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Abstract

This paper presents a novel approach to Zero-Shot Action Recognition. Recent works have
explored the detection and classification of objects to obtain semantic information from
videos with remarkable performance. Inspired by them, we propose using video captioning
methods to extract semantic information about objects, scenes, humans, and their relation-
ships. To the best of our knowledge, this is the first work to represent both videos and labels
with descriptive sentences. More specifically, we represent videos using sentences gener-
ated via video captioning methods and classes using sentences extracted from documents
acquired through search engines on the Internet. Using these representations, we build a
shared semantic space employing BERT-based embedders pre-trained in the paraphrasing
task on multiple text datasets. The projection of both visual and semantic information onto
this space is straightforward, as they are sentences, enabling classification using the nearest
neighbor rule. We demonstrate that representing videos and labels with sentences alleviates
the domain adaptation problem. Additionally, we show that word vectors are unsuitable for
building the semantic embedding space of our descriptions. Our method outperforms the
state-of-the-art performance on the UCF101 dataset by 3.3 p.p. in accuracy under the TruZe
protocol and achieves competitive results on both the UCF101 and HMDBS51 datasets under
the conventional protocol (0/50% - training/testing split). Our code is available at https://
github.com/valterlej/zsarcap.

Keywords Cross-dataset learning - Paraphrase estimation - Video captioning -

Zero-shot learning

1 Introduction

Human Action Recognition (HAR) is an active research topic in computer vision. Sev-

eral supervised models have been proposed with impressive performance in the last years,
especially those based on deep learning [1]. At the same time, large-scale datasets contain-
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ing a massive number of human actions, such as Kinetics-400 [2], Kinetics-700 [3] and
ActivityNet [4], have become available. Even in the face of this progress, only a few human
actions are mapped, collected and annotated. Hence, retraining state-of-the-art (SOTA) action
recognition models is imperative to incorporate new classes, which requires much time, com-
putational resources, energy, and human labor [5].

Zero-Shot Learning (ZSL) [6, 7] and their applications to actions, Zero-Shot Action Recog-
nition (ZSAR) [5, 8, 9], are computer vision tasks that emerge from this problem. In ZSAR,
the goal is to recognize examples from unknown human action classes, that is, videos from
classes that were not available during the training stage. As we do not have samples from a
new class in training, ZSAR models need to represent the class labels with semantic infor-
mation, and the classification is performed with some function, usually learned with known
classes by correlating visual patterns with the label semantic properties [10].

Traditionally, the videos are represented using spatio-temporal features (e.g., Improved
Dense Trajectories (IDT) [11], Convolutional 3D Network (C3D) [12] or Inflated 3D Net-
work (I3D) [2]), and the class labels are represented with attributes or word vectors such as
Word2Vec [13] or Global Vectors (GIoVE) [14].

Although this general scheme (deep features <> word vectors) has become popular
for ZSAR, it suffers from a severe domain adaption problem because the learned functions
do not transfer well from seen to unseen classes. The main reason is the gap between visual
features and semantic features represented with word vectors [5]. For example, different
concepts such as horse riding and pommel horse are prone to appear close into the semantic
space, and the absence of complementary information makes it very difficult to discriminate
them. It is not surprising that attribute-based methods present higher accuracy than those
based on word vectors [10].

As representing classes with a set of attributes is not scalable, some recent approaches have
replaced attributes by detecting objects in scenes [15, 16]. This approach works because the
visual class-object relationships also exist in texts and are captured in word vectors [16]. Nev-
ertheless, it has some limitations; for example, it can be difficult to distinguish foreground and
background objects or provide a proper representation for these object labels in the semantic
space. Additionally, the presence of out-of-context objects produces incorrect predictions.

Considering the above discussion, in this work we propose a method in which the goal is
to represent the videos and labels with the same modality of information, aiming to mitigate
the domain adaptation problem. An intuitive choice is to represent labels and videos with
sentences or paragraphs in natural language. In that way, we can produce rich representations
for both visual and semantic, and our method is illustrated in Fig. 1. Although intuitive, this
is the first work, to the best of our knowledge, that uses neural networks to convert videos
into descriptive sentences, and then to perform Zero-Shot Action Recognition (ZSAR) with
these sentences.

First, we encode the videos using observers that generate a descriptive sentence given
an input video, as shown in Fig. 1(a). We choose SOTA video captioning architectures
from [17-19] and pre-training them in the ActivityNet captions dataset (i.e., without any class
label). These architectures present remarkable properties, such as (i) using self-attention to
concentrate on more relevant segments in the videos; (ii) storing in their weights video-text
relationships; and (iii) producing fluent sentences, which enable us to estimate the similarity
between these sentences and the semantic side information using methods for paraphrase
identification.

We then encode the action labels with texts collected from the Internet through search
engines, as illustrated in Fig. 1(b). More specifically, we use the descriptions provided by
Wang and Chen [20] and employ a simple strategy to select only the sentences most closely
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(b)

T s A l:> Search Engine :{} Preprocessing

@ : [Balance Beam Description]

1. The balance beam is an artistic gymnastics apparatus, as well as the event performed using the

The girl flips across the  She does a flip and lands The gymnast dismountsand ~ fapparatus.
e bar. lands on the mat. |2 Balance beams used in international gymnastics competitions must conform to the guidelines and

: set forth by the federation apparatus norms brochure.

13. The beam is a small, thin beam which is typically raised from the floor on a leg or stand at both
Observer 1 Observer 2 L] Observer 5 fends.

4. The history of the balance beam in german and english.

: |5. Most gymnastics schools purchase and use balance beams that meet the fig s standards, but

: lsome may also use beams with carpeted surfaces for practice situations.

|6 Balance beam difficulty began to increase dramatically in the s.

[Video Description] : |7. While learning new skills, gymnasts often work on low beams that have the same dimensions and
: |surface of regulation apparatus, but are set a very short distance from the ground

[The girl lips across the beam. She does a fiip and lands : [8. Both the apparatus and the event are sometimes simply referred to as beam.

lon the bar. The gymnast dismounts and lands on the  |o. They may also work on practive beams, mini beams, or even lines on a mat.

Imat. The gymnast jumps off the beam and jumps of the : |10. Today, balance beam routines still consist of a mixture of acrobatic skills, dance elements, leaps

lbeam. She jumps off the beam and jumps off the mat  |and poses, but with significantly greater difficul.

(0) BERT-based Paraphrase Embedder BERT-based Paraphrase Embedder

Joint Embedding

Fig. 1 Representation of our ZSAR method. In (a), we show the visual representation procedure. In (b), the
semantic representation is shown. Finally, in (c), the joint embedding

related to the action labels. We demonstrate this procedure is more effective then those
proposed by Chen and Huang [8] and our final class description is independent of human
evaluation or approval.

As shown in Fig. 1(c), we take advantage of SOTA paraphrase methods based on Bidirec-
tional Encoder Representations from Transformers (BERT), and produce a joint embedding
space in which a simple Nearest Neighbour (NN) method achieves remarkable performance.

Our work has some advantages compared to existing methods: (1) the semantic gap due to
domain adaptation does not exist or is significantly mitigated when comparing a textual video
description with a textual class label description; (2) a joint latent representation between
visual patterns and texts is encoded in video captioning neural networks, being a natural bridge
between these information modalities; (3) the model is entirely cross-dataset and plug and
play,i.e., we can replace the captioning models with others with better performance or trained
on other datasets; we can also replace the BERT-based encoding with an even more accurate
encoder with no additional training; and (4) ideally, no additional training is required to
incorporate more classes. It is only necessary to collect texts with descriptions for the labels,
which can be automated.

Our contributions are summarized as follows:

1. We demonstrate that representing videos with descriptive sentences, automatically
learned, instead of deep features is viable and conduct us to the SOTA on the UCF101
dataset in the ZSL scenario;

2. We demonstrate that class labels encoded with word vectors are unsuitable for building
the semantic embedding space for our approach. Otherwise, we propose representing the
classes with sentences extracted from documents acquired with search engines on the
Internet without any human evaluation of their content;

3. We build a shared semantic space employing a BERT-based embedder with a highly
accurate pre-trained model for the paraphrasing task. The projection onto this space is
straightforward for both types of information;
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4. Finally, our experimental evaluation demonstrated that the main performance limitation
is the current state of the art on video captioning, which can be considerably improved
in the coming years by creating new end-to-end models combining these two objectives
(captioning and ZSAR).

2 Related work

The central problem in ZSAR is how to bridge the gap between what the model is seeing
and the semantic knowledge it has. As shown in Estevam et al. [10], existing methods based
on attributes manually annotated reached greater accuracy than raw deep representations.
However, video annotation is not scalable, and different approaches have been proposed to
represent videos with automatically detected attributes, usually the presence or absence of
objects, classified by knowledge transfer from large-scale datasets. Recently, the use of textual
representations to learn joint representations has been proposed with promising performance.
In the following subsections, we introduce some relevant approaches for these strategies.

2.1 Object representations for ZSAR

Guadarrama et al. [21] proposed an approach based on hierarchical semantic models for
subjects, objects, and verbs. They employed object detectors associating the predictions
with their corresponding leaves in the hierarchies. Information from objects and subjects is
combined and fed into a non-linear Support Vector Machine (SVM). On the other hand, Jain
etal. [15] used the estimated probability of detected objects as prior knowledge and estimated
an affinity between an object class and an acting class. This information was used to compute
the semantic description of an action class as a function of the set of predicted objects.

Zuxuan et al. [22] proposed generating an intermediate space containing the relationships
among objects, scenes, and actions. They employed a semantic fusion network on three
streams: global low-level Convolutional Neural Network (CNN) (e.g., from a VGG19 trained
on ImageNet); object features in frames (e.g., from VGGI19 trained on a subset of 20,574
objects); and features of scenes (e.g., from a VGG16 trained on the Places205 dataset). The
correlation between objects/scenes and video classes is mined from the visualization of the
network by salience maps producing a matrix with the probability that each pair (object,
scene) is related to an action.

Mettes and Snoek [16], on the other hand, focused on the spatial relationship between
actors and objects. They proposed a method based on spatial-aware object embeddings
computed from interactions between actors and local objects in sequential frames using
a pre-trained Faster R-CNN model on the MS-COCO dataset. Segments with actor-local
object interaction were called action tubes, and these tubes are distinguished among different
videos using global object classifiers through the GoogleLeNet network. The video class is
determined as the class with the highest combined score between video tube embeddings
and global classifiers. Their semantic information is given by cosine distance of actions and
objects taken Word2Vec representations.

Gao et al. [23] learned the relationship between actions and objects in a two-stream
configuration. In the first stream, they learned classifiers on graph models constructed with
ConceptNet5.5 [24], where the concepts are represented with word vectors. The second
stream used the visual representations of objects (with the methods used in [15] and [16]) to
learn the graphs. The classifiers are learned during training and optimized for seen categories.
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Hence, in testing, the classifiers of unseen categories (i.e., from the first stream) are used to
classify the object features of test videos (i.e., from the second stream).

Ghosh et al. [25] were inspired by [23]. In their work, knowledge graphs were fed to
a Graph Convolutional Network (GCN), aiming to minimize the Mean Squared Error (MSE)
between the final classifier layer weights (GCN) with the classifier layer weights from I3D.

Finally, Kim et al. [26] proposed generating semantic embedding spaces based on dynamic
attributes signatures. They showed that dynamic attributes are preferable to static ones for
modeling actions due to the lack of temporal information. Thus, they constructed finite state
machines over the static annotations provided in the UCF101 and Olympic Sports datasets
describing the presence and the transitions between these states. These patterns are action
signatures used to perform the ZSAR classification.

Our method explores the ability of video captioning to identify objects in scenes inferred
by their context and by sentence annotations. Additionally, we employ the I3D model as
a deep representation, and this model incorporates the weights of an Inception-V1 model
pre-trained on ImageNet [2].

2.2 Text representations for ZSAR

Zhang et al. [27] proposed an improved model for learning visual and textual alignments.
Typically, these approaches take a set of paragraphs, represented as a sequence of words,
and feed it into an encoder to obtain a paragraph embedding. Similarly, a set of short clips
composed of a few frames is fed to an encoder to obtain a video embedding. These embeddings
are updated with a loss function at a high level (e.g., cosine distance). Their method proposes
a mid-level alignment where paragraphs are aligned to videos and sentences are aligned to
short clips. The quality of the intermediate encoding is improved by using decoding networks
to evaluate reconstruction errors.

Piergiovanni and Ryoo [28] also developed a method to learn an intermediate represen-
tation for both videos and texts based on an encoder-decoder approach. In their method,
there are two encoder-decoder pairs: (video-encoder, video-decoder) and (text-encoder, text-
decoder). The first encoder takes a video and produces an intermediate space, and the first
decoder reconstructs the video given the intermediate representation. The same occurs with
text. Four loss functions were proposed to handle the learning with paired and unpaired data.
The classification is performed by the NN rule between each video representation and its text
representation in the intermediate space.

Recently, Chen and Huang [8] proposed a method combining object detection and textual
information. They observed that only word vector representation is insufficient to provide
information for objects detected in the videos. Then, they used the object label to retrieve
their WordNet description as an object concept description. Additionally, they proposed a
combination of Wikipedia and dictionary data to compose action class descriptions using
human supervision in this task. Hence, they could identify objects in videos and provide a
representation based on their concepts. Although well succeeded, their method requires the
presence of visual representation in the ZSAR classification step.

Our method is also based on textual descriptions, but it has several differences: (1) we
use methods that predict descriptions word by word and consider the visual information and
the previously predicted words. A clear advantage of this strategy is to ignore objects out of
context; (2) our method does not require any class label annotation nor to train the ZSAR clas-
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sifier; (3) our strategy for semantic side representation does not require human supervision at
the level of sentences; it requires only a document from the Internet with a general descrip-
tion; and (4) as we have good descriptions, paraphrase identification methods pre-trained on
millions, or even billions of sentences, can be employed without the need for fine-tuning.

3 Methodology

In this section, we describe in detail our methodology, which is illustrated in Fig. 1. To
facilitate our presentation, Table 1 summarizes the notations used in this paper.

3.1 Problem definition
The goal of ZSAR is to classify samples belonging to a set of unseen action categories

Yu = 1, ..., Yu, (.e., never seen before by the model) given a set of seen categories Vs =
Y1, ...s Vs, as the training set. The problem is named ZSAR only if the following restriction

Table 1 Nomenclature used in our work

Notation Description
Vso Vu sets of labels for labeled and unlabeled action classes
Vug» Yun seen and unseen action classes

Ypreds Yprot  predicted class label, prototype of an action class (a descriptive sentence)

))Mpmm set of label representations (textual description) for unlabeled action classes
[ empty set

v a video (visual and audio streams)

ne a stack of video features for a video

vy a set of n, visual features

Y a set of m words of a sentence encoded with BMT or Transformer

dmodel dimension of the internal encoding layer of BMT or Transformer

0,K,V queries, keys and values (inputs of a self-attention layer)

dy, dimension of the queries and keys

W, Wi, W2 internal weight matrices

Vf, A, Sm a visual stream, an audio stream, a semantic stream (VisGloVe [19])

ASm an audio or a semantic stream depending on the Observer input

pos the position of a feature or word in a BMT or Transformer input

i number of column indices used on positional encoding

PE indicates that the feature was yielded by a positional encoding layer
self indicates that the feature was yielded by a self-attention layer

-att indicates that the feature was yielded by a multi-head attention layer
FFN indicates that the features were yielded by a feed-forward network
Ug, Up sentences a and b feed to the Siamese BERT networks [29]

ng dimension of sentence embeddings

k number of labels in the paraphrasing classification pre-training
Sa»Sp» Sn sentence embeddings for anchors, positive, and negative sentences (Sentence-BERT training)
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is respected:
VuNYs = @ (1)

Our classification consists of mapping both video and semantic information (i.e., class
description) into a joint embedding space. Then, the classification is performed with a NN
rule under some similarity function, such as

Ypred = argmax Sim(Emb(yprot)’ Emb(Obs(v))) 2)

Yprot Eyupm,s

in which Sim(-) is the cosine similarity; v is a video, Obs(-) = [OD1(:), ...Ob,()]; [-] is a
concatenation operator and Ob(-) is a video sentence description from each of the o observers
(i.e., video captioning methods) (see details in Section 3.2); y,ro; 18 a sentence from a large
textual description for each class obtained with the procedure described in Section 3.3;
finally, Emb(-) is a sentence embedding function described in Section 3.4. Our method, as
mentioned previously, does not use the training set because the benchmark datasets do not
provide annotated sentences for their videos.

3.2 Video representation

Our goal is to predict a sentence given a video (using visual and audio information when
available). As video captioning is an area of computer vision responsible for study models
with this ability, we choose two SOTA architectures that could be used with the same set of
features: Transformer [17] (using the original transformer implementation from [30]), and
Bi-Modal Transformer (BMT) [18]. Figure 2 shows a diagram illustrating both models.
Transformer First, given a video v, the observer takes a set of n. visual features v f =
(v, ... Ve }, one per each frame stack, and a set of m words Y = {y1, ..., y;»} to estimate
the conditional probability of an output sequence given an input sequence.

Bi-Modal Transformer

Bi-Modal L, Fully -

Modality 1
’s Self - ————> Bi-Modal _, Fully-
> Attention Attention Connected
Modality 2
> Self -
Attention

Attention Connected
xN
Bi-Modal Encoder
Bi-Modal » )
f s Attention ~ Positional Encoding
-~ elf - : Fully -
1, Attenton BiModal s 2998 ™ Gonnected
Attention
xN
Bi-Modal Decoder
Language Generator
Transformer
Fully-Connected
GloVe v
Py > self- —> Encoder - Fully - Smi"ax
> T Attention E;w:?ef > Connected
tention
/ Text xN rock
The person goes embedding Bty
over a large
waterfall and
lands on a Modality 1
E Self - Fully -
>~ e
Attention Connected
xN

Encoder

Fig. 2 Overview of the captioning architectures showing the BMT and Transformer layers with their inputs
and the language generation module. Adapted from [10]
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We encode vy,, where 1 < ¢ < n as
vy, = VE(W), 3)

where Vg (-) yields a deep representation given by an off-the-shelf convolutional network,
and v, is the c-th frame stack for the video v.

The video features (3) are fed all at once to the transformer encoder in which a learned
continuous representation is passed to a decoder to generate a sequence of symbols Y from
the language vocabulary.

The Transformer requires information on the position of each feature, and a usual strategy
is to compute a positional encoding with sine and cosine at different frequencies as

PE(pos 21y = sin (pos /100007 /dmodel’y @
PE(pos,2i+1) = €OS (pOS/lOOOOZi/dmodp[)’
where pos is the position of the visual feature in the input sequence, 0 < i < d;;p40 and
dmodel 18 a parameter defining the internal embedding dimension in the transformer.

Subsequently, a multi-head attention layer processes these representations with scaled
dot-product attention defined in terms of queries (Q), keys (K), and values (V) as

A0, K, V) —soﬁmax(M
I Vi

and the multi-head attention layer is the concatenation of several heads (1 to &) of attention
applied to the input projections (computed with dense layers) as

) xV, (&)

MHA(Q, K, V) = [head,, ..., heady] x W°, (6)

where head; = Att(Q % WiQ, K x WiK ,V x WiV) and [ ] is a concatenation operator. The
key insight on Transformer is the self-attention, which takes Q = K = V = VFE resulting
in

_ vPE vFE vPE
Vi < [An(VEE x W T VEE W vEEscw T,

PE VIR PE VIR pE vie
...,Att(Vf x W, ,Vf x W, ,Vf x W, )l (@)

The latent feature from the encoder is given by a fully connected feed-forward network
FFNC(-) applied to each position separately and identically, defined as

FEN(u) = max(0, u x Wi + by) x Wy + bo, (8)

resulting in VEN which is a rich video representation based on self-attention used in the
decoder layer.

The decoder layer receives words and feeds an embedding layer E(-), computing the
position with (4) resulting in W?E. This representation is fed to the multi-head self-attention
layer to compute an internal representation based on self-attention applied on word sequence,
resulting in Wself—att,

Then, we compute the relationship between video and sentence by feeding the encoder-
decoder attention layer, resulting in an attention on the words given the visual encoding
» WViSAtt — MHAII(WSdfia”, V;TFN, V;‘FN). )
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Finally, W VsA"* feeds an FFN(-) and, then, a generator G (-) composed of a fully connected
layer and a softmax layer is responsible for learning the predictions over the vocabulary dis-
tribution probability. This model is highly efficient in modeling visual-textual relationships.

Bi-Modal Transformer (BMT) The second architecture employed is Bi-Modal Transformer
(BMT). Considering the encoder, this transformer has two differences from the Transformer
encoder. It takes two streams, visual V and audio A [18] or semantic Sm [19], separately. We
denote this second stream as ASm (i.e., audio or semantic). The encoder has three sub-layers:
self-attention (5), producing V;glf ~9 and ASm*elf —a!!; bi-modal attention, i.e.,

V?Sm—att _ MHAtt(V;elfv ASmself, ASmself), (10)

and
ASmV 5= = MHAwASm Y, Vi v, (11)

and a fully connected layer FFN(-) for each modality attention, producing V{oN

ASmEMN used in the bi-modal attention units on the decoder.

Considering the bi-modal decoder, a wself—att ig obtained with (6). Afterward, the bi-
modal attention is computed as

and

wAS=att — MEAn(W* = ASmENY, ASmEMY, ) (12)
and
wV-att MHA[I(Wself_ana ,fg%N—att» V/&IYnN—att)' (13)

The bridge is a fully connected layer on the concatenated output of bi-modal attentions,
which are enriched features through attention on the combination of two video modalities
(e.g., visual and audio), computed as

WFFN — FFN([WSmfatr’ vaatt])' (14)

The output of the bridge is passed through another FFN and then to the generator G (-).
This means that the encoder parameters are learned conditioning them to the sentence output
quality.

We compute the semantic descriptor from [19] strictly following the model and training
procedures. The mathematical details can be found in the original paper.

3.3 Class label representation

We take a dataset with documents collected on the Internet containing a textual descrip-
tion for each class. Hence, for each class, we have a set of prototype sentences Vprot =
{Vprot, » Yproty» -++» yprotq} obtained by splitting the paragraphs.

We employ simple but effective selection criteria: (i) to filter the sentences with a minimum
number of words; (ii) to compute dense representations for all the sentences and the class
label using the Sentence-BERT (SBERT) [29] model; (iii) to compute the cosine similarity
between the dense representations of the class label and the sentences; and (iv) to select a
maximum number of sentences ordered by the highest similarity.

The joint embedding space used for ZSAR is composed of representations for video
and prototype sentences computed with the SBERT model. The details are provided in the
following section.
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3.4 Sentence embedding

We propose to encode information at the level of sentences and not words. For this task, we
use the SBERT model from [29]. It is an improved BERT [31] model that drastically reduces
the computational cost for acquiring BERT embeddings by feeding a Siamese network,
containing two BERT models, with one sentence per branch, dispensing with the special
token [SEP]. The model architecture is shown in Fig. 3.

BERT or RoBERTa models are fine-tuned on large-scale textual similarity datasets. If the
dataset requires classification, the objective function is described as

0 = softmax(W;(ug, up, |ug — upl))) (15)

where |u, —up| is an element-wise subtraction, W, € R3s %k is the trainable weights, n; is the
dimension of sentence embeddings, and & is the number of labels. The model optimizes the
cross-entropy loss. On the other hand, if the dataset requires regression, the cosine similarity
between two sentence embeddings u, and u, is computed, and the loss function is the MSE.

The model can also be optimized using a triplet objective function. Taking an anchor
sentence a, a positive sentence p, and a negative sentence n, the triplet loss tunes the network
so that the distance between a and p is smaller than the distance between a and n, that is,
minimizing the following equation

max (|| sq —Sp I =1l sa —sn |l +€,0), (16)

where 5,4, 55, and s, are sentence embeddings, || - || is a distance metric and € is a margin
ensuring that s, is at least € closer to s, than s,.

Sotmax Classifier -1
t t
(ug, Up, | ug-up|) cosine-sim(ug, up)
Uy up Uy Up
t t t t
pooling pooling pooling pooling
) 1 t t
BERT BERT BERT BERT
) i ) 1
Sentence A Sentence B Sentence A Sentence B

(a) (b)

Fig. 3 SBERT architecture from Reimers and Gurevych [29]. In (a) is shown the classification objective
function, and in (b) the architecture used at the inference or regression tasks
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Our interest is in the vector u (see Fig. 3), after the fine-tuning, computed as the mean
of all outputs instead only output for [CLS], as occurs in BERT. For details on BERT or
RoBERTa see [31] and [32], respectively.

4 Experiments

In this section, we introduce the datasets and protocols, the implementation details, and the
results. We also include an extensive ablation study organized as a set of questions and
answers (Q&A).

4.1 Datasets and protocols

Our observers were trained using the ActivityNet Captions dataset [33], which consists of
10,024 training, 4,926 validation, and 5,044 testing videos collected from YouTube. The
videos are annotated with start and end points for events, and a sentence is provided for each
annotation totaling approximately 36K pairs of event-sentence. The sentences have an average
length of 16.5 words and describe around 36s of their videos. It is important to highlight that
no action label from ActivityNet is used during the training of the video observers.

For testing, we employ the popular benchmarks HMDBS51 [34] and UCF101 [35]. The
former is composed of 6,766 videos from 51 classes, illustrated in Fig. 4, with an average
duration of 3.2s; the frame height is scaled to 240, and the frame rate is converted to 30 frames
per second (FPS). The latter comprises 13,320 videos from 101 action classes, illustrated
in Fig. 5, with frame resolution standardized to 25 FPS and 320 x 240 pixels. The average

Brush Hair Cartwheel Catch Chew Clap Climb Climb Stairs Dive Draw Sword

Fall Floor Fencing Flic Flac Handstand

Push Pushup Ride Bike Ride Horse Run Shake Hands Shoot Ball Shoot Bow

Smile Smoke Somersault Stand Sword

Sword Exercise Talk Throw Turn Walk Wave

Fig.4 Samples for the 51 action classes from the HMDBS1 dataset [34]
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Brushing Teeth Clean And Jerk Cliff Diving

Fencing Field Hockey Penalty Floor Gymnastics  Frisbee Catch Front Craw Golf Swing

Head Massage High Jump Ice Dancing

Juggling Balls Jumping Jack Kayaking

Mopping Floor Nunchucks Parallel Bars Pizza Tossing Playing Cello Playing Daf Playing Dhol Playing Flute Playing Guitar
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Playing Piano Playing Sitar Playing Tabla Flaymg Violin Pole Vault Pcmmel Horse Pull Ups Push Ups
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Salsa Spin Shaving Beard Shotput Skate Boarding Skiing

A HC

Skijet Sky Diving Soccer Juggling  Soccer Penalty still Rings Sumo Wrestling Surfing Table Tennis Shot
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ﬁ

Tai Chi Tennis Swing Throw Discus  Trampoline Jumping Typing Uneven Bars  Volleyball Spiking ~ Walking With Dog

Rafting Rock Climbing Indoor  Rope Climbing

Rowing
s B

Fig.5 Samples for the 101 action classes from the UCF101 dataset [35]

duration of the videos is 7.2s. As is customary in ZSAR research [10], performance is
evaluated using the well-known accuracy metric, which quantifies the number of correct
predictions relative to the total number of predictions made.

Providing a fair evaluation of ZSAR models using these datasets is not straightforward
due to the nature of the visual feature extractors and the datasets used for training them. For
example, if a ZSAR model uses the 13D network, pre-trained on Kinetics400 [2], there are
overlaps between the set of classes from Kinetics400 and the set of classes from HMDBS51
and UCF101. This overlap imposes the removal of these classes from the ZSAR test set
to preserve the ZSL premise (i.e., the disjunction between training and testing class sets).
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However, these overlaps are often challenging to recognize due to differences in class names
and the visual and semantic similarity between certain classes, as pointed out in [8, 10,
36-38].

Taking this into account, we adopt the TruZe evaluation protocol [38] on UCF101 and
HMDBS51 datasets, in which the testing split is generated with the following guidelines: (i) to
discard exact matches (e.g., archery); (ii) to discard matches that can be either superset or
subset (e.g., cricket shot and cricket bowling (UCF101) and playing cricket (Kinetics400));
and (iii) to discard matches that predict the same visual and semantic match (e.g., apply eye
makeup (UCF101) and filling eyebrows (Kinetics400)). The result is a configuration with
29/22 (train/test) and 67/34 classes for the HMDBS51 and UCF101 datasets, respectively.
As our model does not require these training sets (i.e., it is cross-dataset), we take into
consideration only the testing sets (i.e., 0/22 and 0/34).

Finally, we also provide a comparison using a conventional protocol employed in most of
the works. In some cases 0/50%, and in the most 50%/50%?2. Although there are overlaps in
training and testing sets, several methods employ this scheme [20, 39-41]. This evaluation is
important to observe the impact of the use of I3D features on the results and how our method
compares to others independently of the adopted protocol.

4.2 Implementation details

We compute features as shown in Fig. 6. For all videos, we extract features from all datasets
using the I3D network with its two streams, RGB and Optical Flow, in videos with 25 FPS.
We follow the authors’ recommendations for re-scaling (224 x 224 pixels) but replace the
TV-L1 [42] optical flow algorithm for the PWC-Net [43], as it is much faster’. For each video,
we extract one feature with stacks of 24 frames and steps of 24 frames (i.e., 0.96 features
per second). The audio features are extracted with the VGGish model [44] pre-trained on
AudioSet [45]. We follow the default configuration.

Considering that the videos on the HMDBS51 dataset do not have the audio signal and that
around 50% of the videos from UCF101 have this information, we compute the Visual GloVe
features [19] from RGB stream of 13D, which is a simple and effective feature to replace the
audio stream in the BMT model and to enrich the Transformer model input. Finally, we get
four features: VisGloVe, i3DVisGloVe, i3D, and VGGish (see Fig. 6(a)). With these features,
we fed two architectures for video captioning (i.e., Transformer and Bi-Modal Transformer
(BMT)) which allowed us to generate 5 distinct observers. Fig. 6(b) shows the configuration
of each observer (architecture and inputs).

The Transformer and BMT models are trained up to 60 epochs employing early stopping
if the Meteor score [46] stays unchanged for 10 epochs. The loss function adopted is the
Kullback-Leibler Divergence with label smoothing and masking. Dropout is used to prevent
overfitting with a rate of 0.1. Additionally, we monitor the Bleu@3 and Bleu@4 scores [47]
to allow evaluating the quality of the sentences produced during the training stage. The Visual

I UCF101 - apply lipstick, balance beam, baseball pitch, billiards, blow dry hair, cutting in kitchen, fencing,
field hockey penalty, front crawl, hammering, handstand pushups, handstand walking, horse race, ice dancing,
jumping jack, military parade, mixing, nunchucks, parallel bars, pizza tossing, playing daf, playing dhol,
playing sitar, playing tabla, pommel horse, punch, rafting, rowing, still rings, sumo wrestling, table tennis
shot, uneven bars, wall pushups, and yo yo; HMDBS51 - chew, climb stairs, draw sword, fall floor, fencing, flic
flac, handstand, hit, jump, kick, pick, pour, run, sit, shoot gun, smile, stand, sword exercise, talk, turn, walk,
and wave.

2 Not all methods allow 0/50 experiments.
3 The code used for feature extraction is available at https://github.com/v-iashin/video_features
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Fig. 6 Features and observers. In (a) is shown features computed from visual and audio streams, and in (b)
the observers architecture and their respective input features

+ Mean + Concatenation

Global Vectors (VisGloVE) features are computed with a vocabulary of 1,000 visual words
(learned with clustering), a context of 25 words (* 24s), and a dimension of 128. The training
is performed until 1,500 epochs with early stopping of 100 without improvements in the cost
function.

The adoption of multiple observers is motivated by the intuition that different humans
would produce different sentences given a sample video. Although different, these sentences
would tend to be complementary to each other. As our results show, this scheme is highly
efficient in improving the video representation, which is reflected in the increase of ZSAR
accuracy considering multiple sentences.

We use the textual descriptions provided in [20]* as side information. The texts are pro-
cessed using the NLTK? package for splitting paragraphs into sentences and the contractions®
package to expand contractions (e.g., “isn’t” to “is not”). We follow the procedure described
in Section 3.3 by selecting sentences with a minimum of 10 words and up to 10 sentences
per class and taking the nearest sentence encodings (cosine similarity) compared to the label
encoding. The sentences from the observers are concatenated. We build the joint space with
Sentence-BERT encoders [29], namely, the paraphrase—distilroberta—base—v27 model [48].
A NN algorithm employing cosine distance is used to conduct the ZSAR classification.

The deep learning models were implemented using PyTorch®, while the ZSAR classifier
was implemented using scikit-learn”. All experiments were conducted on a computer system

4 The data is available at https://staff.cs.manchester.ac.uk/~kechen/ASRHAR/
5 https://www.nltk.org/
6 https://pypi.org/project/contractions/

7 Trained on the following datasets: AIINLI, sentence-compression, SimpleWiki, altlex, msmarco-triplets,
quora_duplicates, coco_captions, flickr30k_captions, yahoo_answers_title_question, S20RC_citation_pairs,
stackexchange_duplicate_questions, wiki-atomic-edits.

8 https://pytorch.org/
9 https://scikit-learn.org/
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equipped with an AMD Ryzen 7 2700X 3.7GHz CPU, 64 GB of RAM, and an NVIDIA
Titan Xp GPU (12 GB). The experiments were executed on the Ubuntu operating system.

4.3 Selected benchmarks and evaluation

We selected two generic ZSL models and five SOTA ZSAR methods for TruZE comparison,
briefly described in this section.

Latem [49] is a direct projection onto semantic space method in which a piece-wise linear
compatibility function is used to understand the visual-semantic embedding relationships.
SYNC [50] generates a weighted graph with synthesized classes that ensure the alignment
between semantic embedding space and the classifier space by minimizing the distortion
error. BIDILEL [5] learns two projection functions for projecting visual and semantic spaces
onto a shared embedding space to preserve the relationship between them.

OutDist [39] learns a visual feature synthesizer given the semantics and an out-of-
distribution detector to distinguish generated features from seen ones. WGAN [51] is a
model that synthesizes CNN features conditioned on class-level semantic information. It
provides a way to generate a class-conditional feature distribution conditioned by a semantic
descriptor. E2E [36] learns a CNN to generate visual features for unseen classes by training
(in an end-to-end manner) this model with a combined dataset taking classes from Kinet-
ics400, UCF101 and HMDBS51. Finally, CLASTER [52] applies reinforcement learning on

the clustering of visual-semantic embeddings'®.

4.4 Results

Table 2 shows a comparison with the selected baselines. As can be seen, the proposed method
achieves state-of-the-art performance on the UCF101 dataset, even without using the 67
classes from the training set. The HMDBS51 dataset is challenging due to their actions (e.g.,
run, turn, punch, chew, clap) are complex to define through text and due to their short video
clips that do not take advantage of the Transformer architecture benefits. Despite these issues,
we obtain a remarkable performance.

ZSAR has an extensive literature, with several strategies for performing video embedding
and class embedding, as detailed in [10]. Comparing these methods is not straightforward
because several details on split configuration, random runs, and ZSAR constraints must be
taken into account. As mentioned previously, several deep learning-based video embeddings
violate the ZSAR assumption when using 50% of the classes for testing. Considering that
several works fail in preserving this premise [28, 39—-41], a comparison under 50%/50% or
0%/50% protocols clarifies how good our method is compared to the broad literature.

Table 3 summarizes the performance on HMDBS51 and UCF101 datasets for 28 different
methods including ours. In this table, FV = fisher vector, BoW = bag of words, Obj = objects,
S = image spatial feature, A = attribute, Wy = word embedding of class names, Wr = word
embedding of class texts, ED = elaborative description, and Sent = sentences are the strategy
adopted to perform video embedding. When the model uses a different number of classes in
training, we indicate this by including this number next to the accuracy value.

There are two sections in Table 3. The first groups the methods evaluated in the
50%/50% protocol, whereas the second groups the methods evaluated in the 0%/50% protocol
(i.e., cross-dataset).

10 A more detailed description for these methods can be found in [10]
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Table 2 TA comparison under

Tt SoTA compuion s oo

train/test split configuration; Acc

= accuracy Latem [49] «cveri16) 29/22 9.4 67/34 159
SYNC [50] cver16) 29/22 11.6 67/34 15.0
BiDiLEL [5] wev'in 29/22 10.5 67/34 16.0
WGAN [51] cver'1s) 29/22 21.1 67/34 22.5
OutDist [39] cver'19) 29/22 21.7 67/34 234
E2E [36] «cver20) 29/22 31.5 67/34 452
CLASTER [52] Eccv2z) 29/22 33.2 67/34 45.8
SPOT [53] cverw23) 29/22 24.0 67/34 25.5
Ours 0/22 20.4 0/34 49.1

To compare the results, we follow [10] and assume that the mean accuracy has a normal
distribution and approximate the population standard deviation o by sample standard devia-
tion s. Therefore, the mean accuracy of population can be estimated by u ~ x &+ E, where
E ~ t959 n—1 ﬁ and n — 1 are the degrees of freedom for » runs.

Considering this, we compare our results against the methods in which it is possible
to estimate the mean accuracy with an error of 2% at 95% of confidence. Regarding the
performance on UCF101, our method is on par with ER-ZSL, UR, SignleGAN, CLASTER
(no statistical difference), which is impressive considering that it is based entirely on transfer
learning. Methods such as E2E, PS-ZSAR or ViSET-96 are not directly comparable to our
method since they do not provide the standard deviation value.

Finally, comparing our approach with methods that also use 13D for visual embedding,
the proposed method is on par with CLASTER and outperforms GAN-KG, SFGAN, LMR,
and OutDist by a large margin, demonstrating that its high performance is not only due
to the bias from using I3D. Unfortunately, we cannot quantify the underestimation perfor-
mance due to disregarding the training split since HMDBS51 and UCF101 datasets have no
sentence annotations.

Considering the performance of our method on HMDBS51 under 0/50%, it is superior to
O2A. It is worth mentioning that this dataset was not used in the evaluation of other methods
in this group, possibly because it is very challenging to overcome the semantic gap due the
simple actions. As an example, ER-ZSL [8] leverages object semantics in this dataset, but it
improves generalization by concatenating visual features, which seems imperative to achieve
higher performances as those obtained by CLASTER or SPOT.

4.5 Ablation studies

Here, we present a set of questions and answers Q&A to demonstrate the effectiveness of our
approach. In all experiments, we use the same observers from the results shown in Table 2.

4.5.1 What is the impact of each observer or combination of observers on the
performance?

In Table 4, we show the ZSAR performance considering each observer individually, as well
as some combinations of them. There is a huge difference in the accuracy rates achieved
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Table 3 SOTA comparison under 50% / 50% and 0% / 50% splits reporting Top-1 accuracy (%) + standard

deviation. Our results were computed with 50 random runs

Method Video Class HMDBS51 UCF101
50% /50%

DAP [54] cver09) FV A N/A 159+£1.2
TAP [54] ccvpro09) FV A N/A 16.7£1.1
HAA [55] cver'11) FV A N/A 14.9+0.8
SVE [56] acip15) BoW Wy 13.0£2.7 10.9+£1.5
ESZSL [57] acmi1s) FV Wy 18.542.0 15.0£1.3
SJE [58] «cver1s) FV Wy 13.3+£2.4 9.9+1.4
SJE [58] cver'15) FV A N/A 12.0£1.2
MTE [59] @&ccvii6) FV Wy 19.7£1.6 15.8+1.3
ZSECOC [60] cver'17) FV Wy 22.6+1.2 15.1£1.7
ASR [20] EcmL PKDD'17) C3D Wr 21.84+0.9 24.44+1.0
UR [61] cver'18) FV Wy N/A 42.5 £+ 0.9 00
OutDist [39] «cver'19) i3D+C3D A N/A 38.3+3.0
OutDist [39] «cver'19) i3D+C3D Wy 30.2+£2.7 26.9£2.8
TS-GCN [23] (aaari9) Obj Wy 23.243.0 34.243.1
LMR [28] (wacv20) i3D Wy 34.7+£2.4 33.4+1.8
E2E [36] cver20) r(2+1)d Wy 32.7 (664 48 (664)
SFGAN [40] (Neurocomputing’21) i3D Wy 32.4+4.1 29.8+£2.8
DASZL [26] aaara TSM A N/A 48.945.8
ER-ZSL [8] accvan (S+0bj) ED 35.3+4.6 51.8£2.9
PS-ZSAR [62] (Neurips 21 r2+1)d Wr 33.8 (664 49.2 ©664)
GAN-KG [41] ¢r22) i3D Wy 31.2£1.7 28.3+1.8
Single-GAN [63] (visapp22) i3D ResNet101 N/A 45.9+3.42
CLASTER [52] Eccv22) i3D Wy 41.8+2.1 50.2£3.8
SPOT [53] cvprw23) i3D+C3D + SPOT Wy 39.8+1.4 42.8+1.7
ViSET-96 [64] cvPrw™23) ViSET Wr 34.5 (s64) 53.2 (564
0%/50%

O2A [15] accv'is) Obj Wy 15.6 30.3
SAOE [16] accv'17) Obj Wy N/A 40.4%1.0
OP [9] wevan Obj Wy N/A 47.3
DO-SC [65] emveay Obj Sembs N/A 45.24+4.6
Ours Sent Sent 28.3£3.0 49.0£3.5

in the HMDB51 and UCF101 datasets, taking the same captioning models. Therefore, we

discuss the results for each dataset separately.

In the UCF101 dataset, we observe that combining multiple observers has a considerable
impact on performance. The complete model is 27% (i.e., 49.1/38.6) more accurate than
the best observer individually. This property is a clear advantage of our model since new
observers can be included later, thus improving overall performance. Another interesting
case is the inclusion of OB2, which uses I3D and VGGish (see Fig. 6(b)). As mentioned
earlier, approximately 50% of the videos have audio signal. However, this observer has a
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Table 4 Observer accuracy for
the UCF101 and HMDBS1 OB1 OB2 OB3 OB4 OB5 HMDBS5I UCF101

datasets under TruZe protocol. v 14.4 38.6
No training classes were used to

train the models v - 372

v 13.5 34.6

v 12.7 30.9

v 10.6 353

v v 14.8 449

v v v 14.2 473

v v v v 145 48.0

v v - 46.5

v v v - 48.9

v v v v - 48.9

v v v v v - 49.1

high individual performance and increases the final result by 2.3% (i.e., 49.1/48) compared
to the best performance without it.

Regarding the HMDBS51 dataset, we believe thatitis a challenging dataset for our approach
mainly due to the short length of the videos (i.e., just 3.2 seconds on average), which
implies short stacks of features that nullify the benefits from self and multi-modal attention
mechanisms. This is evidenced by the fact that observers with different inputs do not learn
better descriptions, as with the UCF101 dataset.

In order to investigate the impact of stack length, we extract features by reducing the frame
stack length to 10 and 16 frames, corresponding to one 13D feature at 0.40 and 0.64 seconds,
respectively. Table 5 shows the results acquired with these features taking the same pre-
trained models used in Table 4. Notably, the performance is improved by 38%, considering
the best cases from both tables (20.4/14.8).

We note that, for this particular dataset, it is better to consider only observers based
on Transformer models. This can be explained based on the characteristics of Visual GloVe

Table 5 Observer accuracy for
the HMDBS1 dataset TruZe 10 16 OB1 OB3 OB4 OB5 HMDBS51

protocol changing the number of v v 19.1
frames used to compute visual

features from 24 to 10 and 16 v v 17.8

v v v 204

v v 14.9

v v 14.3

v v v v v 19.1

v v 19.2

v v 16.6

v v v 19.2

v v 16.5

v v 15.7

v v v v v 19.1
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Table 6 ZSAR performance on

the HMDBS51 and UCF101 HMDBS! Ucriol

datasets under TruZe protocol Baseline (only label) 195 36.6

considering different semantic . o

information modalities Elaborative Descriptions [8] 14.1 32.5
Ours + Elaborative Descriptions 19.4 439
Ours 20.4 49.1

features, which encode co-occurrence of visual patterns in complex events with long duration
(one minute on average with a window of 24s) [19]. Hence, BMT-based observers are not
suitable for this dataset. On the other hand, Visual GloVe proves to be useful as a feature
enricher with Transformer (observer OB3), as evidenced by the increase of 7% (OB1+0B3)
compared to the I3D version alone (observer OB1) (i.e., 20.4/19.1).

4.5.2 Is human involvement necessary for action class representation?

Chen and Huang [8] introduced a method based on Elaborative Descriptions (ED) (i.e., a
concatenation of class name and its sentence-based definition). These descriptions were
constructed by crawling candidate sentences from Wikipedia and dictionaries using action
names as queries. Afterward, annotators were asked to select and modify a minimum set of
sentences. Table 6 compares the ZSAR performance considering four scenarios: only class
label, Elaborative Descriptions (ED), Ours + Elaborative Descriptions (ED), and only Ours.

The results in both datasets show that the proposed pre-processing method achieves a
higher accuracy compared to others. Although Elaborative Descriptions (ED) reached impres-
sive results in [8], it did not prove efficient for adoption with our method, in which the joint
embedding (visual and semantic) is based exclusively on transfer learning from the Natural
Language Processing (NLP) domain. We believe this occurs due to the lack of fine-tuning
with the descriptions of training classes in our method.

Considering these results, we propose the following question:

4.5.3 How many sentences are required, and how is the ideal minimum length to
represent class labels?

Figures 7(a) and 7(b) show the accuracy considering a minimum length of 3, 5, 10, 15 and
20 words per sentence for HMDBS51 and UCF101, respectively. We change the maximum
number of sentences per class (i.e., the number of prototypes in semantic space for each
class) for each minimum length value.

The graphs clearly show the need to balance the number of words and the number of
sentences. There is a tendency for decreasing performance as more sentences are considered
in HMDB51 and, conversely, an increasing in UCF101. Using short sentences, we inevitably
select loose sentences containing the class label (i.e., section titles or image labels in HTML
pages), thus failing to capture the semantic context. On the other hand, when selecting long
sentences with 15 or 20 words, we restrict the model to long explanations, failing to capture
the immediate context of the class label. Therefore, our configuration (minimum of 10 words
and up to 10 sentences) is a good trade-off between a minimum set of words and a maximum
number of sentences in both datasets.

Additionally, the graph from Fig. 7(a) illustrates another aspect of why HMDB5S1 is
so challenging for our method. The configurations with 3 or 5 words and only one sentence
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Fig.7 ZSAR performance changing the maximum sentences per class and the minimum words per sentence
in the prototypes. (a) results from HMDBS51 and (b) from UCF101

present the better performance, possibly because some actions in this dataset (e.g., chew, pick,
turn and wave) are semantically represented with a dictionary-style description (i.e., short
and precise descriptions). This behavior is also evidenced in Table 6.

4.5.4 Should we represent the class labels with separated sentences or with a
paragraph?

We can represent each class label with sentences or with a paragraph composed of the
same sentences concatenated. Table 7 shows the results taking only the class label (i.e., one
prototype per class, a single paragraph (i.e., one prototype per class), or ten sentences (i.e., ten
prototypes per class).

Using sentences proves to be more accurate than the other options in both datasets. This
characteristic is a remarkable aspect of our approach because other ZSAR methods always
consider only one prototype. Additionally, the paragraph representation proves to be better
than the label name for our approach on UCF101. Indeed, the label name is insufficient for
transferring knowledge from the language domain to the ZSAR classification. Table 7 also
suggests that the primary limitation on HMDBS51 is related to the video sentence because
there are no significant variations in accuracy taking different class label representations as
there are on UCF101.

4.5.5 How is the performance affected if we change the language encoder?

Our method uses language encoders in two steps. In the first one, the encoder estimates the
similarity between sentences from Internet documents and class labels, producing a semantic

Table 7 Performance on the
HMDBS51 and UCF101 datasets HMDBSI ucriol
under TruZe protocol considering  Baseline (only label) 19.5 36.6
separated sentences or paragraphs
Paragraph 19.5 432
Sentences 20.4 49.1
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Table 8 Investigation on the semantic embedder for semantic pre-processing and Zero-Shot Action Recogni-
tion (ZSAR) embedding

Sem. Inf. Pre-proc. ZSAR embedder HMDB51 UCF101
Sent2Vec MiniLM DR Sent2Vec MiniLM DR
v v 4.8 2.6
v v 18.3 40.7
v v 16.0 40.4
v v 7.5 1.5
v v 19.9 459
v v 19.9 48.2
v v 5.0 1.3
v v 20.5 46.3
v v 20.4 49.1

Experiments performed on the TruZe protocol

sentence space. In the second step, the encoder embeds sentences from semantic space and
video observers to generate a joint embedding space.

We can employ different language encoders in these two steps, as shown in Table 8. More
specifically, we employ the Sentence2Vec [66] model and two paraphrase models from the
Sentence Transformers repository: paraphrase-MiniLM-L6-v2 and paraphrase-distilroberta-
base-v2. They are referred in Table 8 as Sent2Vec, MiniLM, and DR, respectively. No models
are fine-tuned or pre-trained with our data. The results clearly show that encoding the joint
embedding space with Sentence2Vec is unsuitable since this model cannot overcome the
gap between videos and class label descriptions, resulting in an accuracy close to the ran-
dom value.

On the other hand, the adoption of pre-trained paraphrase-based models results in a strong
performance because the model is optimized to learn similarities in sentence pairs. Using
Sentence2Vec to pre-process the semantic information does not degrade the model perfor-
mance at all. In this case, it is important to highlight that the comparison is made between the
class label (which is not a sentence) and sentences. Therefore, this model can select sentences
containing the exact label or synonyms. The performance combining Sentence2Vec with any
paraphrase-based is lower than other configurations, possibly because the video descriptions
are not enforced to present words contained in the class label in their sentences.

The observations in this experiment conduct us to the next question.

4.5.6 What are the main limitations of our method?

In this subsection, we investigate two limiting aspects of our approach: the current SOTA
in video captioning and the inter-class similarity. First, we examine the limitation of SOTA
by taking the model from Observer I to compute the quality captioning measures (Meteor,
Bleu@3, and Bleu@4) and ZSAR accuracy for each training epoch on UCF101. The training
was halted after ten epochs without improvements in Meteor. As expected, there is a strong
correlation (r > 0.8) between these measures, especially on Meteor (r > 0.9), as shown
in Fig. 8. Considering that video captioning is an active research topic with much room
for improvement, the results suggest that better models for this task will directly lead to
higher accuracy.
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To conduct a more comprehensive investigation into inter-class performance, we selected
asubset of 15 classes from UCF-101 that present challenging examples due to their high inter-
class similarity. These classes can be divided into six groups: (1) activities involving horses,
such as horse riding and horse race; (2) gymnastic performances, including pommel horse,
balance beam, and floor gymnastics; (3) activities involving basketballs, such as basketball
and basketball dunk; (4) boxing-related actions, namely boxing punching bag and boxing
speed bag; (5) activities involving the face, such as applying eye makeup, applying lipstick,
and brushing teeth; and (6) actions related to hair, such as blow drying hair, getting a haircut,
and receiving a head massage.

Figure 9 clearly shows that the primary cause of errors lies in the high inter-class similarity
(e.g., subgroups 4 — boxing-related, 5 — involving the face, 6 — related to hair). The results
indicate the need to extract more discriminative features from individual frames or short clips,
which can be accomplished by incorporating object relationships or other semantic features.

5 Conclusions and future work

In this work, we proposed to perform ZSAR by representing videos and semantic information
with a common type of data: sentences in natural language. We trained two video captioning
architectures with different input modalities in the ActivityNet Captions dataset and used
these models to produce sentences for the HMDBS51 and UCF101 videos. We then evaluated
the ZSAR performance in a cross-dataset scenario. Our conclusions are:

1. The textual descriptions provided by Observers proved to be sufficient for outperforming
state-of-the-art performance on UCF101 and achieving remarkable results on HMDBS1,
even considering the relatively shorter time duration of clips in HMDBS51 compared to
UCF101. Nevertheless, it is necessary to consider a combination of Observers to achieve
better results;

2. ZSAR can be effectively conducted using pre-trained paraphrase models, capitalizing
on the abundance of available data, without requiring any additional training or domain
adaptation techniques;

3. We demonstrated a correlation between Meteor score and ZSAR accuracy, highlight-
ing that the primary factor limiting performance is the current state of the art in video
captioning. The proposed method is “plug and play”, allowing for the seamless replace-
ment of models with more accurate ones as they become available. Furthermore, future
research can explore the integration of captioning and ZSAR into an end-to-end model,
optimizing their shared objectives;

4. We specifically focused on working with captioning models in this study, but it is worth
noting that models for various other tasks can also be employed to offer semantic informa-
tion; for example, object detection with replacing by concepts (as in [8]) or video tagging.
We acknowledge these possibilities and plan to investigate them in future research.
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