
Multimedia Tools and Applications (2024) 83:27243–27258
https://doi.org/10.1007/s11042-023-16548-7

An automatic risk assessment system for sudden cardiac
death using look ahead pattern

Amit Singhal1 ·Megha Agarwal2

Received: 5 September 2022 / Revised: 26 July 2023 / Accepted: 8 August 2023 /
Published online: 30 August 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Malfunctioning of the electrical system of heart causes irregular heart rhythms, which may
result in sudden cardiac death (SCD). An early detection of SCD risk can help in saving
many lives across the globe. Non-invasive diagnostics like electrocardiogram (ECG) are
being actively explored to address this problem. In this work, we build an efficient system
to predict SCD risk using ECG signals, at least 10 minutes before the ventricular fibrillation
(VF) onset, allowing sufficient time for taking preventive action. The signal is de-noised
and decomposed into sub-band components using a Fourier-based decomposition technique.
Local variations in the signal samples are extracted using look ahead pattern (LAP) and
represented in the form of histogram. Principal component analysis (PCA) is applied and
only the first five features are passed to differentmachine learning classifiers to detect the SCD
risk. The proposed method achieves 100% accuracy in identifying SCD cases from non-SCD
cases, which include congestive heart failure (CHF) and normal sinus rhythm (NSR). Further,
the performance of the algorithm is analyzed in noisy conditions, considering different lengths
of the proposed feature. The performance analysis highlights the strength of the proposed
method for an efficient implementation in real-time systems.

Keywords Electrocardiogram (ECG) · Local pattern · Machine learning · Signal
decomposition · Sudden cardiac death (SCD)

1 Introduction

A healthy heart is vital for keeping an individual healthy. The heart’s electrical system is
responsible for maintaining normal heart rhythm. Any disruptions in this system causes
irregular rhythms, referred as arrhythmia, i.e., the heart may beat much faster (tachycardia)
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or slower (bradycardia) as compared to the normal heart rhythm. In addition to tachycardia
and bradycardia, another type of arrhythmia could be fibrillation, which is characterized
by chaotic and irregular heartbeat. It is normal for the heart to beat slow or fast in certain
scenarios, however, larger irregularities might be a concern. Ventricular tachycardia (VT)
and ventricular fibrillation (VF) are the leading causes of severe conditions such as sudden
cardiac arrest, which require immediate medical attention [1–3]. A comprehensive review
on sudden cardiac death (SCD) is provided in [4].

Sudden cardiac arrest refers to an abrupt loss in heart functioning. It may also lead to
breathlessness and unconsciousness. It is usually caused by arrhythmia, resulting in improper
pumping of blood to different parts of the body. If immediate assistance is not provided, it
may result in SCD. It is listed amongst the topmost causes of natural deaths around the
world [5]. Cardiopulmonary resuscitation (CPR) might be administered to the patient while
medical assistance is being arranged. Further, defibrillation can help in restoring the heart
functioning by providing an electrical stimulation [6–8]. Implantable defibrillators [9] are
also being developed to reduce SCD risk. While patients with a history of cardiac disorder,
such as coronary artery disease (CAD) exhibit a higher likelihood for SCD, it may also
occur in patients having no pre-existing heart abnormality. Therefore, it is important to
develop automated tools for an early assessment of SCD risk, to improve the survival chances
of probable SCD cases. Although multiple techniques have been explored to predict the
SCD risk, the most commonly used modality is electrocardiogram (ECG), since it has the
advantages of being readily available, non-invasive and cost-effective [10, 11].

1.1 Literature review

Various studies in the literature proposed automated arrhythmia detection [12–15] consid-
ering ECG signals. A careful examination of different waves within the ECG signal offers
insights into the functional abnormalities of the heart. Different measures relating to con-
duction and repolarization intervals in ECG are analyzed to predict ventricular arrhythmias
[16–21]. QT interval [18], QT dispersion [19], T -wave alternans [20, 21] and the interval
TpTe between peak and end of T-wave [17] are the repolarization-based predictors. On the
other hand, TpTe/QRS and TpTe/(QT × QRS) denote conduction-repolarization markers
[16]. These parameters are computed from the wave corresponding to QRS complex and
T -wave in the ECG signal. In addition to these, authors in [22, 23] examined ratios of repo-
larization intervals to predict SCD risk. The ECG morphological feature, R peak to T -end
is investigated in [24] to foresee sudden cardiac arrest few minutes before VF onset. Fur-
ther, magnitude and phase features computed using Taylor-Fourier transform are considered
in [25]. Wavelet transform is used in [26, 27] to extract features from ECG signals. How-
ever, wavelet-based methods require prior selection of suitable wavelet as well as the levels
of decomposition. These factors are critical to the performance of such methods. In cardiac
sarcoidosis patients [28], SCD is predicted usingmultimodality imaging. Deep learning tech-
niques are also explored in [29, 30] to detect SCD cases, but they require high computation
resources.

Some researchers have analyzed heart rate variability (HRV) to detect SCD cases. HRV
refers to the variation in the time gap between consecutive heart beats. Higher HRV is usually
favorable as it indicates a stronger ability to handle stress. A recent study [31] found that
populations with lower HRV values are at a higher risk of cardiovascular disorders. Various
other studies [32–34] have also linked history of lower HRV values with deaths caused
by abnormal heart function. However, a consensus is yet to be established regarding the
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normative HRV values [35, 36]. Moreover, assessment of SCD risk is highly complex and
there is no clear evidence regarding relationship between SCD and an underlying pathology,
such as HRV. A recent research [37] shows that less than 50% of SCD patients had low
HRV values. Therefore, some recent works [38–42] extracted different features from HRV
to predict SCD occurrence. Authors in [38] considered Wigner-Ville distribution to extract
suitable information from HRV, while wavelet transform based approaches are considered in
[37, 39]. Further, time-frequency domain information is captured in [40] using generalized S-
transform. Feature selection techniques are explored in [43] for selecting appropriate features
extracted from HRV signals.

A summary of state-of-the-art techniques in literature for SCD detection, along with the
identified research gaps, is provided in Table 1. Most of these works have compared SCD
patients with normal sinus rhythm (NSR) subjects. Such a comparisonmay lead to inaccurate
analysis as the differentiating factors might also be present in patients suffering from other
heart disorders. Therefore, it is essential to discriminate between SCD and other critical
cases such as congestive heart failure (CHF). If patients suffering from CAD are not treated,
it may lead to infarction in coronary arteries, resulting in CHF, i.e., inability of heart to supply
adequate blood to different parts of the body. Also, the prediction period should not be very
small, since it is important to predict the occurrence as early as possible. The method should
be accurate as well as sensitive towards detecting the critical cases.

1.2 Major contributions

In this work, we develop an easy-to-implement efficientmethod to differentiate between SCD
and non-SCD cases. Discrete Fourier transform (DFT) is utilized to obtain frequency-based
signal decomposition using zero-phase filtering. The key contributions of this work are as
follows:

1. A novel feature is proposed to capture local patterns from the sub-band components
extracted from 1 minute segments of the ECG signal.

2. Diverse machine learning-based classification algorithms are explored to produce the
desired performance.

3. Robustness of the proposed method is demonstrated by evaluating performance in noisy
conditions.

Table 1 Summary of the existing techniques and research gaps

Authors and year Method Research gap

Parsi et al. (2020) [9] HRV features Only NSR class, small prediction period

Lai et al.(2019) [23] Repolarization interval ratios Only NSR class

Murugappan et al. (2021) [24] ECG morphological features Only NSR class, small prediction period

Tripathi et al. (2018) [25] Taylor-Fourier transform Only NSR class, small prediction period

Ebrahimzadeh et al. (2019) [29] Reinforcement learning Only NSR class, large processing time

Nguyen et al. (2019) [30] Convolutional neural network Only NSR class, large processing time

Devi et al. (2019) [37] HRV features Low accuracy

Rohilla et al.(2020) [40] Generalized S-transform Low sensitivity

Parsi et al. (2021) [43] HRV features Only NSR class, small prediction period
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4. The proposed method achieves 100% accuracy for various scenarios, and provides suf-
ficient time for the medical experts to take suitable curative actions.

5. The strength of our algorithm lies in its simplicity, accuracy and low computational
complexity. Since DFT and inverse DFT can be easily implemented using fast-Fourier
transform (FFT) algorithms, the proposed method can be easily deployed in real-time
systems.

Abbreviations used in this paper are listed in Table 2. The rest of the paper is orga-
nized as follows: The dataset, pre-processing, feature extraction and classification methods
are described in Section 2. The results and discussions are provided in Section 3 while
Section 4 presents the conclusions and directions for future work.

2 Materials andmethods

The framework of the proposed sytem in shown in Fig. 1. In consists of five major steps: data
acquisition, pre-processing, feature extraction, dimensionality reduction and classification.
These steps are discussed in detail in the following sections.

2.1 Dataset

In this work, our aim is to detect SCD patients from NSR and CHF patients. For SCD cases,
we consider 23 completeHolter recordings obtained fromPhysionet database [44]. It includes
18 patients with underlying sinus rhythm, 4 with atrial fibrillation and 1 continuously paced.

Table 2 List of abbreviations Abbreviation Definition

SCD Sudden cardiac death

ECG Electrocardiogram

VF Ventricular fibrillation

LAP Look ahead pattern

CHF Congestive heart failure

NSR Normal sinus rhythm

HRV Heart rate variability

DFT Discrete Fourier transform

FFT Fast-Fourier transform

BW Baseline wander

PLI Power-line interference

FIBF Fourier intrinsic band functions

PCA Principal component analysis

SVM Support vector machine

kNN k-nearest neighbour

NB Naive bayes

DT Decision tree

XGB XGBoost

RF Random forest

123



Multimedia Tools and Applications (2024) 83:27243–27258 27247

Fig. 1 Proposed automatic SCD detection algorithm

All the subjects had sustained ventricular tachyarrhythmia, and mostly had an actual cardiac
arrest. TheNSRdataset includes 18 long-termECG recordingswith no significant arrhythmia
[45]. It has both male and female subjects of different age. For CHF category, we consider
long-term ECG recordings of 15 male/female subjects [46]. Each recording is of 20 hours
duration and contains ECG signals, sampled at 250 Hz.

We extract 30 minute recordings each from the SCD, CHF and NSR subjects. These
signals are re-sampled at the uniform sample rate of 200 Hz. 20 minute ECG signals, which
are taken 10 minutes prior to VF onset for SCD, are considered in the experiment. There is
no VF onset in non-SCD classes, i.e., NSR and CHF. All the ECG signals are segmented into
1 minute non-overlapping intervals for processing. Hence, we have 460 segments from SCD,
360 segments from NSR, and 300 segments from CHF, resulting in a total 1120 segments.

2.2 Pre-processing

The pre-processing of the ECG signals involves two steps: (1) Decomposition of signal into
different sub-band components, (2) Removal of baseline wander (BW) and power-line inter-
ference (PLI). BW is low-frequency noise present in the signal because of slight movements
of electrodes or any muscular movements of the patient [47]. On the other hand, PLI refers
to the noise contributed by the electrical power supply attached to the recording device. BW
and PLI tend to be present in the recorded ECG signals [48] and need to be suppressed before
processing the signals for detecting any disease.

Fourier-based signal decomposition is applied as follows. Let X(k) denote the DFT [49]
of the segment x[n], i.e.,

X(k) =
N−1∑

n=0

x[n] exp(− j2πkn/N ) for k = 0, 1, 2, . . . , N − 1, (1)

where the length of each segment N = 1200. Fourier intrinsic band functions (FIBFs) refer
to the sub-band components ci [n], i = 1, 2, . . . , M , and are obtained as

ci [n] = 1

N

N−1∑

k=0

X(k)Hi (k) exp( j2πkn/N ) for n = 0, 1, 2, . . . , N − 1, (2)

where

Hi (k) =
{
1, for (Ki−1 + 1) ≤ k ≤ Ki & (N − Ki ) ≤ k ≤ (N − Ki−1 − 1),

0, otherwise,
(3)

with K0 = 0 and KM = N/2. The values for K1, K2, · · · , KM−1 correspond to the desired
cutoff frequencies for the FIBFs [49]. In this work, we consider uniform frequency bands,
i.e., Ki = i N/2M . It is interesting to note that Hi (k) represent zero-phase filters [50], since
they take only real and positive values, resulting in the phase part becoming zero. This is
necessary as it ensures that the components ci [n] do not suffer from any undesired time
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delays. The signal components capturing BW and PLI can be obtained by setting the cutoff
frequencies as (0, 0.5) Hz and (59.5, 60.5) Hz [47]. Thereafter, they are subtracted from the
ECG signal. The rest of the sub-band components are utilized to extract relevant features as
discussed in the next section. The ECG signals for NSR, CHF and SCD classes are shown
in Figs. 2, 3 and 4, respectively, along with their 5 sub-band components.

2.3 Feature extraction

In thiswork,wepropose a pattern-based feature to extract distinct information from the signal.
It helps in capturing the variations in the local neighborhood for each sample. Considering
one segment x[n] of the signal, the look ahead pattern (LAP) are extracted from its sub-band
components ci [n] as follows:

bni [ j] =
{
1, if ci [n + j] ≥ ci [n] j = 1, 2, . . . ,m

0, otherwise.
(4)

The length of the pattern is denoted by m, and it refers to the number of forward samples
to be considered for computation of the pattern. Using the LAP bni [ j], the corresponding
values are computed as:

pi [n] =
m∑

j=1

bni [ j]2m− j n = 0, 1, 2, . . . , (N − 1) − m . (5)

Figure 5 illustrates the calculation of LAP values pi [n].Maximumweight of 2m−1 is assigned
to the position nearest to the current sample, i.e., j = 1. After computing pi [n] for each xi [n],
2m-bin histograms are obtained as follows:

hi [l] = hi [l] + 1 if pi [n] = l, l = 0, 1, . . . , 2m − 1, (6)

while scanning pi [n], as n varies from 0 to (N−m−1). Proceeding in this manner,M 2m-bin
histograms are computed for each 1 minute segment of the signal resulting in a feature vector
of length 2m × M .

0 50 100 150 200 250 300 350 400 450 500
-2
0
2
4

N
S

R

104

0 50 100 150 200 250 300 350 400 450 500

-1
0
1
2

F
IB

F
1

104

0 50 100 150 200 250 300 350 400 450 500
-5000

0

5000

F
IB

F
2

0 50 100 150 200 250 300 350 400 450 500
-2

0

2

F
IB

F
3

104

0 50 100 150 200 250 300 350 400 450 500
-1

0

1

F
IB

F
4

104

0 50 100 150 200 250 300 350 400 450 500

Sample number

-5000

0

5000

F
IB

F
5

Fig. 2 NSR ECG signal and the extracted FIBFs
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Fig. 3 CHF ECG signal and the extracted FIBFs
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Fig. 4 SCD ECG signal and the extracted FIBFs

Fig. 5 Computation of look ahead pattern (LAP) from signal samples considering m = 8
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Principal component analysis (PCA) is applied on the extracted feature set to reduce the
feature dimension. In this work, we consider only the first five components obtained after
applying PCA on the feature vectors.

2.4 Classification

Six different machine-learning classifiers, namely, Support vector machine (SVM), k-nearest
neighbour (kNN), Naive bayes (NB), decision tree (DT), XGBoost (XGB) and random forest
(RF) are considered here for binary classification of ECG signals. These classifiers are widely
used in biomedical signal processing applications. A short description of the classifiers is
provided below.

1. SVM: It is the most popular non-probabilistic machine-learning classifier used for ECG
signal analysis [51, 52]. Linear SVM draws hyperplanes in N -dimensional space to
classify N -dimensional feature data points. Hyperplanes are selected in such a way that
maximizes the margin between hyperplanes and also to the nearest data points. In case
data points are not linearly separable, then kernel functions are used to transform low-
dimensional input space into high-dimensional space andmake the data points separable.
Quadratic, cubic and Gaussian are the commonly used kernels. SVM needs less memory
because it uses only the subspace of training data points called support vectors formaking
decisions.

2. kNN: It does not have any predefined mapping function, hence it is a type of non-
parametric machine-learning algorithm [53]. It finds k nearest neighbours of the feature
data point and uses their class labels for prediction. The class of the test data is predicted
as the label assigned to majority of the k nearest neighbors. kNN uses complete training
data in prediction, hence needs larger memory. Distance metric and the value of k are
two important factors in kNN algorithm. Euclidean, city block, Hamming andMinkowski
are some of the popular distance metrics used to obtain the neighbours. In [54], kNN
classifier is applied to classify ECG signals corresponding to various cardiac diseases.

3. NB: It is a supervised probabilistic classifier based on Bayes’ principle. It is also known
as simple Bayes’ classifier [55]. In this algorithm, the frequency table of features is
created and then likelihood is computed using their probabilities. Posterior probability
is calculated by applying Bayes’ theorem.

4. DT: It is a rule-based supervised machine-learning classifier [56]. It gives a graphical
outlook of all the possible solutions to a situation based on the given constraints. It has a
tree-like structure with decision nodes and leaf nodes. All the decision nodes are internal
nodes and represent features whereas leaf nodes are the output nodes. Starting from the
root node, it keeps on selecting the best features with a simple yes/no answer on the
decision nodes and proceeds further towards the leaf nodes through branches. It imitates
human decision rule thinking process and hence is easy to understand. It is used in [57]
for ECG signal classification.

5. XGB: XGB is an extreme gradient boosting decision tree algorithm [58]. In this, weak
model predictions are combined to get the strong prediction. Weak models are connected
in sequence. First DT is built using the training data further, secondDT attempts to correct
the errors of the first model. This process is continued till correct prediction is made for
the total data set or the maximum number of models are trained. Weight is increased to
wrongly predicted variables before feeding it to next DT. These individual classifiers are
ensemble to get the strong classification model. Ensemble learning approach is used for
carcinoma disease prediction in [59].
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6. RF: RF is a bagging classifier algorithm [60]. It has multiple DT for base learning. Every
DT is trained over the random subsets of the total data set. Prediction of individual DTs
are aggregated to conclude the final prediction by majority voting. Hence the prediction
is not dependent on any single DT. This process of randomization and ensemble, reduces
the variance occurred due to individual DT.

3 Results and discussions

In this work, three classes of patients, namely, SCD (23 subjects), NSR (18 subjects) and
CHF (15 subjects) are classified based on the ECG signals obtained from Physionet datasets
[44–46]. These signals are divided into non-overlapping 1 minute segments and sampled at
200 Hz. Top 5 features obtained using PCA are used to train the six different classifiers.
Cross-validation (CV) is performed using the hold-out CV scheme. The simulations are
carried out using MATLAB 2020 on i3 processor with 512 GB RAM.

The performance of each classifier is evaluated using accuracy, sensitivity, specificity,
precision and F1-score. These values are computed from the confusion matrix as follows:

Accuracy (ACC) = TP + TN
TP + TN + FP + FN

× 100%

Sensitivity (SN S) = TP
TP + FN

× 100%

Specificity/Selectivity (SLC) = TN
TN + FP

× 100%

Precision (PRC) = TP
TP + FP

× 100%

Recall (RCL) = TP
TP + FN

× 100%

F1-score (F1) = 2

(
PRC × RCL

PRC + RCL

)
× 100%, (7)

where TP refers to the SCD cases predicted correctly and TN denotes the non-SCD (NSR
and/or CHF) cases predicted correctly. On the other hand, FP refers to non-SCD cases
predicted as SCD cases, while FN includes SCD cases predicted as non-SCD cases.

Box plots graphically represent the spread of the data through quartiles based on five cri-
teria, i.e. minimum, first quartile, median, third quartile and maximum. Hence, the dispersion
of the data can be easily visualized. Box plots are drawn for top five PCA features in Fig. 6
to depict their statistical distribution for each of the three classes. The range of features for
different classes can be compared, thereby assisting in discriminating between the classes.
It is apparent that the selected features offer good separation between the NSR, CHF and
SCD classes. Further, the first feature obtained after PCA is the most significant feature as
compared to the other features.

The ECG signal of a subject exhibits certain changes not only in the case of SCD, but
also due to other cardiac disorders like CHF. Hence, experiments are conducted to perform
three different binary classifications: SCD versus NSR, SCD versus CHF, and SCD versus
non-SCD (CHF, NSR). This analysis identifies the vulnerable subjects of SCD accurately
from CHF and NSR classes. Table 3 compares the performance of the six classifiers in terms
of ACC, SNS, SLS, PRC and F1, for distinguishing between NSR and SCD classes. It is
observed that SVM,DT, XGB and RF classifiers achieve 100% values for all the performance
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Fig. 6 Box plots depicting statistical distribution of the five features obtained after applying PCA on features
extracted from the SCD, NSR and CHF ECG signals

metrics. The next experiment is conducted to discriminate another cardiovascular disorder
CHF from SCD subjects. Results are summarised in Table 4. SVM, kNN, DT, XGB and DT
classifiers obtain 100% classification results in terms of various performance metrics. Lastly,
the performance of various classifiers for non-SCD (CHF, NSR) versus SCD classification
is compared in Table 5. Once again, 100% values are reported for SVM, DT, XGB and RF
classifiers. Thus, the proposed algorithm is not only identifying SCD from NSR cases, but it
is also able to differentiate between CHF and SCD cases with 100% accuracy.

The results shown above are obtained using LAP feature with length m = 6. However,
it is important to analyze the effect of change in feature length on the performance of the
algorithm. Further, we also study the impact of additive white Gaussian noise (AWGN) to
test the robustness of the proposed feature. Five different levels of signal-to-noise power ratio
(SNR) are considered in this work, i.e., -10dB, -5dB, 0dB, 5dB and 10dB. Figure 7 (a), (b)
and (c) show the accuracy obtained by SVM classifier at different SNR with m = 5, 6, 7, for
classification between NSR & SCD, CHF & SCD, and non-SCD (NSR, CHF) & SCD cases,
respectively. Similar trends are observed in all the three cases. It is evident that accuracy
improves with increase in the length m, since better signal variations can be captured by
taking more forward samples for computing LAP. However, as the SNR increases beyond

Table 3 Comparison of different classifiers for differentiation between NSR and SCD cases

Classifier ACC (%) SNS (%) SLC (%) PRC (%) F1 (%)

SVM 100 100 100 100 100

kNN 99.96 99.93 100 100 99.96

NB 99.98 99.96 100 100 99.98

DT 100 100 100 100 100

XGB 100 100 100 100 100

RF 100 100 100 100 100
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Table 4 Comparison of different classifiers for differentiation between CHF and SCD cases

Classifier ACC (%) SNS (%) SLC (%) PRC (%) F1 (%)

SVM 100 100 100 100 100

kNN 100 100 100 100 100

NB 99.99 99.98 100 100 99.99

DT 100 100 100 100 100

XGB 100 100 100 100 100

RF 100 100 100 100 100

Table 5 Comparison of different classifiers for differentiation between non-SCD (CHF+NSR) and SCD cases

Classifier ACC (%) SNS (%) SLC (%) PRC (%) F1 (%)

SVM 100 100 100 100 100

kNN 99.99 99.99 99.99 99.98 99.98

NB 99.99 99.97 100 100 99.98

DT 100 100 100 100 100

XGB 100 100 100 100 100

RF 100 100 100 100 100

Fig. 7 Classification accuracy at varying SNR levels considering different values of LAP feature length m
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0dB, the accuracy achieved for different values of m becomes comparable. Considering a
specific value for m and varying SNR, there is no significant change in the performance,
except when the noise power becomes more than the signal power (SNR< 0dB). Therefore,
the proposed algorithm is quite robust to the presence of slight noise in the system.

In the literature, various othermethods have been studied for classification of SCD signals.
The results obtained by ourmethod are comparedwith the state-of-the-art methods in Table 6.
Devi et al. [37] used signal processing techniques to extract 32 features and optimal features
are selected by unsupervised and boosting ensemble learning. SCD detection is performed 10
minutes prior to VF onset and 83.33% accuracy is obtained. The non-SCD class comprises
both CHF and NSR cases. Further, reinforcement learning is applied in [29] to select features
for 1 minute ECG segments for SCD and NSR subjects, but it suffers from the drawback
of larger processing time. Prediction is done 13 minutes prior to VF onset and 90.18%
accuracy is obtained. FiftySCDsignal features are combined in [9] to achieve85.7%accuracy,
while Parsi et al. [43] applied feature selection method and reported an accuracy of 91.5%.
Morphological features are used in [24] for prediction of limited numbers of SCD and NSR
subjects and 100% accuracy is achieved. In [23], arrhythmic parameters are used to classify
only SCD and NSR classes and 99.49% accuracy is obtained. Most of these works consider
the differentiation between the SCD and NSR classes only, and may thus fail in more realistic
scenarios where the patient may be suffering from non-SCD disorder.

It is observed from Table 6 that the proposed method is performing better than the existing
schemes with 100% accuracy for differentiating between SCD and non-SCD (NSR and CHF)
cases. Moreover, the SCD prediction is done at least 10 minutes prior to VF onset, offering
sufficient time for taking preventive action.

4 Conclusions and future directions

The challenging problem of prior identification of a severe heart abnormality, SCD, has been
addressed in this work. The proposed method can assist in reducing the fatalities associated
with the disease, by raising an alarm at the appropriate time. In this approach, the ECG
signal is divided into 1 minute segments and these segments are decomposed into sub-
band components using a Fourier-based technique. The baseline wander and power-line
interference are also removed from the recorded ECG signal. Thereafter, look ahead pattern
are extracted, followed by application of PCA. First five features, thus obtained, are utilized

Table 6 Comparison of the proposed method with the existing methods

Authors and year Prediction period Classes considered ACC (%)

Parsi et al. (2020) [9] 5 minutes NSR 85.7

Lai et al.(2019) [23] 30 minutes NSR 99.49

Murugappan et al. (2021) [24] 5 minutes NSR 100

Ebrahimzadeh et al. (2019) [29] 13 minutes NSR 90.18

Parsi et al. (2021) [43] 5 minutes NSR 91.5

Devi et al. (2019) [37] 10 minutes NSR, CHF 83.33

Proposed method At least 10 minutes NSR 100

Proposed method At least 10 minutes NSR, CHF 100
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by machine-learning classifiers to differentiate between the SCD and non-SCD cases. The
proposed method is robust, easy-to-implement as well as efficient. In terms of performance,
the proposed algorithm is superior than the existing state-of-the-art schemes. It produces high
classification accuracy even in noisy environments. In future, we would explore the proposed
technique for automated assessment of other heart-related disorders using ECG signals. Look
ahead pattern, as proposed in thiswork,may be utilized in other signal processing applications
as well.
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