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Abstract
Saliency detection plays an important role in computer vision and scene understanding,which
has attracted increasing attention in recent years. Compared to the widely studied image
saliency prediction, there are still many problems to be solved in the area of video saliency.
Different from images, effectively describing and utilizing the motion information contained
in video data is a critical issue. In this paper, we propose a spatial and motion dual-stream
framework for video saliency detection. The coarse motion features extracting from optical
flow are fine-tunedwith higher level semantic spatial features via a residual cross-connection.
A hierarchical fusion structure is proposed to maintain contextual information by integrating
spatial and motion features in each level. To model the inter-frame correlation in the video,
the convolutional gated recurrent unit (convGRU) is used to retain global consistency of the
saliency area between neighbor frames. Experimental results on four widely used datasets
demonstrate the effectiveness of the proposed method with other state-of-the-art methods.
Our source codes can be acquired at https://github.com/banhuML/MFHF.

Keywords Video saliency detection · Motion feature fine-tuning · Hierarchical fusion ·
Optical flow

1 Introduction

The human visual system (HVS) can quickly select and focus on relevant areas. This selective
mechanism is known as the visual attention mechanism, which has a variety of applications
in action recognition [1], video summarization [2], video segmentation [3], image caption
[4] and image quality assessment [5]. To simulate visual attention mechanism, two saliency
related vision tasks including salient object detection [6–14] and saliency detection have
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been developed during recent years. Differ from salient object detection models aiming to
segment salient objects in pixel level, saliency detection predicts human fixation region and
can be easily calculated in the video processing [15]. With the fast development of deep
learning technology and plenty of image fixation datasets, many image saliency detection
models [16–22] have achieved significant successes.

In contrast to image saliency detection, which acquires saliency cues only from a single
image, video saliency detection additionally requires consideration of differences between
multiple consecutive frames to infer saliency distribution. These differences across the tem-
poral domain are generated by the combined motion of objects and camera. Human attention
ismore likely to be attracted tomoving objects during free-viewing [24].As shown in Fig. 1(a)
and (b), most of eye fixations are located around the falling soccer. Therefore, it is necessary
to extract motion information from video sequences to acquire saliency cues.

Optical flow reflects the changes and correlation in the time domain of the pixels between
adjacent frames, which has been a prevailing way to describe motion information [25]. As the
optical flow estimated by the method RAFT [26] shown in Fig. 1(c), most of the optical flow
show well-defined salient objects that provide motion saliency cues, but others are blurred
due to slow motion of the object or only partially moving within the object. Cong et al. [27]
suggest that different motion states of objects can yield different optical flow estimates even
in similar scenarios. The motion features extracted from the optical flow are concentrated
around the salient object, as shown in Fig. 1(d). Themotion features extracted from the blurred
optical flow are more diffuse, which makes it difficult to find the exact location of salient
objects. Therefore, the need to obtain more accurate saliency cues from motion features has
become an urgent requirement for video saliency detection.

Existing optical flow-based models [28–31] for video saliency detection use two-stream
networks to extract motion and spatial information separately, and then simply fuse them
by concatenate, etc. These direct integration strategies ignore the fact that the two types of
information come from different modalities. Lai et al. [31] enhanced spatial information
with motion information through an attention mechanism and achieved good performance,

(a)

(b)

(c)

(d)

(e)

Fig. 1 (a) Video frames selected from UCF Sports [23]. (b) Ground truth (d) Optical flow. (e) Motion feature
maps. (f) Fine-tuned motion feature maps
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but neglected the lack of accurate motion saliency cues in some motion features, resulting in
the inability to efficiently aggregatemotion and spatial information for the saliency detection.

To alleviate the above challenges as well as to compensate for the shortcomings of existing
methods, we propose a video saliency detection model that combines spatial and motion
information in a multiscale manner, consisting of spatial subnet, motion subnet, hierarchical
fusion subnet and convGRU subnet. We follow a two-stream network structure consisting of
two same CNN models, with the spatial and motion subnets extracting spatial and motion
features from optical flow and video frames, respectively.We propose themotion feature fine-
tuning module to fine-tune the motion features using multiscale spatial features in the feature
extraction process, which can focus motion features on the salient objects. The fine-tuned
motion features are shown in Fig. 1(e). For further studying the relationships accross different
scale motion features and extracting more semantic information, we design a hierarchical
fusion subnet to integrate spatial and motion features in a multi-scale pattern. Considering
that the saliency of adjacent frames is correlated, the convGRU [32] subnet generates the
final saliency map based on the saliency cues of the current frame together with the saliency
results of previous frames.

To sum up, the main contributions of this paper are summarized as follows:

1. We proposed a novel layered networkMFHF for video saliency detection, which contains
four subnets, spatial, motion, hierarchical fusion and convGRU subnets. The proposed
method can extract informative motion features and fuse spatial features to predict video
saliency accurately.

2. We developed the motion feature fine-tuning module for extracting new motion features.
A series of optical flow have been used as coarse motion features, which were be fine-
tuned by incorporating spatial features with cross-connections in the last three layers of
spatial subnet.

3. We designed the hierarchical fusion subnet for fully combining spatial and motion fea-
tures on five different scales, which can retain more multi-scale contextual information.

The rest of the paper is organized as follows. In Section 2, we review some typical related
work. Section 3 elaborates the proposed video saliency detection model. Section 4 reports the
experimental results and ablation analysis of our model on four publicly available benchmark
datasets. Finally, the conclusions are drawn in Section 5.

2 Related work

In this section, we review related studies on saliency detection for images and videos.

2.1 Salient object detection

Video salient object detection, which aims to segment the most obvious objects from the
picture, has remained high in the computer vision research community and has a wide range
of applications in optimal path planning [33] and robot navigation [34].

Many models [6–14] use optical flow to better segment moving salient objects. Some
video salient object detection methods use the motion information of the optical flow to
better segment moving salient objects. Li et al. [12] develop a motion guided video salient
object detection network, which leverages the motion saliency sub-network to attend and
enhance the sub-network for still images. Chen et al. [14] introduce the concept of motion
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quality and select video frames with high-quality motions as the new training set, which is
used to fine-tune themodel. Zhang et al. [10] used color contrast computation and optical flow
computation to enhance spatio-temporal correlation, and combined with depth confidence
optimization to accomplish stereoscopic video saliency detection.

2.2 Saliency detection

Earlier image saliency detection models typically used a bottom-up framework, also known
as a stimuli-driven mechanism [31]. Many of these works are based on the calculation model
of HVS, comprehensively considering color features, directional features and gray-scale
features [35–40]. In the past years, several emerging deep learning models have achieved
groundbreaking progress compared with traditional models. These saliency models based
on deep learning mainly profited by extensive labeled training data and more expressive
network structure. Vig et al. [16] used the Convolutional Neural Network to obtain feature
vectors, then put them into the SVM [41] to generate the image saliency prediction results.
SALICON [18] aimed to narrow the semantic gap and predict saliency results based on a
pre-trained VGG-16 [42]. Similarly, DeepNet [19] connected more network layers into the
VGG-16 and obtained more informative multi-scale features to promote the performance.
SAM [43] iteratively enhanced the coarse feature to focus on the most salient region through
a convolutional LSTM(convLSTM) [44] and a center priors attention mechanism. DVA [45]
utilized the skip-layer network to acquire hierarchical saliency information, and achieved
efficient properties for image saliency detection.

For video saliency detection, the spatial-temporal information contained in the video
frames is critical. Similar to image saliency detection, traditional video saliency detection
methods capture saliency cues based on hand-crafted spatial-temporal features [46, 47], but
low-level hand-crafted features couldn’t deliver a satisfactory performance for modeling
dynamic saliency. Recently, a good deal of models based on deep learning have been pro-
posed that adopt different ways of acquiring temporal information. ACLNet [48] proposed a
supervised attentive module to encode static attention and then used it in convLSTM [44] to
learn dynamic saliency representation. SALDPC [49] captured motion information through
the multi-scale temporal recurrence and can better guide video coding with saliency. Com-
pared with temporal modules like convLSTM used in the above methods, optical flow has
better motion sensing abilities [50], which are closely related to the acquisition of motion
saliency cues.

Optical flow represents per-pixel motion between two consecutive frames [51], which is
sufficient to establish the link between motion and saliency [28] and has become a preva-
lent way to reflect the motion situation of objects in video saliency detection. Bak et al.
[28] developed a two-stream network to extract spatial and motion information from video
frames and optical flow, respectively, and integrated them with max fusion or convolutional
fusion for video saliency prediction. DeepVS [29] is an another well-known video saliency
model, which extracted spatial and motion features via YOLO [52] and FlowNet [53]. Then
the extracted two kinds of features were concatenated to generate spatio-temporal features.
Finally, the convLSTMwasused for learning inter-frame correlation.However, thesemethods
only integrate motion features with spatial features use direct fusion strategies, ignoring the
problem of motion feature diffusion caused by blurred optical flow, and making insufficient
use of both features.

To address the above problems, we develop a two-stream structure and applied multi-layer
spatial features to fine-tune the motion features, and influenced motion features tend to focus
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on salient regions. Furthermore, We combine spatial and motion saliency cues for saliency
detection by fusing spatial features and fine-turned motion features in a multi-scale manner.

3 Our approach

3.1 Architecture overview

Research on human visual attention shows that moving objects tend to be more attractive and
noticed [54, 55]. For video, the spatial features extracted from each frame and the motion
information between consecutive frame are essential for saliency detection [31]. This inspired
us to develop our MFHF with a two-stream [28] structure for extracting spatial features and
motion features, as shown in Fig. 2(a). Our MFHF predicts video saliency map with four
subnets, spatial, motion, hierarchical fusion and convGRU subnets. In detail, in the spatial
subnet, we take the current frame It as input to extract five-level spatial features {SFk

t }5k=1
which generated from each block k of deep neural networks. In the motion subnet, the optical
flow obtained by RAFT [26] is used as the input coarse motion frame and output multi-scale
motion feature {MFk

t }5k=1 by incorporating dense residual cross connections with {SFk
t }5k=1. In

the hierarchical fusion subnet, we combine both spatial and motion features in a multi-scale
form to generate fused features {HFk

t }5k=1. Also we refine the intermediate saliency maps of
the last three levels with the fused features to guide feature extraction. In order to learn the

Fig. 2 (a) The overall structure of ourMFHF. (b) An illustration of convGRU configuration. (c)Motion feature
fine-tuning. (d) Feature fusion structure for the layer four in the hierarchical fusion subnet
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inter-frame correlation of a video, we utilize convGRU [32] subnet to optimize the final result
of the video saliency prediction.

3.2 Spatial andmotion subnets

3.2.1 Spatial subnet

Considering that the visual information may be continuously lost in the convolution process
and inter layer transmission, we expect to effectively extract spatial information of different
scales. We build our spatial subnet based on ResNet-50 [56] which has faster forward and
backward propagation as a residual network. Specifically, we retain the feature extraction
layers of ResNet-50, and remove the fully connected layer to keep high-level spatial infor-
mation. At time step t , the spatial subnet takes the current frame It as input, then produces
the spatial features {SFk

t }5k=1 of different scales through five convolution blocks.

3.2.2 Motion subnet

For combination of multiscale spatial and motion features, we also use ResNet-50 to extract
coarse motion features. Continuous optical flows {Ot−4,Ot−3, ...,Ot } from the neighboring
frames of It are fed as inputs to obtain the corresponding motion features {MFk

t }5k=1. The
optical flow method is the most mainstream method of motion feature extraction, it still
produce some unsatisfactory results in the calculation process, as shown in Fig. 1(c). To get a
more accurate and robust high-level optical flow estimation, we inject the spatial features of
the last three layers{SFk

t }5k=3 with a cross connection to fine-tune higher level motion features
{MFk

t }5k=3.
Themotionfine-tunedprocess in the fourth layer of themotion subnet is shown inFig. 2 (b).

For reducing the loss of spatial information between convolutional layers and utilizing multi-
scale characteristics effectively, we use a nonlinear mapping P to joint the third and fourth
layer spatial features SF3

t , SF
4
t . And then the joint spatial feature and MF4

t are multiplied
using a Hadamard product. Finally, the multiplication result is used to correct motion feature
MF4

t . In generation, the feature fine-tuning process can be formulated as:

MFk
t = MFk

t + MFk
t � P({SFi

t }ki=3), 3 ≤ k ≤ 5 (1)

where ‘�’ indicates theHadamard operation, P is a nonlinearmapping that connect the spatial
characteristics of different stages of the subnet.As is shown in Fig. 1,(d) represents themotion
feature without fine-tuning process, and (e) represents the fine-tuned motion feature. We can
find that compared with (d), the fine-tuned motion feature focus more on areas close to the
saliency results, and the role of this fine-tuning process in objective indicators will also be
further discussed in the ablation study.

3.3 Hierachical fusion subnet

For making full use of the important role of motion features in video sailency detection, we
design a hierarchical fusion subnet to integrate the multi-scale spatial and motion features by
using dense connections. In detail, we combine spatial features and motion features of each
layer SFk

t andMFk
t to generate the fused featureHFk

t . As an example, the architecture of the
fourth layer is shown in Fig. 2(c). The upsampled lower level fusion feature HF3

t is used to
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concatenate with the corresponding level features SF4
t andMF4

t . In general, the hierarchical
fusion operation is expressed as follows:

HFk
t =

{
h([SFk

t ,MFk
t ]), k = 1

h([SFk
t + MFk

t ,Up(HFk−1
t )]), 1 < k ≤ 5

(2)

where h denotes the feature fusion operator, Up denotes Bilinear interpolation upsample
operator, and [.] denotes the channel-wise concatenation operator. SFk

t and MFk
t denote the

attentive spatial and fine-tuning motion features from the k convolutional layer of the spatial
and motion subnet, respectively. Through the fusion operation, each stage of the fusion
subnet will be supervised by the fusion features of the previous stage, the space and motion
features of the corresponding scale, which can continuously update and optimize the sailency
detection results.

For further monitoring the different stages of the fusion subnet, we upsample HFk
t using

Bilinear interpolation in the last four layers, and utilize a convolution layer with a 3× 3× 1
kernel to obtain the corresponding output Skt :

Skt = Conv(Up(HFk
t )), 2 ≤ k ≤ 5 (3)

where Up denotes the Bilinear interpolation, which upsampled to the size of 224 × 224
with strides of 8, 16, 4 and 4, respectively. As the output result of each frame after passing
through the hierarchical fusion subnet, Skt will enter the convGRU subnet as input to learn
the correlation between frames.

3.4 ConvGRU subnet

Compared with images, video has strong inter frame correlation that can not be ignored. The
convGRU subnet, which has fewer parameters and higher computational efficiency compared
to convLSTM [44], is utilized to model the inter-frame correlations and improve the dynamic
saliency of videos. We first concatenate four-scale saliency maps {Skt }5k=2 as the input x

t and
then feed it into the convGRU unit, which introduces gating mechanism to learn the inter-
frame correlation and temporal information:

zt=σ(Wz
h ∗ ht−1 + Wz

x ∗ xt )

r t=σ(Wr
h∗ht−1 + Wr

x ∗ xt )

h̃t = tanh(Wh
h ∗ (r t � ht−1) + Wh

x ∗xt )
ht= zt h̃t + (1 − zt )ht−1

(4)

where r , z denote the reset and update gate, respectively, h represent the hidden states, W
represents the learnable weights, ‘∗’ is the convolution operator. A sample of the convGRU
configuration is shown in the top right of Fig. 2(a). Compared with LSTM [57] structure,
convGRU [32] greatly reduces the amount of parameters in the fitting process and saves the
time and calculation cost. The saliency detection result of our model S f in

t will be produced
by convolution of the hidden states ht .
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3.5 Loss function

We propose a loss function which is suitable for saliency prediction with our network struc-
ture. At time step t , both the final output S f in

t and the intermediate layers outputs Skt are
merged to supervise the network. The overall loss �all is designed as:

�all = �(S f in
t , F,G) +

∑5

k=3
�(Skt , F,G) (5)

where G denotes the ground-truth saliency map, F denotes binary fixation map.
Similar to SAM [18], we design our loss � by combining four loss metrics linearly,

which can monitor the quality of the prediction results from several different quality factors.
Specifically, our loss function can be expressed as:

�(S, F,G) =�kl(S,G) + ω1�cc(S,G)

+ ω2�nss(S, F) + ω3�sim(S,G)
(6)

where S denotes the predicted saliency map, and ω1, ω2, ω3 indicates the weights of four
loss metrics. They are set to 0.2, 0.1, 0.1 respectively.

�kl is obtained according to Kullback-Leibler (KL) divergence metric:

�kl(S,G) =
∑

i
Si log(

Gi

Si
) (7)

where i indexes the i th pixel.
�cc is derived from Linear Correlation Coefficient (CC)metric that can be calculated using

the following:

�cc(S,G) = − cov(S,G)

ρ(S)ρ(G)
(8)

where cov(·) represents the calculation of the covariance operation, ρ(·) stands for the stan-
dard deviation.

�nss is derived from Normalized Scanpath Saliency (NSS)metric, which can be expressed
as:

lnss(S, F) = − 1

N

∑
i

Si − μ(S)

ρ(S)
× Fi (9)

where N = ∑
i Fi denotes the total number of fixated pixels, μ(·) represents the calculation

of mean, ρ(·) represents the standard deviation method.
�sim is derived from Similarity (SIM)metric, which is used to quantify similarity and can

be represented as:
�sim(S,G) = −

∑
i
min(Si ,Gi ) (10)

where S and G represents normalized probability distributions.

4 Experiments

In this subsection we will describe the datasets, evaluation metrics and implementation in
detail.
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Table 1 Statistics of four typical video saliency detection datasets we used

Dataset Resolution Training set Testing set Viewers

UCF sports 720*480 103 47 19

Hollywood-2 720*480 823 884 19

DIEM 1280*720 64 20 50

DHF1K 640*360 600 300 17

4.1 Experimental setup

1).Datasets: To evaluate our method, the four most popular datasets UCF Sports [23],
Hollywood-2 [23], DIEM [58] and DHF1K [48] are used for performance analysis. The
statistics for four datasets are summarized in Table 1.

UCF Sports is collected by 19 observers and divided into 103 and 47 videos for training
and testing sets, respectively. Particularly, UCF Sports consists of a series of sport-related
videos with a resolution of 720*480, which makes that the saliency detection model needs
strong adaptability to deal with similar scene.

Hollywood-2 consists of a total of 1707 video data, which provides an important reference
for a comprehensive evaluation of model performance. It contains 823 and 884 videos in the
training and testing sets. Different from UCF Sports, Hollywood-2 has diverse background
information and a wide range of moving objects, whichmake Hollywood-2more challenging
and difficult.

DIEM is observed by 50 volunteers, which is composed of multiple movie clips with
extremely different styles and a high resolution of 1280*720. In DIEM, 64 videos are used
for training and 20 videos are used for testing.

DHF1K is the most complex video saliency dataset. It consists of 1000 diverse videos,
whereas only 700 videos have high-quality annotations, which are normally used for train-
ing/validating the model, and the remaining 300 videos are used for testing the model with

Fig. 3 The training and validation loss for each epoch in the training phase
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the help of the owner. Unlike the previous two datasets, which collected fixations in a given
visual task, both DHF1K and DIEM collect fixations with free-viewing.

2).Evaluation Metrics: We adopt five popular metrics to evaluate the results, including
Area under the Curve by Judd(AUC-J) [59], Shuffled AUC(s-AUC) [60], Linear Correlation
Cofficient(CC), Normalized Scanpath Saliency(NSS), and Similarity(SIM). For all of these
metrics, higher scores indicate better performance.

3).Implementation Details: Our model is implemented with the Keras framework on a
single Nvidia Tesla GPU (with 16G memory) and 2.2 GHz Intel Xeon CPU E5-2630 v4
CPU. During the trianing phase, we set the video batch size to 1 and frame batch size to 5.

Table 2 Quantitative comparison
with 14 methods on UCF Sports

Methods AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑
SALICON

(ICCV 2015) 0.848 0.304 0.738 0.375 1.838

Deep-Net

(CVPR 2016) 0.861 0.282 0.719 0.414 1.903

Shallow-Net

(CVPR 2016) 0.846 0.276 0.691 0.382 1.789

Two-stream

(TMM 2017) 0.832 0.264 0.685 0.343 1.753

DVA

(TIP 2018) 0.872 0.339 0.725 0.439 2.311

DeepVS

(ECCV 2018) 0.870 0.321 0.691 0.405 2.089

ACLNet

(TPAMI 2019) 0.897 0.406 0.744 0.510 2.567

SalEMA

(BMVC 2019) 0.906 0.431 0.740 0.544 2.638

TASED-Net

(ICCV 2019) 0.899 0.469 0.752 0.582 2.920

STRA-Net

(TIP 2019) 0.910 0.479 0.751 0.593 3.018

GDLC

(TC 2020) 0.878 0.451 - 0.572 3.122

KSORA

(PR 2020) 0.875 0.397 - 0.518 2.622

Chen et al.

(Nc 2021) 0.910 0.488 0.761 0.601 2.916

STA3D

(PRL 2021) 0.900 0.465 0.739 0.560 2.754

ECA-Net

(NC 2022) 0.917 0.498 0.797 0.636 3.189

Ours 0.920 0.510 0.791 0.635 3.509

The best and suboptimal results are in bold and with underline respec-
tively. “-” denotes that the results are not provided. Note that the results
of DeepCT on UCF Sports are not provided
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The whole model is trained in an end-to-end anner. The number of training epochs is set as
300. The learning rate is set to 1e-5, which remains unchanged during the training phase.
Parameters of the model are learnd on the training data by Adam [61] optimizer.

Figure 3 shows the training loss and validation loss of the proposed model when trained
on the UCF Sports dataset. The validation loss of the model is minimized when the number
of epochs reaches 260, and we save the model weights at this point for testing.

Table 3 Quantitative comparison
with 14 methods on Hollywood-2

Methods AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑
SALICON

(ICCV 2015) 0.856 0.321 0.711 0.425 2.013

Deep-Net

(CVPR 2016) 0.884 0.300 0.736 0.451 2.066

Shallow-Net

(CVPR 2016) 0.851 0.276 0.694 0.423 1.680

Two-stream

(TMM 2017) 0.863 0.276 0.710 0.382 1.748

DVA

(TIP 2018) 0.886 0.372 0.727 0.482 2.459

DeepVS

(ECCV 2018) 0.887 0.356 0.693 0.446 2.313

ACLNet

(TPAMI 2019) 0.913 0.542 0.757 0.623 3.086

SalEMA

(BMVC 2019) 0.919 0.487 0.708 0.613 3.186

TASED-Net

(ICCV 2019) 0.918 0.507 0.768 0.646 3.302

STRA-Net

(TIP 2019) 0.923 0.536 0.774 0.662 3.479

GDLC

(TC 2020) 0.892 0.409 - 0.544 3.086

KSORA

(PR 2020) 0.889 0.524 - 0.628 3.108

Chen et al.

(Nc 2021) 0.920 0.548 0.778 0.671 3.418

STA3D

(PRL 2021) 0.927 0.534 0.731 0.659 3.329

ECA-Net

(NC 2022) 0.929 0.526 0.806 0.673 3.380

Ours 0.930 0.543 0.794 0.676 3.623

The best and suboptimal results are in bold and with underline respec-
tively. “-” denotes that the results are not provided. Note that the results
of DeepCT on Hollywood-2 are not provided
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4.2 Comparison results

We rigorously compare our MFHF with 16 other state-of-the-art methods, including SAL-
ICON [18], Two-streams [28], DeepNet [19], ACLNet [48], DVA [45], DeepVS [29],
Shallow-Net [19], SalEMA [62], TASED-Net[63], GDLC [64], STRA-NET [31], KSORA
[65], DeepCT [66], STA-3D [67], ECA-Net [68] and the video saliency detection model pro-
posed by Chen et al. in [69]. For a fair comparison, we directly adopt the published results
in the corresponding paper.

4.2.1 Performance on UCF sports

We trained MFHF with UCF Sports training videos and evaluated it on the test set in the
normal way. Table 2 shows the performance of all models. Compared to other video saliency
detection methods, our MFHF has advantages in AUC-J, SIM and NSS metrics. This may
benefit from the fine-tunedmotion features resultingmore efficient and reliable for describing

Table 4 Quantitative comparison
with 14 methods on DHF1K

Methods AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑
SALICON

(ICCV 2015) 0.857 0.232 0.590 0.327 1.901

Deep-Net

(CVPR 2016) 0.855 0.201 0.592 0.331 1.775

Shallow-Net

(CVPR 2016) 0.833 0.182 0.529 0.295 1.509

Two-stream

(TMM 2017) 0.834 0.197 0.581 0.325 1.632

DVA

(TIP 2018) 0.860 0.262 0.595 0.358 2.013

DeepVS

(ECCV 2018) 0.856 0.256 0.583 0.344 1.911

ACLNet

(TPAMI 2019) 0.890 0.315 0.601 0.434 2.354

SalEMA

(BMVC 2019) 0.890 0.466 0.667 0.449 2.574

TASED-Net

(ICCV 2019) 0.895 0.361 0.712 0.470 2.667

STRA-Net

(TIP 2019) 0.895 0.355 0.663 0.458 2.558

DeepCT

(PR 2020) 0.896 0.342 0.673 0.457 2.513

Chen et al.

(Nc 2021) 0.895 0.349 0.677 0.459 2.530

Ours 0.894 0.376 0.655 0.467 2.618

The best and suboptimal results are in bold and with underline respec-
tively. Note that the results of GDLC and KSORA on DHF1K are not
provided
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moving regions. Themotion feature visualisation results, given in Fig. 1(d) and (e), also show
that the fine-tuned motion features are more focused and provide clearer saliency cues than
the original motion features.

4.2.2 Performance on Hollywood-2

All 823 videos in the training set are used to train our model, and Table 3 shows the perfor-
mance of our MFHF and other 15 models on Hollywood-2. The proposed method achieves
the best results for the AUC-J, SIM and NSS metrics and the next best results for the s-AUC
andCC metrics. It may be due to our hierarchical fusion subnet, which can retain more multi-
scale information and achieve better adaptability in complex scenarios. Simultaneously, our
multi-level loss function design also plays a vital role in the performance improvement, which
effectively supervises the extraction and fusion of features.

4.2.3 Performance on DHF1K

As suggested in [48], we also split the video sequences to 600/100/300 to train/validate/test
our model. Quantitative results on the test set of DHF1K are shown in Table 4. From the
Table 4, we can see that TASED-Net achieved the best performance on four metrics although
it doesn’t perform well on the first two datasets. The proposed method gives better results
compared to the rest methods.

To further understand the efficiency of our model, we analyze the influence of frame batch
sizes on the detection performance. TASED-Net gets the highest s-AUC value on DHF1K,
which 32 past frames are used for the next frame saliency prediction. For our model, only
6 frames are included for estimation. Table 5 shows the comparisons of our model and
three variants of TASED-Net on DHF1K, which includes the results of input 4, 8 and 32
frames given in [63]. It indicates the performance can vary with the number of input frames.
Although fewer frames are involved in the network, our model gets the best performance on
two metrics. The proposed model is qualified to capture spatio-temporal saliency cues with
fewer frames.

4.2.4 Performance on DIEM

DIEMhas 84 high-resolution videoswith plentiful common life scenes, in which normally 64
videos are used for training, and 20 videos are left for testing. In [31], authors compared the
performance of STRA-Net on DIEM with different other training datasets and demonstrated
that more training samples could improve the performance of the model and training with
Hollywood-2 get the comparable results. To evaluate the generalization ability, all 20 testing

Table 5 Quantitative comparison
with 3 varients of TASED-Net on
the validation set of DHF1K

Methods AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑
TASED-Net (4) 0.887 0.327 0.689 0.441 2.434

TASED-Net (8) 0.889 0.348 0.696 0.46 2.585

TASED-Net (32) 0.894 0.362 0.718 0.481 2.706

Ours (6) 0.896 0.373 0.658 0.462 2.571

The best and suboptimal results are in bold and with underline respec-
tively
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Table 6 Quantitative comparison
with 14 methods on DIEM

Methods AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑
SALICON

(ICCV 2015) 0.793 0.171 0.674 0.210 1.650

Deep-Net

(CVPR 2016) 0.849 0.164 0.697 0.291 1.650

Shallow-Net

(CVPR 2016) 0.838 0.188 0.620 0.297 1.646

Two-stream

(TMM 2017) 0.859 0.256 0.682 0.366 2.171

DVA

(TIP 2018) 0.868 0.237 0.721 0.386 2.347

DeepVS

(ECCV 2018) 0.857 0.238 0.693 0.371 2.235

ACLNet

(TPAMI 2019) 0.881 0.277 0.693 0.396 2.368

STRA-Net

(TIP 2019) 0.870 0.306 0.678 0.408 2.452

DeepCT

(PR 2020) 0.875 - - 0.504 2.22

Ours 0.883 0.388 0.962 0.482 2.335

The best and suboptimal results are in bold and with underline respec-
tively. “-” denotes that the results are not provided. Note that the results
of SalEMA, TASED-Net, GDLC, KSORA, and the model proposed by
Chen et al. on DIEM are not provided

videos are used as test samples following [31]. For simplicity, we test the performance of
our network which only be trained with Hollywood-2 and the results are shown in Table 6.
Noted that we only list the best results of STRA-Net on DIEM, which uses plenty of training
sets, while we only use the parts of training data. The results are shown in Table 6 clearly
illustrate our approach achieves competitive performanceonmostmetrics andhas comparable
generalization capability with other advanced models.

Table 7 Ablation study on UCF sports

idx motion feature hierachical convGRU AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑
fine-tuned fusion

1 0.872 0.433 0.735 0.523 2.56

2 � 0.891 0.459 0.756 0.564 2.763

3 � 0.880 0.462 0.738 0.549 2.770

4 � � 0.895 0.494 0.762 0.595 3.167

5 � � � 0.920 0.510 0.791 0.635 3.509

The best results are in bold
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Table 9 Quantitative comparison
with 14 methods on DHF1K

Side outputs AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑
HF-Output1 0.881 0.484 0.759 0.581 2.953

HF-Output2 0.891 0.486 0.760 0.589 3.055

HF-Output3 0.893 0.490 0.761 0.591 3.089

Ours 0.895 0.494 0.762 0.595 3.167

4.3 Ablation study

From the previous subsection, our MFHF performs well on multiple datasets, which may be
due to our motion fine-tuning and hierarchical fusion module. For verifying the effectiveness
of each component, we designed kinds of MFHF variants and tested them on UCF sports.

We firstly explore the effectiveness of the proposed motion feature fine-tuned module and
hierarchical fusion module in this section. The first row in Table 7 is the baseline which have
the two-stream structure, the fifth row is our method and in rows 2 to 4 we have different
combinations of our modules. The effectiveness of the motion feature fine-tuned module and
hierarchical fusionmodule can be verified from the comparison results in rows 1-3. The result
in line 4 shows that the above two modules are valid when combined. The last two rows of
the results in Table 7 demonstrate the efficiency of the ConvGRU as well. Combining all of
them achieves the best performance.

To further verify the effectiveness of the structure of the proposed model, We intro-
duce modules from other methods to conduct comparative experiments. We used the spatial
enhancement module in STRA-Net [31] to replace the motion feature fine-tuned module,

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4 Visualization of saliency detection. (a) Frame. (b) Optical flow. (c) Ground truth. (d) HF-Output1. (e)
HF-Output2. (f) HF-Output3. (g) Ours(w/o convGRU). (h) Ours(w. convGRU)
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comparison results are shown in the first and fourth rows of Table 7. Compared to the spatial
enhancement module in STRA-Net, the motion fine-tuning module we used makes more
effective use of motion information to model video saliency. To verify the effectiveness of
hierarchical fusion, we used fusion machanisms such as convolutional fusion [28] and max
fusion [28] in our framework, they only fuse single-layer features. We can see from the
comparison of the last three rows that the hierarchical fusion machanism achieves better
performance using multi-scale contextual features (Table 8).

In addition, we compared the saliency maps generated by the fusion featuresHF-Output1,
HF-Output2 and HF-Output3, which are from the last three layers of the hierarchical fusion
subnet. These saliency maps are represented as S3t , S

4
t , S

5
t in Section 3.3, respectively. The

overall efficiency of multiscale fusion features for video saliency was assessed by comparing
the results shown in of Table 9 and the visualization results shown in Fig. 4. These show that
the multilevel features is helpful for modeling video saliency, the deeper hierarchical fused
features is better to distinguish saliency parts in the videos.

5 Conclusions

In this paper, we propose a novel spatial and motion dual-stream framework to model video
saliency detection. In order to get saliency related features, a dual-stream network was intro-
duced to extract multiscale spatial features and then used to fine-tune motion features in
a dense residual cross connection architecture. With the help of the higher level semantic
spatial features, the fine-tuned motion features can get some saliency related features. Then,
we fuse the multi-scale features with the hierarchical fusion subnet to retain more contextual
saliency information. Also we integrate the multi-scale saliency map at the same frame to a
loss function for monitoring the saliency detection process. ConvGRU subnet is revised to
get the relationship between the frames. Extensive results on four video saliency benchmark
datasets demonstrate the superiority of the proposed model to precisely predict dynamic
human fixations. The ablation experiments show the necessity and effectiveness of each
component in our model. Motion features play an important role in the video processing, if
the fine-tune motion feature can implement in the transformer framework, the final results
can further be improved.
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