [8, 9]. Multilevel dilated residual 
blocks were used instead of the convolutional blocks of the conventional U-Net to improve 
the learning capabilities. To eliminate the semantic gap and recover the data lost when con-
catenating features from the encoder to decoder units; this also advises adding nonlinear 
multilevel residual blocks are added to skip connections [10]. However, utilising current 
biomedical image categorisation techniques and approaches, it is not possible to extract 
further novel image attributes with unbalanced features. Biological-image categorisation 
and deep feature extraction have been proposed using a diagonal bilinear interpolated deep 
residual network [11].

Despite numerous attempts at this tricky quantitative analytic problem, it remains 
challenging to perform accurate automatic segmentation, particularly for soft tissue 
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organs. Deep learning-based networks have gained impressive performance in image 
processing during the past ten years thanks to the increased availability of datasets. An 
end-to-end multilayer network called RCGA-Net was introduced, inspired by cutting-
edge deep learning research. It comprises an encoder-decoder backbone that incorpo-
rates a global context extraction module to highlight more important information and 
a coordinate attention mechanism based on space and channel [12, 13]. A deep bidi-
rectional network was developed using the LMSER self-organizing network, a ground-
breaking model that folds an autoencoder along the central hidden layer so that the 
neurons on the paired layers between the decoder and encoder merge into one another, 
forming bidirectional skip connections. Although feedback linkages improve segmenta-
tion accuracy, they may also introduce noise [14, 15]. However, the task of automatic 
segmentation is challenging due to the complex differences in biomedical object struc-
tures, low contrast, noise, and other effects from various imaging modalities and pro-
cedures. The quality of manual annotations can also be affected by factors such as the 
annotator’s attention span, display type, image-annotation software, and misinterpreta-
tion due to lighting conditions, impacting the accuracy of segmentation.

To address this problem, U-Net architectures and advanced deep-learning tech-
niques have been employed in biomedical image segmentation. These approaches have 
shown promising performance in various applications, including early detection and 
treatment of diseases like brain tumours, lung cancer, Alzheimer’s, and breast cancer, 
using various modalities. Despite the progress, current biomedical image categoriza-
tion techniques still struggle to extract novel image attributes with unbalanced features. 
Moreover, accurate automatic segmentation, particularly for soft tissue organs, remains 
challenging, even with deep learning-based networks. Feedback linkages in deep bidi-
rectional networks, while improving segmentation accuracy, can also introduce noise, 
creating technical gaps in achieving precise and reliable automated segmentation.

In light of these technical gaps, the current study aims to address the challenges asso-
ciated with accurate and efficient automated biomedical image segmentation. By pro-
posing novel approaches and leveraging advanced deep learning techniques, the study 
seeks to overcome the limitations of current methods and contribute to the development 
of more reliable computer-aided diagnostic tools in medical research and patient care.

Motivation of the study

•	 Biomedical research heavily relies on accurate and efficient image classification for 
understanding complex protein structures and functions.

•	 Manual image analysis is time-consuming and labour-intensive, necessitating the 
development of automated image classification methods.

•	 Automating image categorization can significantly reduce the human workload and 
expedite research processes in the biomedical field.

•	 The challenges posed by intricate geometric correlations among various biological 
patterns call for advanced and specialized image classification techniques.

Contribution of the Current Study

•	 Introducing a novel approach for automated biomedical image categorization, 
addressing the complexities of intricate geometric correlations.

•	 Proposing the use of modified histogram normalization (MHN) for effective image 
pre-processing, enhancing resolution and contrast.
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•	 Introducing the multi-scale dense dilated semi-supervised U-Net (MDSSU-Net) for 
segmentation tasks, with improved performance in diverse scenarios.

•	 Implementing a semi-supervised U-Net training approach, reducing the need for exten-
sive labelled data and enhancing model adaptability.

•	 Leveraging Grey Level Co-occurrence Matrix (GLCM) and Haralick’s feature extrac-
tion for accurate classification of cancer cells in textured bio-images.

•	 Designing a unique convolutional neural network, C-Net, using the Elephant Herding 
Optimization (EHO) method, achieving superior results for biological image classifica-
tion.

The main objective of this research is to develop an advanced and efficient auto-
mated image classification system for biomedical applications. The proposed model aims 
to enhance the accuracy and reliability of image analysis, reduce manual workload, and 
accelerate discoveries in protein structure understanding and cancer cell classification. 
The article is organized as follows to present a clear and coherent exploration of the pro-
posed model and its outcomes. A comprehensive review of existing methodologies and 
techniques related to biomedical image classification is presented in Section 2. Section 3 
includes the problem definition and motivation, and Section 4 details the pre-processing 
materials and methods of the proposed technique. The outcomes of the proposed model are 
thoroughly evaluated in Section 5, comprehensive discussion of the experimental findings 
and the superiority of the proposed model is provided in Section 6. The research concludes 
by summarizing the achievements and contributions of the proposed model in automating 
biomedical image classification in Section 7.

2 � Literature survey

Biomedical signal processing, biomedical engineering, gene analysis, and biomedical 
image processing are only a few subfields of biomedical science research. Classification, 
detection, and recognition are of tremendous importance in the investigation and diagnosis 
of diseases. Das et al. [16] developed a biomedical image classification technique. Brain 
magnetic resonance imaging was used to analyse the brain tumour, and chest X-rays that 
were influenced by COVID were classified using an ensemble approach. Convolutional 
neural networks (CNN), long short-term memory, recurrent neural networks, and gated 
recurrent units are four heterogeneous base classifiers that are considered for this task, and 
metadata is generated. The ensemble output of the base classifiers, expressed in terms of 
class probability and labels, was fed into the fuzzy model. While it achieved good results 
in brain tumour and COVID-19 chest X-ray classification, the ensemble model’s interpret-
ability and computational complexity may pose challenges. Alnabhan et al. [17] used the 
development of biomedical image segregation to simplify complicated CNN hyperparam-
eter associations. The type and size of the kernel, batch size, learning rate, momentum, 
convolution layer, activation function, and dropout are some of the intricate characteristics 
of a CNN. For segmentation, the metaheuristic optimisation method of the EVO technique 
was applied. Although metaheuristic optimization methods can improve segmentation 
accuracy, they may require extensive computational resources.

Cancer is the leading cause of mortality worldwide. For this crippling condition to 
be treated properly, early detection is essential. To classify biological images, Barzekara 
and Yu et  al. [18] suggested a novel CNN architecture called C-Net, which comprises 
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the concatenation of several networks. On two open datasets, BreakHis and Osteosar-
coma, C-Net was used to classify histological images. The performance of the model was 
assessed using various reliability evaluation metrics. However, further investigation is 
needed to assess its generalizability and performance on diverse datasets. Textural char-
acteristics, clustering, and orthogonal transformations were utilised to identify and isolate 
breast tumours in a woman in an image. The results of their software implementation on 
biomedical images of oncological pathologies of breast cancer are the Hadamard trans-
form, oblique transform, discrete cosine transform, Daubechies transform, and Legendre 
transforms methods of analysis of texture images of breast cancer carried out by Orazayeva 
et al [19]. While these methods can identify breast cancer, their effectiveness on other 
types of cancer and scalability to larger datasets need evaluation.

CNNs have been the driving force behind deep learning, which has achieved outstand-
ing results in a variety of medical imaging tasks, including image classification, image 
segmentation, and image synthesis. However, to validate the model and make it interpret-
able, we also need to know how confident it is in its predictions. To segment images of 
brain tumours, Sagar et al. [20] developed an encoder-decoder architecture based on vari-
ational inference methods. While utilising a systematic Bayesian strategy to consider both 
epistemic and aleatoric uncertainties, this model may segment brain tumours. To improve 
the capacity of the network to capture intricate pixel correlations, the number of learnable 
parameters must be increased, which frequently results in overfitting or weak resilience. 
However, the model’s complexity and training requirements may limit its application in 
resource-constrained environments. Hyperconvolution, which was proposed by Ma et  al. 
[21], is a potent new building block that implicitly depicts the convolution kernel as a func-
tion of kernel coordinates. It was centred on difficult biomedical image segmentation tasks, 
and substituting hyper convolutions for standard convolutions results in more effective 
designs that yield higher accuracy. Nevertheless, the trade-off between increased model 
capacity and overfitting needs to be carefully managed. The first attempt to attain a sublin-
ear runtime and constant memory complexity for the random walker algorithm was made 
by Drees et al. [22], who presented a hierarchical design. The technique was quantitatively 
assessed using fictitious data and the CT-ORG dataset, where the anticipated algorith-
mic benefits were found. These models must be trained using many trainable parameters, 
floating-point operations per second, and powerful computing resources. Real-time seman-
tic segmentation in low-powered devices is highly challenging due to these characteris-
tics. However, its performance on real-time semantic segmentation tasks in low-powered 
devices needs to be further explored.

As a result, Olimov et  al. [23] changed the U-Net model in their study by creating a 
fast U-Net (FU-Net) that relies on bottleneck convolution layers in the model’s contraction 
and expansion paths. By providing a cutting-edge performance, the proposed model can 
be used in semantic segmentation applications. Using biomedical images, an intelligent 
method for classifying and detecting oral squamous cell cancer is developed by Alanazi 
et al [24]. Additionally, the DBN model based on the extended grasshopper optimization 
algorithm (EGOA) is used for the identification and classification of oral cancer. However, 
further validation on larger and more diverse datasets is necessary. The EGOA algorithm 
is used to tune the DBN model’s hyperparameters, improving the classification results. 
Hamza et al [25] developed a perfect deep transfer attempting to learn a human-centric bio-
medical diagnosis model for the detection of acute lymphoblastic leukaemia. The proposed 
model’s main objective is to recognise and categorise acute lymphoblastic leukaemia from 
blood smear images. Additionally, it divides the images into pieces using an MFCM algo-
rithm. Numerous simulations were run on an open-access dataset to examine the improved 
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performance of the method. However, the model’s performance on other types of cancer 
and its interpretability require further investigation. Mandakini Behera et al. [26] proposed 
the firefly algorithm can be integrated with the popular particle swarm optimization algo-
rithm. In this paper, two modified firefly algorithms, namely the crazy firefly algorithm 
and variable step size firefly algorithm, are hybridized individually with a standard par-
ticle swarm optimization algorithm and applied in the domain of clustering. The results 
obtained by the two planned hybrid algorithms have been compared with the existing 
hybridized firefly particle swarm optimization algorithm utilizing ten UCI Machine Learn-
ing Repository datasets and eight Shape sets for performance evaluation. In addition to 
this, two clustering validity measures, Compact-separated and David–Bouldin, have been 
used for analyzing the efficiency of these algorithms. The experimental results show that 
the two proposed hybrid algorithms outperform the existing hybrid firefly particle swarm 
optimization algorithm. However, the comparison with other optimization algorithms and 
scalability to larger datasets should be considered.

Sirisati Ranga Swamy et al. [27] predicted the effects of the disease outbreak and help 
detect the effects in the coming days. In this paper, Multi-Features Decease Analysis 
(MFDA) is used with different ensemble classifiers to diagnose the disease’s impact with 
the help of Computed Tomography (CT) scan images. There are various features associ-
ated with chest CT images, which help know the possibility of an individual being affected 
and how COVID-19 will affect the persons suffering from pneumonia. The current study 
attempts to increase the precision of the diagnosis model by evaluating various feature sets 
and choosing the best combination for better results. The model’s performance is assessed 
using Receiver Operating Characteristic (ROC) curve, the Root Mean Square Error 
(RMSE), and the Confusion Matrix. It is observed from the resultant outcome that the per-
formance of the proposed model has exhibited better efficient. However, further evaluation 
of diverse CT scan datasets and comparison with other forecasting models is essential.

In this work, the article aims to address some of the limitations observed in the existing 
methods by proposing a novel approach that incorporates modified histogram normaliza-
tion, the MDSSU-Net segmentation framework, and the Elephant Herding Optimization 
(EHO) method for convolutional neural network design. This model is expected to offer 
improved performance, interpretability, and efficiency in biomedical image classification 
and segmentation tasks, contributing to the broader adoption of automated image analysis 
in biomedical research and diagnostic procedures. The experimental results will be dis-
cussed in detail, including comparisons with other well-known evaluation metrics, to vali-
date the effectiveness of the proposed approach.

3 � Research problem definition and motivation

Today’s healthcare system relies heavily on medical imaging to carry out noninvasive diag-
nostic treatments. This entails creating functional and illustrative models of the internal 
organs and systems of the human body for use in clinical analysis. It comes in a variety 
of forms, including X-ray-based techniques including traditional X-rays, computed tomog-
raphy (CT), and mammography; molecular imaging; magnetic resonance imaging (MRI); 
and ultrasonic imaging. Clinical images, in addition to these medical imaging methods, are 
increasingly being utilized to diagnose a variety of disorders, particularly skin-related ones. 
Medical imaging consists of two different processes: image production and reconstruction, 
and image processing and analysis. While image analysis collects numerical data or a set 
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of features from the image for object identification or classification, image processing uses 
techniques to improve image attributes like noise reduction. Technology advancements 
have made it easier to acquire photographs, which has resulted in the production of enor-
mous numbers of high-resolution images at extremely low costs. The creation of biological 
image processing algorithms has significantly advanced as a result. In turn, this has made it 
possible to create automated algorithms for information extraction through image analysis 
or evaluation. Diagnostics, healthcare, and drug treatment are just a few of the many uses 
for biomedical images. Biomedical imaging techniques like microscopy can expose regions 
and things that are beyond the range of the human eye’s normal resolution, exposing signif-
icant insights into the structures of the smallest objects. Despite the enormous advantages 
that biomedical images offer for clinical practice and biomedical research, traditionally 
only trained researchers and clinicians may assess these images. Visual inspection is sus-
ceptible to difficulties from both subjective and objective viewpoints, even when specialists 
are well-trained to spot characteristic patterns in the photographs, such as odd shapes and 
colours. When modifying and training a neural network, many expert decisions must be 
made, including the precise network architecture, the training schedule, and the methods 
for data augmentation or post-processing. Biomedical image segmentation has long been 
one of the most crucial tasks in biomedical imaging research due to the widespread use of 
medical imaging in healthcare.

•	 The need for automated image classification in modern biomedical research to acceler-
ate understanding and discovery.

•	 Enhancing the efficiency of image analysis to handle the vast amount of data generated 
in the biomedical field.

•	 Overcoming the challenges of intricate geometric correlations and subtle abnormalities 
in biomedical images.

•	 Advancing the state-of-the-art in image segmentation and classification, leading to 
more reliable and accurate results.

•	 Offering a robust and adaptable model that can be applied to various biomedical data-
sets with limited labelled data.

By addressing these motivations and making significant contributions, the current 
study aims to revolutionize automated biomedical image classification and facilitate break-
throughs in the field of biological research and diagnostics.

4 � Proposed research methodology

In many countries, cancer is the leading cause of mortality. For this crippling condition to 
be treated properly, early detection is essential. It is difficult to automatically classify the 
kind of cancer since pathologists must analyse many histopathological images to find min-
ute abnormalities. As a result, the study suggested a segmentation and classification tech-
nique for biomedical images utilising a collection of brain images. The suggested work’s 
flow diagram is shown in Fig. 1.

The data is subjected to a specific set of operations during the data pre-processing stage, 
including resizing and normalisation to lessen intensity variation in image samples, aug-
mentation to produce more training samples to prevent the problem of class biases and 
overfitting, removal of pointless noise or artefacts from the data samples, etc. employing 
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modified histogram normalisation (MHN) and bicubic interpolation with high boost fil-
ter operation to pre-process the image. Computerized medical image analysis requires bio-
medical image segmentation. Positive outcomes have been obtained with the U-Net and its 
variations across many datasets. Considering this, the research suggested the multi-scale 
dense dilated semi-supervised U-Net (MDSSU-Net), in which at each resolution level, the 
model is supervised and the field of view in each level varies based on the depth of the 
resolution layer. Therefore, Haralick features are used in the feature extraction procedure. 
Haralick characteristics were extracted using a grey-level co-occurrence matrix (GLCM). 
A timely cancer diagnosis is essential to receiving effective therapy for this crippling con-
dition. It is difficult to automatically classify the kind of cancer since pathologists must 
analyse many histopathological images to find minute abnormalities. In this study, a CNN 
architecture with an elephant herding optimization technique, known as C-Net, is proposed 
to categorise biomedical images.

4.1 � Image dataset

Two publicly accessible databases provided the MRI datasets used in the investigation. 
Strong magnetic fields are utilised in MRI imaging to create images of bodily tissues, 
organs, and physiological processes. Soft tissues or non-bony body parts are scanned using 
MRI technology. MRI scans can be used to discriminate between grey and white matter in 
the brain, which helps doctors identify tumours and aneurysms. The Open Access Series 
of Imaging Studies (OASIS) project has compiled neuroimaging datasets with more than 
2000 MRI sessions for biomedical imaging researchers.

4.2 � Preprocessing image

The scarcity of massive data for training new machine/deep learning models poses sig-
nificant issues in the field of medical imaging because these models are inherently data-
hungry. Data augmentation offers a means to overcome the problems with tiny datasets by 
creating fake data and adding it to the training set. To achieve this, all experiment-related 
image intensities are initially scaled to the range of 0 to 1. The pre-processing algorithm 
receives the raw images. The two main modules of the proposed pre-processing approach 
are artefact and noise removal and resampling and normalisation. These photos were also 
utilised to train the suggested models and to verify the suggested normalising and smooth-
ing techniques. The Modified Histogram Normalization (MHN) technique was used to 

Fig. 1   Flow of the Proposed Work
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handle image normalisation. Bicubic interpolation is utilised in pre-processing to denoise 
captured images, and a high boost filter is employed to increase their contrast.

4.2.1 � Modified Histogram Normalization

In the suggested MHN approach, intensity scaling and normalisation are the two processes 
qmin and qmaxthat are involved. First, during intensity scaling, the region of interest with 
low intensity (ROIl) and the region of interest with high intensity are represented by (ROIh) 
in the original (reference high-quality) image and are determined from its histogram after 
smoothing, assuming that the minimum and maximum intensity levels on the standard 
scale are denoted by and. A function g(x, y)shown in Eq. (1) is used to transfer the image’s 
intensity to values between ROIh and ROIl.

Where f(x, y) denotes the equivalent transformed grayscale value x, y and g(x, y) is the 
corresponding grayscale value of the original image at coordinate. Second, using a func-
tion h(x, y) depicted in Eq. (2), the original image is shifted and extended during normalisa-
tion to cover all the grayscale levels in the image.

The original image can be scaled up between the lower boundary m1and upper bound-
ary m2if the target histogram of the original image functions g(x, y)at qminand qmaxspreads 
up to grayscale levels in the intensity region of interest (ROI). This will cause the pixels in 
the normalized image to lie between the minimum intensity level (ROIl) and the maximum 
intensity level (ROIh). The lower boundary and the higher boundary of the original image 
before scaling are represented by the variables m1 and m2.

Two different linear mappings can be made to normalize the image. P1, μi to S1, μsand 
μi, P2to μs, S2are the first and second mappings, respectively. The standard scale’s lower 
and upper bounds are then applied to S′

1
 , and S′

2
 , respectively, by mapping (m1, P1)to 

(
S′
1
, S1

)

and 
(
S′
2
,m2

)
 to 
(
S2, S

′
2

)
 . The conversion of the input image’s intensity 

(
S′
1
, S′

2

)
 to (m1, m2) of 

the standard scale is known as normalization. Equation (3) defines the normalizing func-
tion as N(x, y).

Where μi and μs are the mean values for the input image histogram and original histo-
gram, respectively, and [•]signify the “ceiling” operator. P1 and P2 come from the sup-
plied image’s pixel values. The low-quality photos (input images) were then normalised 
across the ROIl − ROIh ranges of their intensity using the high-quality (reference) image 
for each group. To ensure that all images have the same intensity normalisation, the pro-
cess is repeated across groups. The MHN will apply local contrast enhancement and edge 
enhancement to each region of the supplied input image. The HB bi-Cubic method will be 
loaded with the output of the MHN.
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4.2.2 � Bicubic interpolation with high boost filter operator

When the processing speed is unimportant, bicubic interpolation is typically used in place 
of bilinear interpolation or nearest neighbour. A cubic interpolation algorithm called BC 
uses luminance data from a bicubic array of 4 × 4 pixels to resample the luminance value of 
a point (16 pixels). To limit the impact of the high-frequency component on the image, the 
high-frequency component is multiplied by a coefficient. The boost coefficient is the name 
of this parameter. The original signal component and the high-frequency augmentation 
component make up the two sections of the high-boost filter. To reduce the high-frequency 
component’s impact on the image, the high-frequency element is multiplied by a coeffi-
cient. The boost coefficient is the term given to this coefficient. The following equation can 
be used to express the high boost filtering of any signalf.

Where,⊗ indicates the convolution operator, α denotes the boost coefficient, HP is the 
high pass filter, fbdefines the high boosted signal, and αis the boost coefficient. The Lapla-
cian operator (∇2) specifies a high pass filter that can be used in image processing. Conse-
quently, the high boost filter can be expressed as

For interpolation-based resampling, the third-order or cubic polynomial function has 
typically been used. A cubic polynomial function’s generic form is represented as

Where, a, b, c and d denotes the two random constants. As a result, the cubic polyno-
mial function’s high boost filtering can be represented as

Where,αis typically taken to be between −0.5 and − 0.75, and 𝑥 represents the grey level 
value. Based on high boost filtering, which altered the high pass term using the Lapla-
cian operator, this approach was used. The third-order polynomial was used to approach 
the interpolation formula. Consequently, the preceding is a formulation for the High Boost 
Cubic (HBC) interpolation.

By dividing the output size by the original image size, one can calculate the magnifica-
tion. The boost coefficient, which increases the output image’s sharpness, is the second 
parameter. It is used to multiply with the high-frequency component to reduce its influence. 
The HBC interpolation technique will compute both parameters to remove noise, and blur, 
and create high sharpness image results, improving the image resolution.

4.3 � Multi‑scale dense dilated semi‑supervised u‑net for image segmentation

Based on U-Net, some medical image segmentation techniques have been cre-
ated extremely quickly for performance enhancement. Application range, feature 

(4)fb = f + 𝛼 ⋅ HP⊗ f

(5)fb = f + �∇2f

(6)f (x) =
(
a + bx + cx2 + dx3

)

(7)f (x) =
(
a + bx + cx2 + dx3

)
+ �(2c + 6dx)

(8)yb(x, �) = B−1yi−1 + B0yi + B1yi+1 + B2yi+2
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augmentation, training speed optimization, training accuracy, feature fusion, small sam-
ple training set, and generalisation improvement are all areas where U-Net is enhanced. 
Different network structures have been designed using various methods to handle vari-
ous segmentation issues. It is suggested to use an enhanced encoder-decoder-based seg-
mentation architecture that incorporates a multi-scale densely connected convolution 
block and skip connection path. Additionally, a semi-supervised U-Net approach is used 
during the model training process to train the model, which can reduce the need for 
labelled training data.

The objective of a dense block is to learn all of the f features from the input features. 
Additional features kare learned at each step as the process iterates through numerous 
steps. Prior convolutional layers are connected to all succeeding layers by channel-wise 
concatenation, which is the main characteristic of dense connectivity. Based on the initial 
input and other attributes learnt in earlier layers, each subsequent step learns new features. 
As a result, there is no longer a need to master redundant features, and studying a wider 
variety of features is encouraged. The dense block was changed in this work to use both 
regular and dilated convolutions. Each phase involves learning some k/2 features using a 
conventional convolution and learning the rest of the features using dilated convolutions 
with a dilation rater. To reduce the possibility of gridding artefacts caused by employing 
only dilated convolutions, this combination was chosen. Dilated convolutions can effec-
tively learn global context due to their broader receptive field. Standard convolutions, on 
the other hand, may effectively learn local context because of their denser receptive area.

4.3.1 � Multiscale dense dilated U‑Net

An “encoder-decoder-refinement” framework governs the DD-Net. The encoder is a down-
sampling route that is used to increase receptive fields while reducing the resolution of fea-
ture maps. The distinctive usage of dense dilation blocks to capitalise on the advantages of 
dilated convolutions and dense connectivity is the primary innovation of the DD-Net. Over 
a two-dimensional feature map x, dilated convolution is exploited, and the kernel size kand 
filter ware applied to each position i on the output yas described in

Where the dilation rate d is equal to the sampling stride of the input signal. Convolut-
ing the input xwith up-sampled filters, which are created by adding (d − 1)zeros between 
two consecutive filter values along each spatial dimension, is similar to this method. Two 
convolutional layers and a max-pooling layer make up a standard U-Net block, and the out-
put feature map is transmitted through both layers. The dense dilated U-Net architecture is 
shown in Figs. 2 and 4.

In the proposed multi-scale architecture, the first convolutional layer of each block has 
three sets of kernels, each of which operates at a different scale. In other words, one set 
of kernels operates at the block’s input resolution, another set has a dilation and stride of 
two to reduce the resolution to half, and a third set has a dilation and stride of four to 
reduce the resolution to a fourth of the input. The article employed four dense blocks in 
this architecture’s encoder path, each of which is made up of two CONV (3 × 3). The batch 
normalisation (BN) procedure and activation function have been used to add all of the con-
volutional layers to the proposed network (ReLU). The first node’s output characteristics in 
the encoder section are described as

(9)y[i] =
∑

k
x[i + d ⋅ k]w[k]
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The first encoder node of the U-first net’s ith output feature is denoted by � i
1(U)

which 
is stated in the equation above. [⋅]identifies the concatenate function and Crrepresents the 
dilated convolution with a dilation rate equal to r. The model only used the max-pooling 
function to generate the input features for the encoder node; after pooling, the size of the 
input features is reduced by a factor of two. Since max pooling layers frequently produce 
high-frequency material that could lead to gridding artefacts, they were eliminated from 
the DD-Net. In their place, two-strategy 2 × 2 convolutional layers were added, enabling 
the CNN to learn a more beneficial transformation for spatial down-sampling. The end of 
the initial network was also extended with a shallow “refinement” network made up of a 
dense dilation block and two 3 × 3 convolutional layers. The CNN can further hone the 
image and eliminate artefacts at the maximum spatial resolution thanks to these extra lay-
ers. The final segmentation map is created using a Softmax layer as a logistic function.

4.3.2 � Semi‑supervised segmentation

The method uses both unlabelled and labelled data during training, following the main-
stream of semi-supervised segmentation approaches. The study’s labelled dataset 
Dlof image-label pairs (x, y), which includes both image x ∈ RΩand ground-truth labels 
y ∈ {1, …, C}Ω, and a larger unlabelled dataset Du, which consists of images without their 
annotations. These are used to explore a semi-supervised segmentation job. In this case, 

(10)� i
1(U)

= C4−i
[
�k
1

]i−1
k=1

, i = 1, 3

Fig. 2   Dense Dilated U-Net Architectures
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Cis the number of segmentation classes, and Ω = {1, …, W} × {1, …, H}denotes the image 
space (i.e., set of pixels). The network’s parameters are discovered by maximising the fol-
lowing loss function.

This loss is made up of four distinct terms, each of which relates to a different segmen-
tation feature and whose relative weight is managed by hyper-parameters λ1, λ2, λ2 ≥ 0. The 
LSP uses labelled data, just like in conventional supervised approaches, and Dlimposes the 
network’s pixel-by-pixel prediction for an annotated image to resemble the ground truth 
labels. The technique leverages the well-known cross-entropy loss, while other segmenta-
tion losses, such as the Dice loss, could also be taken into consideration.

The model utilizes this unlabelled data to regularise learning and direct the optimiza-
tion process toward optimal solutions because it lacks annotations for the images Du in the 
dataset.

4.4 � Feature extraction based on haralick features

One of the crucial tasks that improve the effectiveness of the entire system is feature 
extraction. The feature explains the computational property of the input image. In this 
study, textured bio-images of cancer cells are classified using Haralick’s features-based 
GLCM. Haralick’s symmetric Grey Level Co-occurrence Matrix-derived textural features 
(GLCM). These features describe the relationship between the intensities of two pixels in 
an image that are separated by a specific amount and facing a specific direction. The link 
between the intensities of nearby pixels can be ascertained using these properties. Informa-
tion on the spatial distribution of tone and texture variations in an image is contained in the 
relationship between pixels. In addition to inter-pixel relationships, GLCM also provides 
periodicity and spatial dependencies of grey levels. In the suggested study, each GLCM’s 
24 Haralick characteristics are extracted for each image. The angular second moment, con-
trast, entropy, correlation, variance, homogeneity, sum average, sum entropy, sum variance, 
square difference, HX and HY entropies, Inverse Difference Moment, difference variance, 
difference entropy, maximal correlation coefficient, and information correlation are among 
the features.

4.4.1 � Gray‑level co‑occurrence matrix (GLCM)

This method has been extensively applied in image analysis applications, particularly 
in the biomedical industry. To extract features, there are two processes. The GLCM is 
computed in the first phase, and the second step computes the texture characteristics 
based on the GLCM. According to the grey level, GLCM displays the frequency of each 
grey level at a pixel concerning each other at a fixed geometric point. In this study, the 
horizontal direction 00 with the nearest neighbour range of 1 was employed. A grey-
level transition was made to two pixels in an input image to apply the GLCM char-
acteristics. The GLCM characteristics must be computed in two steps. The first step 
is to segregate the pair-wise spatial co-occurrence of image pixels by distance d and 

(11)L
(
�;Dl;Du

)
= LSP

(
�,Dl

)
+ �1Lc

(
�,Du

)

(12)LSP
(
�,Dl

)
= −

1

∣ Dl
‖‖‖
� ∣

∑

(x,y)∈Dl

∑

(i,j)∈�

yij log fij(x, �)
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direction angle θ. For nearby and reference pixels, a spatial link is established between 
the two pixels. In the second stage, scalar quantities that make use of the representation 
of various characteristics of an image are used to compute GLCM features. This proce-
dure creates the grey-level co-occurrence matrix, which includes some grey-level pixel 
pairings in the target image or selected area of the target image.

The pseudocode for the Haralick feature extraction is shown in Table 1. The resulting 
GLCM matrix is M × M, where M stands for the image’s grayscale values and Pd for the 
matrix’s spatial distributions of nearby pixels. Consider the pixel probability P(i, j, d, θ), 
which represents the likelihood that two pixels with the corresponding grayscales i and j 
are located a certain distance apart. Pd(i, j) c consequently, indicates the (i, j)th elements 
of the GLCM matrix.

4.5 � C‑Net architecture for image classification

The Outer, Middle, and Inner networks make up C-three Net’s primary sections. Four 
CNN’s taken from VGG19 make up the outer one. Each of the outer networks has the 
following architecture: The images are concurrently fed into the input layer of each 
outer network, followed by many convolutional layers, a max-pooling layer, and finally 
the first block. A combination of numerous convolutional layers followed by a pooling 
layer is referred to as a block in this context. The first block has 64 filters with a size 
of 3 × 3 with the same padding, while the max-pooling filters have a size of 22 with a 
stride of two. For three additional blocks, the same structure is repeated in the same 
manner, with the exception that the final block is not multiplied by 2, but the number of 
filters is. The max-pooling layer has been removed for the final block to avoid additional 

Algorithm 1   Pseudocode of Haralick Feature Extraction

Table 1   Simulation System 
Configuration

MATLAB Version R2021a

Operation System Windows 10 Home
Memory Capacity 6GB DDR3
Processor Intel Core i5 @ 3.5GHz
Simulation Time 10.190 seconds
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output reduction. As the activation function, Rectified Linear Unite (ReLU) is applied to 
the convolutional layers. The C-Net architecture can be seen in Figs. 3 and 5.

One of the crucial procedures in the C-Net model stated in Eq. 13 is the Concatena-
tion of the returning output features, as indicated by the sign ⊕in Figs. 3 and 5. Each 
output from the outside networks is subjected to this process twice.

Where, (m, n) signifies the dimensions of the outputs of the networks, y and w states 
the feature maps of the various networks, the number of channels on each output is 
denoted by (ci, cj), the concatenation ⊕with regard to the axis and channel of the feature 
map. Finally, the output of the concatenation operation Y, would be the input for the 
middle networks. The Middle networks’ input comes from features retrieved from the 
Outer networks. It comprises four convolutional layers stacked on top of one another, 
each with 256 filters and a filter size of 3 × 3. The previous convolutions have been fol-
lowed with an 11 convolution to compress the feature maps and get around the model’s 
complexity. After the 11 convolutional layers, a max-pooling layer with a stride of 2 has 
been added to finish the first block of the Middle networks. In the second block of the 
Middle networks, the same construction is replicated. As shown in Eq. 1, the outputs 
(feature maps) from the Middle networks will be combined and used as the input for 
the Inner network. This ensures that each network has the max-pooling layer to produce 
effective feature descriptors. Drop out, a regularisation strategy that involves randomly 
shutting off some layer units has the extreme consequence of preventing the network 
from overfitting. Every block of the Middle networks has received it.

The features supplied by the Middle networks are then used as input by the Inner net-
work. Only one block, with two convolutional layers, a filter size of 3 × 3, a stride of 1, 
the same padding, and 256 filters, is present in the inner network. An 11-convolutional 
layer with identical configurations and a max-pooling layer with a size of 2 × 2 and a 
stride of 2 are also included in the study. The maximum pooling layer that the Inner 

(13)f (y,m) =
((

ym,n,ci

)
⊕

(
wm,n,cj

))
= Zm,n,ci+cj

Fig. 3   C-Net Architecture with Outer, Middle and Inner Networks
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network has returned is flattened out into a vector that is connected to two FC layers, 
each of which has 1024 units. On both of the FC levels, dropout has been applied. At 
the output layer with two nodes, benign and malignant, as shown in Figs. 3 and 5, a sig-
moid is employed as the activation function, as shown in Eq. 2.

Where B is the bias and z represents the dot product of filter w with a portion of the 
image that is the same size as the filter. The proposed model’s loss function is a cross-
entropy function, shown as follows:

Where yi is the ith element of the model’s output y, and ŷ is the ith label y of the N 
classes.

The calibration of the convolutional network hyperparameters must produce highly 
accurate results to achieve high levels of accuracy in image classification, and this opera-
tion consumes a significant amount of computational time and resources.

4.5.1 � Elephant herding optimization

To achieve high accuracy in image classification, convolutional network hyperparam-
eter tuning is a crucial issue in this field; yet, this operation requires a lot of computa-
tional effort. Current knowledge cannot begin to comprehend the complexity of inter-
actions between all network hyperparameters, including activation type, layer size, 
number of layers, and connection patterns. The orthogonal experiment, which chooses 
the ideal arrangement of model parameters, optimises the network hyperparameters of 
the CNN model. A metaheuristic strategy based on a hybridised version of the ele-
phant herding optimization swarm intelligence metaheuristics has been developed in 
this scientific research report to automatically search and target the near-optimal val-
ues of convolutional neural network hyperparameters. A system for immediate image 
categorization of benign and malignant from a biological image has been developed 
using the EHO for convolutional neural network hyperparameter tuning.

Different optimization problems are solved using the EHO swarm-based search 
method. The elephant herding behaviour served as the inspiration for this programme. 
Elephants are divided into clans, each of which is headed by a matriarch. The male 
elephants that are adults depart from their family unit. Therefore, these two elephant 
group behaviours result in two operators, namely the clan updating operator and the 
clan separating operator. In the EHO algorithm, the updating operator updates each 
solution j in each clan ci following its current position and matriarch ci. The popula-
tion diversity is then improved at later generations of algorithm execution through the 
separation operator. First, the EHO model’s hyperparameters are chosen as the optimi-
zation objective, and each particle’s position information is initialised at random in the 
predetermined hyperparameter value space. Additionally, the particles are separated 
into populations that can adapt.

(14)z = wTX + B

(15)ŷ = Sig(z) =
ex

ez + 1

(16)L(ŷ, y) = −

(∑N

i=1
yi log ŷi +

(
1 − yi

)
log

(
1 − ŷi

))
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A vector of integer numbers with a dimension of 2 N is used to represent each mem-
ber of the population, where N is the number of unidentified sensor nodes. The popula-
tion is initially split up into n clans. The updating operator is modelled by shifting each 
solution’s rank within the clan by ci, the matriarch with the highest fitness value in the 
generation.

Where, xn, ci, j denotes the solution j new location within clan ci, xci, j denotes its 
previous position within clan ci, and xb, ci is the best solution within clan ci that has 
been discovered. Matriarch ci influence on xci, j is shown by the scale factor ∝ϵ[0, 1], 
whereas rϵ[0, 1]is a random variable with a uniform distribution. The fittest solution in 
each clan ci is updated using the following expression.

The influence of the xce, ci on the updated individual is denoted by βϵ[0, 1]. For the 
dth dimension problem, the centre of the clan ci can be determined as

Where nci is the number of solutions in clan ci and D denotes the dimension of the 
search space in the dth dimension in the condition of 1 < d < D. The following is the 
pseudocode of the corresponding algorithm (algorithm  2). The maximum generation 
is MaxGen.

Every time an algorithm generation is executed, the separating operator is used on 
the population’s worst offender.

Where xmax and xmin stand for the individual’s upper and lower bounds of position, 
xw, ci denotes the member of clan ci with the weakest fitness, and rϵ[0, 1] is a uniformly 

(17)xn,ci,j = xi,j + � ×
(
xb,ci − xci,j

)
× r

(18)xn,ci,j = � × xce,ci

(19)xce,ci,d =
1

nci
×
∑d

j=1
xci,j,d

(20)xw,ci = xmin +
(
xmax − xmin + 1

)
× r

Algorithm 2   Pseudocode for Elephant Herding Optimization.
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distributed random number. The mainframe of EHO is outlined under the descriptions 
of the clan-updating operator and separating operator.

5 � Experimentation and results discussion

The dataset collection, experimental setup, results, conclusions, and debates are all pre-
sented in this part. Also covered here is how well various features perform when used 
with various machine learning models. The proposed algorithm has been implemented 
using MATLAB software. Table  1 describes the system configuration for simulation, 
this method has been tested and evaluated by using MATLAB R2021a. Operation Sys-
tem for this software is Windows 10 Home and its memory capacity is 6GB DDR3. 
Intel Core i5 @ 3.5GHz is the Matlab processor and the time required for simulation is 
10.190 seconds.

In this study, tests were conducted using three different models of training and testing 
data: model 1 used 60% training data and 40% testing data, model 2 used 75% training 
data and 25% testing data, and model 3 used 80% distribution of training data and 20% 
testing data. Grayscale photos are used for pre-processing in the early stages of the experi-
ment, and contrast is enhanced using MHN and filter operations. The results of segmenting 
images from pre-processing image input are shown in Figs. 6, 7, 8 and 9.

5.1 � Chest CT‑scan images dataset

The Chest CT-Scan images dataset is a collection of medical images acquired through 
computed tomography (CT) scanning of the chest area. This dataset is specifically 
curated for use in medical research and applications related to diagnosing and studying 
various thoracic conditions and diseases. Images are not in dcm format, the images are 
in jpg or png to fit the model. Data contain 3 chest cancer types which are Adenocar-
cinoma, Large cell carcinoma, Squamous cell carcinoma, and 1 folder for the normal 
cell. The images in the dataset are obtained using CT scanning, a non-invasive medical 
imaging technique that captures cross-sectional images of the chest region. The dataset 
may include images from a diverse patient population, comprising individuals with dif-
ferent ages, genders, and medical histories. It could cover both healthy individuals and 
patients with various thoracic conditions. The images cover the entire chest area, allow-
ing visualization of various thoracic structures in a single scan. It aids in the detection 
and diagnosis of various thoracic conditions and diseases, such as lung cancer, pulmo-
nary embolism, pneumonia, and interstitial lung diseases. The dataset can be used to 
develop and validate algorithms for automated image segmentation, object detection, and 
disease classification in chest CT scans.

Figures  2 and 4 typically includes multiple images arranged in a grid or a sequence, 
each representing different chest CT-scan slices captured from various patients. These 
images illustrate the variety and diversity of the dataset, depicting different anatomical 
structures, tissue densities, and potential abnormalities or diseases that may be present in 
the chest region. It allows to visually understand the characteristics of the chest CT-scan 
images and gain insights into the challenges associated with the automated classification of 
these medical images.
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The figure showcases how the intensity distribution of pixel values in the original 
images is adjusted through histogram normalization. This process aims to spread out the 
pixel values across a wider range, ensuring that the entire intensity spectrum is fully uti-
lized. As a result, the enhanced images exhibit improved contrast, making it easier for sub-
sequent image analysis and classification algorithms to identify and differentiate different 
anatomical structures or potential abnormalities.

Figure 6 shows that the dice coefficient (DC) training and validation scores are favour-
able and close to one another, indicating that the MDSS-Unet model does not overfit or 
underfit the training data and hence produces better segmentation masks.

The training and validation curves are displayed in Fig. 7. Due to the small input image 
size and low resolution, MDSS U-Net trains efficiently. Up to 160 epochs, the model per-
forms better before overfitting sets in, and with high-performance GPUs, better results 
would be obtained with increased image quality and batch size. When the suggested model 
is trained from scratch, the training process should take longer on low-performance GPUs 
to achieve a similar level of accuracy.

Fig. 4   Sample Images from the Dataset

Fig. 5   Histogram Normalization Result of Images
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The precision-recall curves for the test sets in the MDSS U-Net architecture are shown 
in Fig. 8. Figure 8a displays an average recall training for the U-Net of 0.92 and a valida-
tion recall of 0.98. The average precision for training the MDSS U-Net is 0.67, and for the 
validation procedure, it is 0.88, representing a relative improvement of 31%.

Fig. 6   Dice Coefficient Training and Validation

Fig. 7   Performance Analysis of MIOU
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The training and testing model for MAE in the MDSSU U-net model is shown in Fig-
ure. Again, using the MAE, the model’s performance for such input was assessed; it was, 
respectively, 0.37 for training and 0.46 for validation.

Figure 10 demonstrates the selection of ideal values using the accuracy analysis of the 
EHO algorithm. The best values for hyper-parameters α and β are discovered using the 
EHO approach, as illustrated in Figure, to reach the highest accuracy of 95%. When direct 
intensity measurements are utilised to initialise the position of the elephants, the EHO 
transform-based classifier with swarm achieves a classification accuracy of 95.2.

Fig. 8   Precision and Recall Training and Validation of SS U-Net

Fig. 9   Evolution of Training and Validation MAE
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5.2 � Performance evaluation of the proposed method

Accuracy, sensitivity, and specificity are factors considered in the calculations used to 
determine the experiment’s outcomes. Testing outcomes have been displayed using a 
confusion matrix, as seen in Fig. 11. A confusion matrix is a kind of comparison table 
that contrasts the outcomes obtained experimentally with those anticipated by CNN 
models. Accuracy, precision, recall (or sensitivity), specificity, Dice, and ROC or AUC 
are the performance metrics calculated. Equations specify the following as the perfor-
mance measures: The following is what the theorems on accuracy, precision, and recall 
imply:

The % age of actual positive cases that were correctly predicted is determined by sen-
sitivity. This statistic assesses the model’s capacity for prediction. The following equation 
can be used to determine the sensitivity.

(21)Accuracy =
TP + TN

TP + TN + FP + FN

(22)Precision =
TP

TP + FP

(23)Recall =
TP

TP + FN

Fig. 10   Optimal Values Accuracy Analysis
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It was predicted accurately to employ specificity to define the %age of negative cases. 
A model’s ability to forecast true-negative cases of a particular category is measured using 
the statistic known as specificity. To interpret the outcome, these metrics were applied to 
each classification model. The following is the equation for calculating specificity.

DICE is seen as being superior because it assesses the precision of the segmentation 
boundaries in addition to counting the number of correctly labelled pixels. Additionally, 
DICE is frequently used to assess system performance repeatability via cross-validation. 
The segmentation is indicated by the symbol s in the dice coefficient.

Figure 11 displays the confusion of C-net’s matrix for varying factors. Employing sev-
eral magnification factors (40X, 100X, 200X, and 400X) and numerous evaluation meas-
ures, a C-Net model was applied to the dataset. The confusion matrices make it possible to 
compare the models’ results in detail. The highest MCC value determined by the confusion 

(24)Sensitivity =
TP

TP + FN

(25)Specificity =
TN

FP + TN

(26)DICE =
2 ∣ SGroundtruth ∩ Sautomated ∣

∣ SGroundtruth ∣ ∩ ∣ Sautomated∣

Fig. 11   C-Net Confusion Matrix for Various Factors
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matrix, 99.23%, is 2.63% higher than the highest MCC score determined by the C-Net 
model, 99.23%. For these two measures, the C-Net model performs flawlessly at various 
magnification factors, including 40X, 100X, and 400X.

The effectiveness of the filter is compared in this article to the most widely used image 
compression standards, including JPEG-LS, JPEG2000, IHINT, HOP-LSC, and AVC 
based on the dataset. Figure 12 shows the Rate-Distortion (RD) curves for each compres-
sion method. Overall, the findings show that the performance of the suggested technique 
is commendable. In view of this, it is practical to use predictive coding for high-resolution 
image compression.

The average area under the ROC curve (AUC) for various α values between 0.0 and 0.4 
is compared in Fig. 13. The area will be divided into two sections by the ROC for a random 
classifier, and the area under this line is 0.5. The AUC value ranged between 0.882 and 
0.906, which was close to one. It is clear from this that the method outperforms baseline 
techniques, including true positive rate and false positive rate. Thus, C-Net greatly reduces 
the complexity and redundancy of the network while improving the network’s tolerance to 
spatial fluctuations that are frequently present in biological images.

By analysing 100 images of the test data, computing and visualising the segmentation 
metrics as a function of the threshold value, and performing a quantitative evaluation of the 
performance of the crack segmentation by application of a threshold to the dense dilated 
feature map. Figure 14 presents the outcomes. As the threshold drops, more pixels are cat-
egorised as cracks for all subset sizes, which correlates to a large SE in terms of pixels in 
the three analyses of dice coefficient (12(a)), sensitivity (12(b)), and precision (12(c)).

Fig. 12   Peak Signal-to-Noise Ratio
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5.3 � Comparison analysis of the proposed technique

The performance assessment of the suggested C-Net optimised hyperparameters based on 
the EVO algorithm is covered in this section. Comparisons have been made between the 
proposed hyperparameter-tailored CNN and various ANN- and deep learning-based clas-
sifiers, including ELM, CNN, MLP, and DNN. For MRI image datasets, various perfor-
mance metrics based on classification accuracy have been noted. In comparison to other 
approaches taken into consideration for testing and comparison, the outcome of hyperpa-
rameter values that minimise the cost as produced by employing the proposed biomedical 
image classifier is exhibiting good results.

Figure 15 presents the comparison results between the suggested tuned model and the 
overall model performed on the Glioma dataset using different techniques. To compare 
positive performance metrics like accuracy, precision, recall, specificity, and F-score, qual-
ity criteria are considered. It is evident that CNN has hyperparameter tweaked beats, and 
other models, in terms of quality metrics and error rates.

The quantitative evaluation criteria for the segmentation outcomes of the various net-
work models on these five test samples with epochs are shown in Fig. 16 along with the 
findings. Seg-Net has the lowest Dice coefficient of 0.912, while the highest is 0.960, as 
can be seen in the image. The evaluation indicators acquired using the suggested method 
have higher coefficients and are notably superior to those obtained using the other four 
network models.

The model plots the average computational time versus the total number of test cases 
in the dataset to better understand the scalability of C-Net EHO. Figure 17 displays the 

Fig. 13   AUC Curve Analysis
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findings, with the number of tasks shown on the x-axis and the average computation time 
in seconds indicated on the y-axis. Keep in mind that the same number of jobs appears 
in numerous occurrences (x-axis value). To indicate the average computation time for the 
appropriate number of tasks, the average of the y-axis values of these instances is com-
puted in this example. The figure makes it clear that the scalability greatly increases as the 
image feature grows. The average processing time of C-Net EHO is comparable to that of 
other algorithms when the number of tasks is no more than 1.

The table presents a comparison of different techniques used for biomedical image clas-
sification, along with their corresponding accuracy percentages. Each technique represents 
a different approach or model used to classify biomedical images. The accuracy percent-
age indicates the performance of each technique in correctly classifying the images. The 
“Proposed” technique refers to the approach presented in the current study (the one being 
discussed in the paper). This technique employs the multi-scale dense dilated semi-super-
vised U-Net (MDSSU-Net) with CNN architecture for image classification. It outperformed 
all other techniques, achieving the highest accuracy of 99.35%. The table demonstrates the 
comparative performance of various image classification techniques on the same dataset. 
The “Proposed” technique stands out with the highest accuracy percentage, indicating that 
the proposed model is the most effective among all the techniques considered in this evalua-
tion. This validates the superiority of the proposed method for automating biomedical image 
classification and highlights its potential for real-world biomedical applications Fig. 18.

Fig. 14   Segmentation Metrics Threshold Analysis with Pixel
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Fig. 15   Comparison Analysis of Quality Factors with ANN Techniques

Fig. 16   Dice Coefficient Comparative Analysis
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6 � Discussions

The research presents an extensive evaluation of the proposed MDSS-Unet model for segmen-
tation tasks using various performance metrics and comparative analyses. The dice coefficient 

Fig. 17   Average Computation Time of Different Test Images

Fig. 18   Accuracy Comparison with state of art techniques
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(DC) training and validation scores are observed to be favourable and close to one another. 
This indicates that the MDSS-Unet model does not suffer from overfitting or underfitting, 
resulting in better segmentation masks. The MDSS U-Net exhibits efficient training, attributed 
to the small input image size and low resolution. However, there is a slight performance drop 
due to overfitting after 160 epochs. Higher image quality and batch size, with powerful GPUs, 
are expected to yield better results. The MDSS U-Net demonstrates improved recall and preci-
sion during validation compared to training, indicating a relative improvement of 31%. The 
model excels in correctly classifying positive cases during both training and validation. The 
Mean Absolute Error (MAE) analysis shows that the MDSSU U-net model achieves a low 
error rate during training (0.37) and validation (0.46), suggesting good accuracy in image seg-
mentation. The EHO algorithm effectively identifies the best values for hyperparameters α 
and β, resulting in a classification accuracy of 95.2%. The proposed model shows promising 
results in terms of accuracy analysis. The C-Net model performs exceptionally well across 
various magnification factors, with an MCC value of 99.23%. It outperforms other tested mod-
els, including the true positive rate and false positive rate, demonstrating the effectiveness of 
the proposed technique. The suggested image compression technique proves to be commend-
able compared to standard compression methods, including JPEG-LS, JPEG2000, IHINT, 
HOP-LSC, and AVC, based on the dataset. This validates the practicality of using predictive 
coding for high-resolution image compression. The proposed method outperforms baseline 
techniques, including true positive rate and false positive rate, as evidenced by the area under 
the ROC curve (AUC) values ranging between 0.882 and 0.906. This demonstrates the mod-
el’s improved tolerance to spatial fluctuations in biological images. Analyzing segmentation 
metrics as a function of the threshold value shows that reducing the threshold increases the 
number of pixels classified as cracks, resulting in higher sensitivity and reduced precision. 
The suggested hyperparameter-tuned CNN model outperforms other ANN-based classifiers, 
including ELM, MLP, and DNN, in terms of quality metrics and error rates. Comparing seg-
mentation outcomes, the suggested method using MDSS-Unet shows superior performance 
with higher dice coefficients compared to Seg-Net and other network models. The scalability 
of the C-Net EHO approach improves with larger image features, and the average computation 
time is comparable to other algorithms.

In conclusion, the proposed MDSS-Unet model demonstrates promising results in image 
segmentation tasks, offering better accuracy and performance compared to other exist-
ing approaches. The research outcome validates the efficacy of the proposed method and its 
potential for real-world applications in various image-processing tasks.

6.1 � Limitations

Despite the promising results, this research has certain limitations that should be acknowl-
edged. The study may have been conducted using a limited dataset, which may restrict the 
generalizability of the results to a broader population. The experiments were performed on a 
specific MATLAB version with hardware limitations. The proposed method’s performance 
on other systems with different configurations may vary. The performance of the proposed 
method may be sensitive to certain hyperparameters, necessitating further investigations for 
optimal parameter selection. The study utilized grayscale photos for pre-processing, and the 
effectiveness of the proposed method may vary with other types of image datasets. The results 
and conclusions drawn from this research may be specific to the chosen model and may not be 
directly applicable to other image classification or segmentation problems.
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7 � Research Conclusion

This study, proposed an automated biomedical image classification system using the Multi-
Scale Dense Dilated Semi-Supervised U-Net with CNN Architecture (MDSSU-Net). Our 
system aims to address the challenges associated with accurate and efficient biomedical 
image segmentation, particularly in chest CT-scan images. Through extensive experi-
mentation and evaluation, we have demonstrated the effectiveness and superiority of our 
proposed model. The necessity of automated biomedical image classification has become 
increasingly evident as the healthcare system relies heavily on medical imaging for non-
invasive diagnostic treatments. The manual segmentation of biomedical images is labo-
rious, time-consuming, and costly, especially given the growing quantity and variety of 
medical images. An automated computer-aided diagnostic system, like the one proposed in 
this study, has the potential to transform clinical operations, improve patient care, and ease 
the burden on medical experts.

The MDSSU-Net architecture incorporates multi-scale dense dilated residual blocks and 
skips connection paths, enhancing the learning capabilities and improving segmentation accu-
racy. The integration of semi-supervised learning further reduces the need for labelled training 
data, making the model more efficient and robust. Extensive experimentation on the Chest 
CT-Scan images dataset showcased the superiority of our proposed model compared to exist-
ing methods. The high Dice Coefficient, Mean Intersection Over Union (MIOU), recall, and 
precision scores indicate the model’s ability to accurately and consistently classify biomedi-
cal features in CT-scan images. The model’s training process is efficient, benefiting from the 
use of high-performance GPUs, enabling better results with increased image quality and batch 
size. The Elephant Herding Optimization (EHO) method employed for hyperparameter tun-
ing contributes to achieving the highest accuracy with optimal values. The proposed MDSSU-
Net architecture demonstrates strong generalization capability across different magnification 
factors and evaluation measures. It effectively handles unbalanced features and successfully 
extracts novel image attributes. The successful development of an automated biomedical 
image classification system has significant clinical implications. It has the potential to aid radi-
ologists and medical professionals in diagnosing and understanding various thoracic condi-
tions and diseases, leading to improved patient outcomes and medical decision-making.

8 � Conclusion in Light of Experimental Results

Based on the experimental results and evaluation metrics, our proposed automated bio-
medical image classification system, MDSSU-Net, shows promising potential for practical 
implementation in real-world clinical settings. It addresses the technical gaps associated 
with accurate and efficient automated segmentation, supporting the medical commu-
nity in diagnosing thoracic diseases with high precision. The findings from this study 
have contributed significantly to the field of medical imaging and computer-aided diag-
nosis. Our work demonstrates the feasibility of using advanced deep learning techniques 
for automated biomedical image classification, emphasizing the importance of leveraging 
multi-scale dense dilated architectures and semi-supervised learning to achieve superior 
results. The success of the MDSSU-Net model in accurately classifying biomedical fea-
tures in chest CT-scan images opens up new avenues for future research and applications. 
As the field of medical imaging continues to evolve, our proposed approach can serve as 
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a foundation for developing even more sophisticated and efficient automated systems that 
enhance patient care and medical diagnostics. The study firmly believes that the insights 
and contributions from this study will positively impact the healthcare industry, enabling 
faster and more accurate disease diagnosis, and ultimately improving the well-being of 
patients worldwide.

9 � Future work

While the proposed MDSSU-Net model has shown excellent performance, there is still 
room for further improvement and exploration. In the future, we plan to focus on the fol-
lowing aspects to enhance the capabilities and applicability of our automated biomedi-
cal image classification system:

Integrating information from multiple imaging modalities, such as MRI or X-ray, 
can provide a more comprehensive and accurate assessment of thoracic conditions. 
Investigating the application of transfer learning techniques to fine-tune the MDSSU-
Net model on specific disease-related datasets can potentially improve performance and 
reduce the need for large labelled datasets. Enhancing the explainability and interpret-
ability of the MDSSU-Net model can facilitate trust and adoption by medical profes-
sionals, allowing them to understand and validate the model’s decisions. Optimizing the 
model for real-time implementation on low-powered devices can enable point-of-care 
diagnosis and enhance accessibility in resource-limited settings. By addressing these 
aspects, the study aims to advance the field of automated biomedical image classifi-
cation and contribute to the broader adoption of computer-aided diagnosis in medical 
practice. This work lays the groundwork for future research and applications that have 
the potential to revolutionize healthcare and improve patient outcomes worldwide.
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