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Abstract
Brain-Computer Interface (BCI) enables human beings to interact with the outside world
through brain intention. Human-computer interaction (HCI) based on electroencephalogram
(EEG) has become the main research direction in the field of BCI. Though many achieve-
ments have been made in EEG research recently, the lack of sample data and individual
differences, effective motor imagery (MI) classification based on EEG signals is still a chal-
lenge. Compared with the 2D and 3D CNN models that are widely used, however, there
are few researches on extracting EEG sequence features using 1D CNN model. To this end,
considering the temporal structure of multi-channel EEG signals, we propose a EEG-Based
temporal one-dimensional convolution neural network (ETIODCNN) to classify MI. First,
we extract temporal correlation from EEG signals by introducing the core blocks. Then, we
use the global average pooling (GAP) layer and the fully connected (F) layer to fuse the
temporal series features, and realize classification task. Our model can automatically learn
effective features from EEG signals.We trained and tested the proposedmethod on BCI com-
petition IV datasets (BCICID). The experiments were conducted on two open-source EEG
datasets. The comparison results show that this method has good performance in real-time
and accuracy.
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1 Introduction

Brain-computer interface (BCI) can enable disabled people to interact with the outside world
through brain signals [48]. Moreover, BCI plays a great role in virtual reality and meta-
universe [23].

BCI is a novel approach that directly controls external equipment by bypassing the typical
peripheral nervous system. Thanks to the merits of the lower hardware cost, the higher
temporal resolution, and portability, EEG-based BCIs are widely used. Many recent studies
on BCI have obtained achievements in the field of health, such as emotion recognition [49].
The EEG signal is easy to obtain in a non-invasive way. It not only has high time resolution,
but also can be obtained in real-time. Therefore, at present, EEG is regarded as the most
practical method for BCI.

To control external devices, such as ground vehicle [51], wheelchairs [1, 26], robot arms
[44], through imagination, MI can be interpreted as human imaginary movement without
actualmovement.We can get the correspondingEEG signal from some active brain areas. The
BCI system is still frequently used in the field of rehabilitation engineering today. According
to certain researchers, MI-BCI has a high practicability in the rehabilitation of limb illnesses,
which has prompted many researchers to invest in MI-BCI research [47]. The results of these
practical applications have attracted more attention from experts in the field.

However, the current EEG-based BCI system is still immature and faces many challenges.
Firstly, EEG signals usually contain a lot of noise. In addition to the system noise caused
by circuit system and power line interference, EEG signals also have some unique inherent
noise. In addition, studies have shown that subjects’ emotions will also bring uncertain noise
to EEG signals [29]. It is difficult to ensure that participants focus on the task throughout
experiments. Secondly, compared with image or video analysis tasks, EEG-based analysis
tasks usually involve only 8-128 signal channels, leading to limited signal resolution. Thirdly,
the correlation between EEG signals and the corresponding brain activities is fuzzy. For
example, in other pattern recognition tasks, the label of the sample can be given by directly
observing the picture or video, but it is not easy to infer the intention by directly observing
the EEG signal. Finally, most current EEG-based MI recognition methods often rely heavily
on manual processing in the raw data preprocessing stage [16].

The proposed method is end-to-end trainable, which can be extended to real-world appli-
cations. our model is compared with some baseline models and the most advanced models.
The results show that the proposed method can identify different types of human intentions
in different BCI systems. Notably, we seek to improve the robustness and adaptability for
various persons in the two-class and four-class MI classification tasks. The proposed method
is evaluated on two publicly available EEG datasets, involving cross-subject and multi-scene
motion intention detection. Experimental results show that our model has better classification
accuracy than the baseline and advanced methods.

The rest of this paper is organized as follows: the relevant work is described in Section 2,
Section 3 introduces ourmethod, Section 4 gives experiments and results, and the conclusions
are presented in Section 5.

2 Related works

Existing EEG-based MI recognition methods mainly include two stages: feature processing
and feature recognition. The first stage often requires a complex and error-prone manual
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design [14]. Therefore, the whole feature processing process is time-consuming, and the
obtained features usually have limitations, such as specific testers and specific acquisition
environment, which is not easy to be extended to other subjects and testing environments.
Besides, the current research on EEG classification mainly focuses on the subjects, i.e., the
test data and train data from the same subject or binary EEG signal classification [45]. There
are few EEG classification studies considering different scenes and subjects, which cannot
meet the requirements of real-world BCI applications, and the accuracy of many existing
methods is only about 75%. For example, Grosse-Wentrup et al. [15] proposes an algorithm
that needs to extract common spatial pattern (CSP) features before classification. Hence, new
methodologies must be considered that can complete the feature extraction and classification
process directly from the EEG time series.

Deep learning does not require manual features and domain knowledge and can directly
use the original EEGdata to extract featureswithout preprocessing. Researchers have recently
used the deep learning (DL) method for EEG classification tasks because it helps improve the
accuracy and decrease the EEG channel number. Kumar et al. [22] presents a DL approach for
extracting features as the network’s input using CSP. A novel DL approach for classification
of EEG MI signals, using SAE over 1D CNN features, a convolutional neural network
(CNN)-based model [42] achieved the desired accuracy.

To learn the dynamic correlation in the MI signal, based on multi-layer CNN feature
fusion, [2, 20] provides an improved CNN model for EEG MI classification. Hou et al. [17]
developed a unique method for decoding EEG four-class MI problems using scout ESI and
CNN, which can obtain competitive results. A method of generating spatial spectral feature
representation is proposed, which can preserve multiple variable information in EEG data
[7]. Zhao et al. [50] presents a system where the serial module can extract rough features
in the time-frequency-space domain and the parallel module is used to fine feature learning
in different scales. A stacked random forest model is used to enhance feature extraction and
classification [40].

An end-to-end model [13] is constructed to reduce dimension and learn generalized fea-
tures without specific approach to get the feature. CNN has been widely used in EEG signal
sequence analysis [10, 30]. In [41], a combined structure of CNN and LSTM is used to obtain
spatio-temporal features and perform high-precision classification of EEG data. Some works
achieve similar classification accuracy in different MI tasks even for shorter length MI data
[34]. Liu et al. [25] proposed to select the MI signal with a duration of 2s for comparative
experiments. The results show that the appropriate selection of the length of MI signal for
experiments has a great impact on the classification accuracy.

Asmentioned above, our motivation is as follows: (1) Compared with the 2D and 3DCNN
models that are widely used, however, there are few researches on extracting EEG sequence
features using 1D CNN model. To improve the real-time performance of MI classification,
we designed a 1D CNN architecture with core blocks. It is efficient for EEG processing and
it saves computing resources and reduces the complexity of the model. (2) We use the sliding
window technique and select the appropriate window length to generate more training EEG
data. (3)We validate the performance of our model on two datasets for different classification
tasks.

This paper proposes the method based on special 1D-CNN architecture and EEG data
augmentation technology for EEG classification. In this method, the sliding window seg-
mentation method are used to extend the training data, and special 1D-CNN framework is
used to extract the temporal optimal EEG features. Based on this, our method can obtain
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a high EEG recognition accuracy. In the experiment, two EEG datasets are used to test the
method performance, and satisfactory results are obtained.

3 Method

For the EEG classification task, we first consider the time-dependent that multi-channel EEG
signals have. Secondly, reasonable information in different dimensions can make the model
much more expressive. For this purpose, we designed a suitable network. Its specific model
structure and implementation details of data enhancement will be described in detail. Lastly,
we present the learning procedures.

3.1 Core block

In different neural network structures, such as convolutional and recursive layers are used
to extract the dynamic properties of EEG signals and thus learn valid information about
partial sequence segments. The temporal convolution layer is computationally efficient in
time series classification tasks, so temporal convolution can be used as a feature extraction
module to extract features of time series. Inspired by this, we propose the core blocks for
four reasons. First, the convolutional layer in the core block can extract high-level features
of multidimensional channel EEG signals. Second, in the core block, the BN [19] layer
normalizes small batches of data for each channel independently in all observations.

After the convolutional operation, the BN layer is used to accelerate CNN training and
reduce sensitivity to network initialization, which is very effective for fitting models and
improving accuracy. Obviously, BN can normalize the data distribution to bring the data
back to the unsaturated region. Third, in the core block, it is followed by a ReLU layer [28]
after BN layer. The ReLU layer applies a threshold operation to each element, converting
any input value less than zero to zero, which can control the saturation of the activation. BN
layers and ReLU layers are included in the composition of each core block. Last, each FC
layer in the core block integrates all the features learned in the previous layers across the
sequence, especially in the case of large differences between the source and target domains.
The FC layer can maintain a large model capacity thus ensuring the migration of the model
representation capability. It helps to extract high-level information across time and space,
and at the same time it can mitigate over-fitting.

At the feature level, the core blocks can be interpreted as follows. Each convolutional layer
in the core block conducts a weighted feature combination with nonlinear activation. Then,
the extracted features are repeatedly convolved across channels in the next convolutional
layer. Here, we use this convolutional structure as the core block to extract multidimensional
channel EEG signal features, allowing us to directly understand the feature extraction process
in the temporal dimension.

3.2 The framework of MI classification system

Figure 1 shows the proposed framework of EEG-based MI classification system. The frame-
work can learn valid information through a combination of core blocks. Let the matrix
X ∈ R

N ·T serve as the input samples. Where N denotes the number of recorded electrode
channels, T denotes the number of signal sample points.
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Fig. 1 Schematic diagram of the MI classification system. Figure 1 (a) is an experimental table for EEG data
collection, where the duration of the motion imagination task is taken as 4 s. Figure 1 (b) shows some pre-
processing operations that have been performed on EEG data, including channel selection, data segmentation,
and artifact removal. In addition, we standardize data processing by converting multi-channel EEG data into a
two-dimensional matrix format. We enhance the EEG data by DA operation. Figure 1 (c) shows our proposed
1D CNN model. Three 1D convolutional layers were used for feature extraction of EEG signals, which can
capture some local patterns or temporal features in the input signal

CNNhas also been recognized as an effectiveDLmethod in recent years. It has a hierarchy
in the form of different layers, each of which uses specific operations to extract high-level
features from the input data. In our experiments, we proposed 1D CNN architecture consists
of 20 layers. It includes five core blocks. Each of the first three core blocks is composed of
CONV +BN+ReLU , and the rest two core blocks is composed of FC+BN+ReLU . The
GAP layer facilitates structurally regularizing the entire network, preventing over-fitting and
preserving global feature information, directly giving each channel an actual specialmeaning.
For classification problems, the softmax function is the output unit activation function. A
softmax layer and a classification layer usually follow the final FC layer. The classification
layer calculates the cross entropy loss of weighted classification tasks, which have mutually
exclusive categories. The network analysis results and configuration parameters are shown
in Table 1.

In this system, the recorded EEG signals were split into MI-EEG data with length of
4s. Then, data augmentation (DA) was performed on the splitting data. Through the sliding
window technology, the MI-EEG signal with a length of 2s is extracted from the MI-EEG
signal with length of 4s, and finally the samples are enhanced. The classification result of the
2s MI-EEG signal will be the output of the 1D CNN.

3.3 EEG preprocessing and data augmentation

In our works, first, 22 channels were selected from the raw EEG signals. The sampling
frequency is 250Hz. Then we remove artifacts and extract four categories MI-EEG data from
the EEG signal of each channel automatically. The length of eachMI-EEG data is 4s. Finally,
we implement data augmentation for MI-EEG data.
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Table 1 Implementation details of the ETIODCNN framework. The number of convolution kernels used by
each convolution layer in the first three core blocks is 16,32,48 respectively. The stride is equal to 1 and all
the filter kernel sizes equal 5

Core blocks Layer name Activations Learnables

Sequenceinput 22 [-]

Core block 1 conv1d−1 16 [Weights: 5×22×16, Bias: 1×16]

batchnorm−1 16 [Offset: 16×1; Scale: 16×1]

relu−1 16 [-]

Core block 2 conv1d−2 32 [Weights: 5×16×32, Bias: 1×32]

batchnorm−2 32 [Offset: 32×1; Scale: 32×1]

relu−2 32 [-]

Core block 3 conv1d−3 48 [Weights: 5×32×48, Bias: 1×48]

batchnorm−3 48 [Offset: 48×1; Scale: 48×1]

relu−3 48 [-]

globalavgpool1d 48 [-]

Core block 4 Fc−1 128 [Weights: 128×48, Bias: 128×1]

batchnorm−4 128 [Offset: 128×1; Scale: 128×1]

relu−4 128 [-]

Core block 5 Fc−2 128 [Weights: 128×128, Bias: 128×1]

batchnorm−5 128 [Offset: 128×1; Scale: 128×1]

relu−5 128 [-]

Fc−3 4 [Weights: 4×128, Bias: 4×1]

softmax 4 [-]

classoutput 4 [-]

Those EEG signals have been preprocessed before feeding the convolutional layer [25].
Suppose we have a series of MI-EEG sequence signals as inputs, which we denote by X . We
normalize each channel signal of input data as follows:

Si, j =
⎛
⎝Xi, j −

Nlen∑
j=1

Xi, j/Nlen

⎞
⎠ /σi (1)

where σi , j , i and Nlen refer to the standard deviation of channel i , the position in the signal,
the channel and the number of sample sequences in a batch of inputs. The signal Si, j is then
divided into batches. After preprocessing, these signals will be fed into convolution layer and
it is then written in the form of matrix Ni × Nlen , where Ni and Nlen refer to 22 and 500,
representing 2 seconds.

Here, we have a sequence of MI-EEG signals S with n sample points, assuming the fol-
lowing three parameters are defined: Lnon−overlaping is the length of sample non-overlapping
region for two neighbor segments. Lseg is the length of each segment. N is the number of
segments. Their relationships are defined in (2).

n = (N − 1) × Lnon−overlaping + Lseg (2)
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Fig. 2 The schematic diagram of data augmentation

In this paper, n is the sample points, Lnon−overlaping and Lseg , are specified as 50 and 500,
respectively. Then, the MI signal with 1000 sample points can obtain 11 training samples
with 500 sample points. If we specify the three parameters (n, Lnon−overlaping , Lseg), the
MI-EEG signal S can be split into N shorter MI-EEG signals {S1[n], S2[n], ..., SN [n]} with
an overlap of 90%, the schematic diagram of data augmentation as shown in Fig. 2.

3.4 Model Learning

The proposed network consists of five core blocks combined with other layers to form a
20-layer network, as shown in Fig. 3. First, the input multidimensional signal is fed to the
first convolutional layer. In our proposed ETIODCNN method, the size of the convolution
kernel used in the convolution layer of all core blocks is 5. The first convolutional layer uses
a convolutional kernel in the shape of 5×22. It was mentioned earlier that the signal of the
input layer is in the form of a 22×500 matrix. In the convolution process, the padding mode
is set to ‘same’ and stride is set to 1, so we get the feature map as an array of 500×1 (1D).
The number of convolution kernels in the first convolution layer is specified as 16, so the size
of the output is 500×16. After convolution, the feature map is fed to the BN layer and then
to the ReLU layer for nonlinear activation. For the first convolution layer in the core block,
we have the mathematical expression:

�lm (u) = bl (u) +
i≤22∑
i=1

(
Si,uW1 (l,m, i) + · · · + Si,u+4W5 (l,m, i)

)
(3)

Fig. 3 The proposed 1D CNN architecture for the EEG signal features extraction and four-class MI classifi-
cation tasks
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where �lm (u) stands for neuron u in layer l of map m. It also refers to the scalar product
between the input neuron and the weighted value.Wv(l,m, i) is the filter used in the neural
network, l, m, i , and v represent the layer, map, kernel/channel and position in the kernel,
respectively. bl (u) refers to the bias of neuron u in layer l, here l is 1.

The input to the second convolutional layer is a 500×32matrix. The shape of the convolu-
tion kernel used in it is 5×32. Its structure and properties are similar to those of the previous
layer. It just has a different feature map size. For the second convolution layer in the core
block, the mathematical expression as follows:

�lm (u) = bl (u) +
i≤Nl

kernel∑
i=1

(
Ml−1

i, j W1 (l,m, i) + · · · + Ml−1
i, j+4W5 (l,m, i)

)
(4)

where Nl
kernel is the number of convolutional kernels used in the lth convolutional layer. m

refers to the elements i , j of the feature map produced after the convolution of a specific
layer. The input to the third convolutional layer of the core block is a 500×48 matrix. The
shape of the convolution kernel used in it is 5×48. Similarly, for the third convolution layer
in the core block, the feed-forward processing can be seen in (4).

In each core block, a BN layer and an ReLU layer are included. After being computed by
convolutional or fully connected layers, the obtained feature information is first input to the
BN layer and then processed by a ReLU function. The reconstructed feature information can
be calculated by the (5)-(9):

μ = 1

N

N∑
i=1

o
′
i , (5)

σ 2 = 1

N

N∑
i=1

(o
′
i − μ)

2
, (6)

onormi = o
′
i − μ√
σ 2 + ε

, (7)

Oi = γ onormi + β, (8)

f (O) = max(0, O) (9)

where o
′
i is the feature information obtained from the previous layer and i represents the

feature value of o
′
. μ is the mean, σ 2 is the variance, γ and β are the parameter learned

during training. Mini-batch training is used, which divides the entire training sample into
smaller parts and updates all parameters after learning amini-batch instead of a single sample.
Where ε is a constant, when the variance is small, numerical stability can be improved.

A 1D global average pooling (1D-GAP) layer implements down-sampling by calculating
the average of the feature map. Through this operation, the global information is preserved
and the local-global information features are extracted by representing the original channel
feature vectors in one value after weighted average calculation.

The fully connected (FC) layer flattens the output. FC layer is included in core block4
and core block5, respectively, and the number of hidden units is set to 128. To prevent loss
of desired feature information, the FC layer merges all previous feature representations and
often contains many consecutive layers. For MI-EEG classification problems, the last fully
connected layer combines all the features before using the softmax operation. For example, on
the task ofMI-EEG four-classification, the softmax operation canmap the outputs ofmultiple
neurons to the interval (0,1), and gives four values ranging between 0 and 1, which of the four
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values (four indexes in total) has the largest value represents the class corresponding to that
position. Therefore, the softmax value of the i th class can be calculated. So, for multi-class
classification issues, the softmax function is the output unit activation function after the last
fully connected layer, we have:

P(ri |x, β) = P(x, β|ri )P(ri )∑k
j=1P(x, β|r j )P(r j )

= exp(ci (x, β))∑k
j=1 exp(c j (x, β))

, (10)

where 0 ≤ P(ri |x, β) ≤ 1 and
∑K

j=1 P(ri |x, β) = 1, ci = ln(P(x, β|ri )P(ri )), P(x, β|ri )
is the conditional of probability of the sample given class i , β is a system parameter in
the multi-classification task, and P(ri ) is the class prior probability. For classification and
weighted classification problems with mutually exclusive classes, a classification layer com-
putes the cross-entropy loss. The best parameters can be found by minimizing the cost
function, and it can be specified as:

Lloss = − 1

D

D∑
d=1

K∑
i=1

wi · tdi · ln ydi , (11)

where D is the number of samples, K is the number of classes,wi is the weight for class i , tdi
is the indicator that the dth sample belongs to the i th class, and ydi is the output for sample
d for class i , which in this case, is the value from the softmax function. In other words, ydi
is the probability that the network associates the dth input with class i .

4 Experiment and results

4.1 Description of EEG datasets

BCI competition IVdataset 2a (BCICID2a) [3]. The dataset contains 22 channel EEGsignals
from 9 subjects (A01-A09). The sampling rate of the signal is 250 Hz. The data correspond
to four different MI tasks, including left hand, right hand, tongue, and foot. For each subject,
the data contain training data and testing data. There are 288 trials in the training data (72
trials per MI task) and 288 trials in the testing data. Note that a period of [2, 6] seconds was
considered in our experiment. Herein, the training and testing sets of the BCICID 2a can be
separated into two categories. To train and test our model, we used data from 9 subjects with
around 28000 samples.

BCI competition IV dataset 2b (BCICID 2b) [43]. This dataset records three bipolar channel
EEG signals of nine subjects (B01-B09), i.e., those involving left-hand and right-hand MI
activities. The sampling rate is 250 Hz. For each subject, five times of data collection were
performed. The first three times were used for training and the rest for testing. The period of
[3, 7] seconds was used in the experiment.

4.2 Experimental setup

Implementation details In this experiment, we implement the proposed 1D-CNN network
framework using the Matlab 2021b software. As for the hardware system configuration, the
processor is an Intel (R) Xeon (R) silver 4110 CPU@ 2.10 GHz, the RAM has a capacity of
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32.0 GB, and the graphics card is NVIDIA RTX 2080 Ti. Network training and testing are
performed on a workstation with the Microsoft Windows 10 operating system. The network
hyper-parameter of our model mainly includes the following aspects: the size of the mini-
batch used for each training iteration, the number of hidden node, the kernel size, the initial
learning rate and the max-epoch. Meanwhile, the adaptive learning rate algorithm chooses
adaptive moment estimation (Adam), which is a method for stochastic optimization.

We trained our model with non enhanced data samples and enhanced data samples
respectively, and finally verified and analyzed the performance of our model in different
classification tasks.

Optimizing parameters and training network To find the optimal network hyper-
parameters and choose the best combination of network hyper-parameters, we employed
the experiment over the training data of the BCICID 2a. In this study, we use the deep learn-
ing toolbox to construct and execute experiments. The purpose is to train the deep learning
network and find the optimal parameter configuration of the network.

Based on the experimental design and statistical analysis, as shown in Table 2. In this
paper, the initial learn rate is set to 0.001, the filter size is set to 5, the hidden node is set
to 128, the epoch is set to 30, and the min-batch size is set to 128. Therefore, we choose
this best combination of four network hyper-parameters to train our model. For example, the
network training performance of trial 41 and trial 80 are shown in Fig. 4. The accuracy and
error diagrams of two trials are shown in Fig. 4 (a) and (b). The results of experiment verify
that the model has a excellent performance.

4.3 Statistical analysis and performance evaluation

Statistical analysis. Several statistical characteristics were analyzed in this study to estimate
and compare the performance of various approaches. TP, TN, FP, and FN stand for true

Table 2 Parameter optimization with different combinations of network hyper-parameters. In the experiment
manager, we assign three values to each hyper-parameter, such as initial learn-rate equals [0.0001 0.001 0.01],
filter-size equals [3 5 7], hidden-node equals [128 256 512], and min-batch size equals [32 64 128]. We used
the exhaustive sweep strategy to obtain optimal four network hyper-parameters and the results of 81 trials were
generated. Notably, the initial learning rate in all ten trials is 0.001. We select 10 trials with higher network
accuracy and lower loss. The bold shows the trial 59 with best performance

Trial Elapsed time Initial
learn rate

Filter
size

Hidden
node

Min batch
size

Accuracy Loss

14 0 hr 1 min 39 sec 0.0010 5 256 32 95.90% 0.029

17 0 hr 1 min 44 sec 0.0010 7 256 32 96.34% 0.024

35 0 hr 1 min 12 sec 0.0010 7 128 64 93.20% 0.049

41 0 hr 1 min 12 sec 0.0010 5 256 64 97.67% 0.023

50 0 hr 1 min 12 sec 0.0010 5 512 64 95.00% 0.036

59 0 hr 1 min 0 sec 0.0010 5 128 128 98.57% 0.018

62 0 hr 1 min 1 sec 0.0010 7 128 128 93.00% 0.044

68 0 hr 1 min 3 sec 0.0010 5 256 128 94.10% 0.043

71 0 hr 1 min 0 sec 0.0010 7 256 128 92.47% 0.041

80 0 hr 1 min 2 sec 0.0010 7 512 128 95.67% 0.031
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Fig. 4 The network performance and training results of trial 41 (herein, learn-rate is 0.001, filter-size is 5,
hidden-node is 256, and min-batch size is 64) and trial 80 (herein, learn-rate is 0.001, filter-size is 7, hidden-
node is 512, and min-batch size is 128)

positive, true negative, false positive, and false negative, respectively. Accuracy, confusion
matrix, and Kappa (κ) are used to evaluate the performances based on these metrics.

Accuracy (AC) : describes the ratio of true positives and true negatives for all predictions.

AC = T P + T N

T P + T N + FP + FN
, (12)

Kappa (κ) : is a robust measure since it considers the possibility of the agreement obtained
by chance. The κ value can be computed as below:

κ = AC − pe
1 − pe

, (13)

Where Pe is the theoretical probability of agreement. The higher the κ value, the better
the performance.

Performance evaluation In addition, we set the optimal network hyper-parameters, we use
the BCICID 2a and the BCICID 2b to train and test our model. Datasets were divided into
training, validation, and testing sets in a 7:2:1 ratio.

The training results of our proposed method for the BCICID 2a are illustrated in Fig. 5.
The confusion matrix with column and row summaries are shown in Fig. 5 (a)-(i), and the
“True Class” is the true label, while the “Predicted Class” is the predicted label. The true
positive rates and false positive rates are displayed in the row summary, while the positive
predictive values and false discovery rates are displayed in the column summary.

To evaluate the classification accuracy of MI tasks, someone considered the effects of dif-
ferent numbers of conv1D layers and different input signal processing lengths [35]. Based on
the consideration and inspiration, our experimental results show that different configurations
of network parameters and the number of channels of EEG signals are also very important to
improve MI classification performance, it can be seen in Table 2 and Fig. 6. According to the
correlation coefficient [6] of EEG signals, the EEG signals of adjacent channels in the same
brain functional area have strong correlation and similar characteristics. We generated three
sub-datasets with 3 channels, 6 channels and 22 channels respectively from BCICID 2a.
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Fig. 5 Test results of the proposed model on 9 subjects of BCICID 2a. The confusion matrix chart display the
true positive rates and false positive rates in the row summary. Also, the confusion matrix chart display the
positive predictive values and false discovery rates in the column summary

At the same time, we also use the original two datasets (BCICID 2a and BCICID 2b)
without data augmentation to train and test our model. We evaluated through experiments
and found that: the MI task of the acquired EEG signal is closely related to the channels of
various brain functional areas. The information of each channel is also highly correlated, and
an MI task is generated by the combined action of EEG channel signals from different brain
functional areas. The data enhancement operation improves the performance of the model
for MI classification. And the result is shown in Table 3.

To adequately test the method’s performance and stability, the average of all subjects
classification results for the different datasets after applying different 20 predictions. It indi-
cates an improvement in the quality of the prediction findings and the confusion matrix with
column and row summaries. With the increase of the number of channels, the classification
performance is excellent, as shown in Fig. 7 and Table 3. The BCICID 2b with 3 channels
is shown in Fig. 7(a) and the confusion matrix of 3, 6, 22 channels of BCICID 2a are shown
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Fig. 6 Correlation coefficient analysis diagram of all channels of EEG signal. (a) EEG cap, (b) EEG layout
map, (c) correlation matrix, (d) EEG representation

in Fig. 7(b), (c), and (d), respectively. The results of experiment verify that our proposed
method has a excellent performance.

10-fold cross-validation We used the BCICID 2a data with DA operation to evaluate the
performance of the proposed method. In addition, we divided them into ten subsets, respec-
tively. Each time, one subset was used as the validation set, and the other nine were used
as the training set. Ten cross-validation tests were conducted to obtain the average result.
Similarly, we also conducted evaluations in the same way on each subject data. Our model
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Table 3 Average of all subjects classification results. With the increase of the number of channels, the classifi-
cation performance is excellent.When Nchan equals 22, AC with DA operation and AC without DA operation
obtained best result on BCICID 2a

Dataset Tasks Nchan ACwi th−DA(%) ACwi thout−DA(%)

BCICID 2a L,R,F,T 22 98.31±0.11 86.68±0.42

L,R,F,T 6 96.47±0.27 75.23±0.38

L,R,F,T 3 93.62±0.61 68.97±0.52

BCICID 2b L,R 3 97.07±0.16 73.50±0.32

Fig. 7 Confusion matrix. Average of all subject classification results for the BCICID with different channels
after applying different 20 predictions

achieved an average accuracy of 97.32(±0.17)%with a variance of 0.0176 on BCICID 2a, an
average accuracy of 96.04 (±0.23)%with a variance of 0.0481 onBCICID 2b, and an average
accuracy of 94.76 (±0.55)% with a variance of 0.0314 on PhysioNet [18], respectively.
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Table 4 Classification accuracy (%) and kappa values of PSD, VPSD, ABS, VSBS and our method. Exper-
iments show the average evaluation results of two sessions from the BCICID 2b. The bold shows the best
average results

Subjects Accuracy (%) Kappa
PSD VPSD ABS VSBS Ours PSD VPSD ABS VSBS Ours

B01 70.785 71.66 71.23 74.725 95.32 0.515 0.53 0.525 0.585 0.929

B02 58.5 58.155 64.175 58.01 94.91 0.205 0.2 0.285 0.19 0.931

B03 63.435 63.425 59.16 60.89 96.09 0.295 0.3 0.2 0.23 0.962

B04 97.725 97.725 97.725 97.4 97.57 0.97 0.97 0.97 0.97 0.986

B05 84.72 84.505 83.12 93.7 98.66 0.725 0.71 0.685 0.89 0.992

B06 81.74 84.22 83.125 85.465 96.44 0.64 0.7 0.675 0.73 0.948

B07 79.785 81.92 78.38 86.455 95.61 0.65 0.69 0.635 0.755 0.932

B08 92.355 92.835 93.145 95.385 96.96 0.865 0.88 0.87 0.925 0.959

B09 86.135 87.39 86.805 92.055 95.05 0.79 0.825 0.785 0.875 0.956

Average 79.465 80.205 79.65 82.68 96.29 0.63 0.645 0.625 0.68 0.955

4.4 Performance comparison

Some methods propose different network framework based on different convolution struc-
tures, and some combine the traditional feature extraction methods and DL methods to
improve MI classification accuracy. For example, the accuracy is 92.9%, 84.3%, 76.2%,
73.6%, 71.9% in the studies of Sadiq et al. [33], Joadder et al. [21], Samek et al. [37],
Devlaminck et al. [11], and Atyabi et al. [5], respectively. In order to verify the effectiveness
of the proposed method, we also compared our method with PSD, ABS, VSBS, variations
based PSD (VPSD) methods on the BCICID 2b. Table 4 gives the accuracy and kappa val-
ues of PSD, VPSD, ABS, VSBS and our methods. When compared to other approaches for
extracting features, it can be demonstrated that our method produces superior results. Our
approach has an average kappa of 0.955 and an average accuracy of 96.29%.When compared
to VSBS, the proposed technique improves average accuracy by 13.61% and average kappa
by 0.27.

The within-subject test is implemented, i.e. the training data set and test data set are from
the same subject. More importantly, the comparison results of performance of different net-
works as shown in Table 5. Our method outperforms others in terms of parameter quantity,
real-time performance and accuracy. Table 6 show the test accuracy of each subject under
different networks and the test accuracy of corresponding networks. According to the exper-
imental results, it displays that the accuracy of subject 2 is the lowest and the accuracy of
subject 3 is the highest on BCICID 2a. However, a higher standard deviation in the model
indicates that the model may fit extremely well for some subjects while being just fair for
others. More subject data for model training may overcome this, thus decreasing the gap.

The CNN-based model [42] also used SAE over 1D CNN features and attained an EEG
classification accuracy of 70%. The BCICID is used to implement and test this concept.
Table 7 shows a comparison of the proposed method’s overall accuracy with that of other
approaches. Our proposed strategy outperformed the baseline, which also usedCNN, in terms
of accuracy.

On the BCICID, the MCNN approach only achieved accuracy of 75.7% for subject-
specific training and assessment. With cropped training, the shallow and deep CNN model
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[38] was constructed for MI classification and achieved 72.0% decoding accuracy. Before
DL techniques were used to EEG data, the most successful conventional machine learning
methodology was filter bank common spatial patterns (FBCSP), which generated the greatest
results for EEG decoding. FBCSP and CNN are used to extract spatio-temporal information
fromBCICID data [36], on the BCICID, this approach was able to attain 74.4% test accuracy.
Notably, we enhanced our training samples and our model got better classification accuracy.
Our method improves 13.67%, 21.7%, 23% in accuracy than Musallam et al. [27], Amin
et al. [2], Sakhavi et al. [36], respectively.

Table 5 Comparison results of
performance evaluation of
different networks

Network Network Performance
Parameter Testing Time (s) Accuracy (%)

DeepNet 193,429 1.1 71.85

EEGNet 3,268 0.7 78.70

ShallowNet 46,164 0.3 80.17

SPCNN 134,374 0.7 83.65

ETIODCNN 35,396 0.024 96.67

Table 6 Classification accuracy (%) of each subject of BCICID2a by comparing different other state-of-the-art
networks. The bold indicates the best average result

Subjects Networks
DeepNet EEGNet ShallowNet SPCNN ETIODCNN

A01 73.13 80.98 79.29 80.63 98.23

A02 55.98 54.96 65.14 71.52 95.74

A03 79.46 88.80 92.19 92.64 99.12

A04 74.42 69.02 65.94 75.40 98.30

A05 74.60 79.15 77.81 80.09 97.23

A06 54.73 72.59 71.52 74.64 97.75

A07 76.28 84.96 93.98 93.66 97.32

A08 83.21 86.16 86.61 93.04 95.85

A09 83.84 91.65 89.02 91.25 97.07

Average 71.85 78.70 80.17 83.65 97.40

Table 7 Performance comparison of different methods. Classification accuracy of the proposed method and
other state-of-the-art works are evaluated and compared on BCICID 2a. The bold indicates the best result

Methods Description Accuracy

Schirrmeister et al. [38] CNN with cropped training 72.0%

Sakhavi et al. [36] Temporal features with FBCSP and CNN 74.4%

Amin et al. [2] MCNN 75.7%

Tabar et al. [42] 1D CNN with SAE 70.0%

Ang et al. [4] Filter bank CSP 68.0%

Musallam et al. [27] An efficient TCNet-Fusion model 83.73%

ETIODCNN 1D CNN with data augmentation 97.40%
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5 Discussion

The validity and generalizability of research results in small-sample studies on EEG clas-
sification and EEG pattern recognition may be influenced by several potential factors, such
as low statistical power, overfitting risks, instability, and feasibility in practical applications.
Small-sample studies are prone to low statistical power, making it difficult to detect true dif-
ferences or correlations. Moreover, due to the limited sample size, the research results may
not adequately represent the entire population, thus limiting the reliability and generalizabil-
ity of the findings. Additionally, small samples can lead to overfitting of the training data and
poor generalization to new data, causing the research results to deviate from expectations
when tested on larger samples or other datasets. Furthermore, small samples can result in
result instability, where the same data may yield different outcomes under different sampling
or partitioning schemes, challenging the reliability and consistency of the research. It’s worth
noting that due to the small sample size, the research results may not accurately reflect EEG
classification issues in different populations or contexts. Therefore, when applying the find-
ings of small-sample studies to real-world scenarios, more validation and empirical research
support are needed. Recent EEG studies [9, 12, 31] have endeavored to address these limi-
tations in small-sample research by using similar sample sizes across different contexts and
successfully mitigating these issues.

In our work, to enhance the reliability and generalizability of the research on small-sample
EEG classification, we have increased the training sample size and employedmethods such as
cross-validation, while emphasizing the stability of the proposed model’s EEG classification
results. The MI task categories in BCICID 2a and PhysioNet are both four categories. We
tested the training model on two datasets with the same hyper-parameters. We find that the
MI samples in BCICID 2a are more than PhysioNet. The model accuracy and test variance
obtained from BCICID 2a are superior to PhysioNet. Therefore, the specific MI task cate-
gories and the MI sample numbers of subject in different datasets will have a certain impact
on our model.

In practical brain-machine interface applications, precise and effective decoding and
encoding of EEG signals are crucial for controlling a robotic hand to perform actions such
as finger grasping and releasing. First, our approach can achieve accurate classification of
EEG signals, encode the classification results into control commands, and send these com-
mands wirelessly or through a USB interface to an intelligent peripheral device (robotic
hand) equipped with a Raspberry Pi system. Secondly, the main control system receives the
command information and drives the motors of the robotic hand accordingly. Finally, the
robotic hand performs actions based on the control of EEG signals. Applying generative
techniques to EEG signals can increase the amount of data, data diversity, and data privacy
protection, helping explore unknown areas and optimize EEG experiment design. EEG gen-
eration technology can contribute to improving the performance and applications of EEG
signal classification and pattern recognition tasks. When implementing this technology in
the future, there may be challenges in the following aspects:

1) Consideration of EEG signal quality and noise during the EEG acquisition process.
We know that EEG signals are susceptible to muscle activity, electromagnetic interference,
and other noise. Obtaining high-quality EEG signals is essential for accurately identifying
intentions and executing corresponding actions by the robotic hand.

2) Training a universally stable and effective model is challenging. Each individual’s EEG
signals have unique features and patterns, so personalized models need to be established for
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recognition and control. Additionally, EEG signals may change over time, due to emotions
and physiological states, requiring models with good adaptability and robustness.

3) Real-time and latency issues in brain-machine communication. Controlling the robotic
hand requires real-time and low-latency conditions. The acquisition, processing, and decod-
ing of EEG signals need to be performed as quickly as possible to achieve real-time control
of the robotic hand’s actions. Reducing signal processing and transmission latency poses a
technological challenge.

4) Multi-action classification. Robotic hands typically have multiple actions and move-
ments, such as grasping, lifting, and rotating. Accurately identifying and classifying different
intentions is a challenge, especially when transitioning between actions smoothly. Ensuring
the precision and accuracy of the robotic hand’s actions is also crucial. These challenges
mainly focus on the decoding and encoding aspects of EEG signals.

6 Conclusion

In this paper, the method of EEG classification of motor imagery based on a special 1D CNN
architecture and data augmentation is proposed. We use core blocks to build the network
and choose the time sliding window with a length of 2s to enrich MI samples. BCICID
2a and 2b are used to verify the effectiveness of proposed method. The comparison with
other state-of-the-art works shows the superiority of our ETIODCNN model. In conclusion,
ETIODCNNhas a good real-time classification performance.Our trainingmodel outperforms
other models in terms of stability and robustness. Furthermore, our method can improve the
performance of MI tasks without any complicated and time-consuming feature engineering.
The experimental results help us better understand how to use DL methods to solve EEG-
based classification problems. In the future work, we hope to apply EEG recognition and
generation for actual control systems, such as the control of wheelchairs. On the other hand,
we also try to embed algorithms into mobile devices to control multiple daily devices.

Acknowledgements This work was supported by the Nature Science Foundation of China (Nos. 61671362
and 62071366).

Data Availability The data (1. Four class motor imagery) and (4. Two class motor imagery) used to support
the findings of this study have been deposited in the repository [http://bnci-horizon-2020.eu/database/data-
sets].

Declarations

Competing interest The authors report no declarations of interest.

References

1. Al-Qaysi Z, Zaidan B, Suzani M (2018) A review of disability EEG based wheelchair control sys-
tem: Coherent taxonomy, open challenges and recommendations. Comput Methods Programs Biomed
164:221–237

2. Amin SU, AlsulaimanM,MuhammadG et al (2019) Deep Learning for EEGmotor imagery classification
based on multi-layer CNNs feature fusion. Future Gener Comput Syst 101:542–554

3. Ang K, Chin Z, Wang C, Guan C, Zhang H (2012) Filter bank common spatial pattern algorithm on BCI
competition IV datasets 2a and 2b. Frontiers Neurosci. 6:39

123

45764 Multimedia Tools and Applications (2023) 82:45747–45767

http://bnci-horizon-2020.eu/database/data-sets
http://bnci-horizon-2020.eu/database/data-sets


4. Ang KK, Chin ZY,Wang C et al (2012) Filter bank common spatial pattern algorithm on BCI competition
IV datasets 2a and 2b. Front Neurosci 6:39

5. Atyabi A, Luerssen M, Fitzgibbon SP et al (2017) Reducing training requirements through evolutionary
based dimension reduction and subject transfer. Neurocomputing 224:19–36

6. Bahador N, Erikson K, Laurila J et al (2020) A correlation-driven mapping for deep learning application
in detecting artifacts within the EEG. J Neural Eng 17(5):056018

7. Bang J S, Lee M H, Fazli S et al (2021) Spatio-spectral feature representation for motor imagery classi-
fication using convolutional neural networks. IEEE Trans Neural Netw Learn Syst

8. Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning. New York: Springer
9. Castiblanco Jimenez IA, Gomez Acevedo JS, Olivetti EC et al (2022) User Engagement Comparison

between Advergames and Traditional Advertising Using EEG: Does the User’s Engagement Influence
Purchase Intention? Electronics 12(1):122

10. Croce P, Zappasodi F, Marzetti L et al (2018) Deep Convolutional Neural Networks for feature-less auto-
matic classification of Independent Components in multi-channel electrophysiological brain recordings.
IEEE Trans Biomed Eng 66(8):2372–2380

11. DevlaminckD,WynsB,Grosse-WentrupMet al (2011)Multisubject learning for common spatial patterns
in motor-imagery BCI. Comput Intell Neurosci 2011

12. Di Flumeri G, De Crescenzio F (2019) Berberian B et al Brain-computer interface-based adaptive automa-
tion to prevent out-of-the-loop phenomenon in air traffic controllers dealing with highly automated
systems. Front Hum Neurosci 13:296

13. Dose H, Møller JS, Iversen HK et al (2018) An end-to-end deep learning approach to MI-EEG signal
classification for BCIs. Expert Syst Appl 114:532–542

14. Feng JK, Jin J, Daly I et al (2019) An optimized channel selection method based on multifrequency
CSP-rank for motor imagery-based BCI system. Comput Intell Neurosci

15. Grosse-Wentrup M, Buss M (2008) Multiclass common spatial patterns and information theoretic feature
extraction. IEEE Trans Biomed Eng 55(8):1991–2000

16. Gupta A, Bhateja V, Mishra A (2019) Autoregressive modeling-based feature extraction of EEG/EOG
signals. In Proc. Inf. Commun. Technol. Intell. Syst., pp. 731-739

17. Hou Y, Zhou L, Jia S et al (2020) A novel approach of decoding EEG four-class motor imagery tasks via
scout ESI and CNN. J Neural Eng 17(1):016048

18. Hou Y, Zhou L, Jia S et al (2020) A novel approach of decoding EEG four-class motor imagery tasks via
scout ESI and CNN. J Neural Eng 17(1):016048

19. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal
covariate shift. International conference on machine learning. PMLR: 448-456

20. Jiao Z, Gao X, Wang Y et al (2018) Deep convolutional neural networks for mental load classification
based on EEG data. Pattern Recognit 76:582–595

21. Joadder MAM, Siuly S, Kabir E et al (2019) A new design of mental state classification for subject
independent BCI systems. IRBM 40(5):297–305

22. Kumar S, Sharma A, Mamun K (2016) A deep learning approach for motor imagery EEG signal classifi-
cation. et al (2016) 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on
CSE). IEEE, 34–39

23. Leeb R, Lancelle M, Kaiser V (2013) Thinking Penguin: Multimodal Brain Computer Interface Control
of a VR Game. IEEE Trans Comput Intell AI Games 5(2):117–128

24. Liu X, Shen Y, Liu J et al (2020) Parallel spatial-temporal self-attention CNN-based motor imagery
classification for BCI. Front Neurosci: 1157

25. Liu J, Ye F, Xiong H Recognition of multi-class motor imagery EEG signals based on convolutional
neural network. J Zhejiang Univ (Eng Sci) 55(11): 2054-2066

26. Lopes AC, Pires G, Nunes U (2013) Assisted navigation for a brain-actuated intelligent wheelchair. Robot
Auton Syst 61(3):245–258

27. Musallam YK, AlFassam NI, Muhammad G et al (2021) Electroencephalography-based motor imagery
classification using temporal convolutional network fusion. Biomed Signal Process Control 69:102826

28. Nair V, Hinton G E (2010) Rectified linear units improve restricted boltzmann machines. Icml
29. Noureddin B, Lawrence P, Birch G (2012) Online removal of eye movement and blink EEG artifacts

using a high-speed eye tracker. IEEE Trans. Biomed. Eng. 59(8):2103–2110
30. Peng D, Liu Z, Wang H et al (2018) A novel deeper one-dimensional CNNwith residual learning for fault

diagnosis of wheelset bearings in high-speed trains. IEEE Access 7:10278–10293
31. Perera D, Wang YK, Lin CT et al (2022) Improving EEG-Based Driver Distraction Classification Using

Brain Connectivity Estimators. Sensors 22(16):6230
32. Pérez-Enciso M, Zingaretti LM (2019) A guide on deep learning for complex trait genomic prediction.

Genes 10(7):553

123

45765Multimedia Tools and Applications (2023) 82:45747–45767



33. Sadiq MT, Yu X, Yuan Z (2021) Exploiting dimensionality reduction and neural network techniques for
the development of expert brain-computer interfaces. Expert Syst Appl 164:114031

34. Saini M, Satija U, Upadhayay MD (2022) One-dimensional convolutional neural network architecture
for classification of mental tasks from electroencephalogram. Biomed Signal Process Control 74:103494

35. Saini M, Satija U, Upadhayay MD (2022) One-dimensional convolutional neural network architecture
for classification of mental tasks from electroencephalogram. Biomed Signal Process Control 74:103494

36. Sakhavi S, Guan C, Yan S (2018) Learning temporal information for brain-computer interface using
convolutional neural networks. IEEE Trans Neural Netw Learn Syst 29(11):5619–5629

37. Samek W, Meinecke FC, Müller KR (2013) Transferring subspaces between subjects in brain-computer
interfacing. IEEE Trans Biomed Eng 60(8):2289–2298

38. Schirrmeister RT, Springenberg JT, Fiederer LDJ et al (2017) Deep learning with convolutional neural
networks for EEG decoding and visualization. Hum Brain Mapp 38(11):5391–5420

39. Sharma G, Parashar A, Joshi AM (2021) DepHNN: A novel hybrid neural network for electroencephalo-
gram (EEG)-based screening of depression. Biomed Signal Process Control 66:102393

40. Shen Y, Lu H, Jia J (2017) Classification of motor imagery EEG signals with deep learning models.
International Conference on Intelligent Science and Big Data Engineering. Springer, Cham, 181–190

41. Sun Y, Lo FPW, Lo B (2019) EEG-based user identification system using 1D-convolutional long short-
term memory neural networks. Expert Syst Appl 125:259–267

42. Tabar YR, Halici U (2016) A novel deep learning approach for classification of EEG motor imagery
signals. J Neural Eng 14(1):016003

43. Tangermann M (2012) Review of the BCI competition IV. Front Neurosci 6:55
44. Wang T, Wu D J, Coates A et al (2012) End-to-end text recognition with convolutional neural networks.

Proceedings of the 21st international conference on pattern recognition (ICPR2012). IEEE 3304-3308
45. Wu S (2017) Fuzzy integral with particle swarm optimization for a motor-imagery-based brain-computer

interface. IEEE Trans Fuzzy Syst 25(1):21–28
46. Wu H, Niu Y, Li F et al (2019) A parallel multiscale filter bank convolutional neural networks for motor

imagery EEG classification. Front Neurosci 13:1275
47. Zhang R, Li Y, Yan Y et al (2015) Control of a wheelchair in an indoor environment based on a brain-

computer interface and automated navigation. IEEE Trans Neural Syst Rehabilitation Eng 24(1):128–139
48. ZhangY, NamCS, ZhouG (2019) Temporally constrained sparse group spatial patterns formotor imagery

BCI. IEEE Trans Cybern 49(9):3322–3332
49. Zhang T, Zheng W, Cui Z, Zong Y, Li Y (2019) Spatial-temporal recurrent neural network for emotion

recognition. IEEE Trans Cybern 49(3):839–847
50. Zhao X, Liu D, Ma L et al (2022) Deep CNN model based on serial-parallel structure optimization for

four-class motor imagery EEG classification. Biomed Signal Process Control 72:103338
51. Zhuang J, Geng K, Yin G (2019) Ensemble Learning Based Brain-Computer Interface System for Ground

Vehicle Control. IEEE Trans Syst Man Cybern: Syst 51(9):5392–5404

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

45766 Multimedia Tools and Applications (2023) 82:45747–45767



Chu Chaoqin was born in 1991. He is currently a PhD student at Xi’an
Technological University. His research interests include sign language
recognition, deep learning, video information processing and brain-
computer interface.
E-mail: chuchaoqin@st.xatu.edu.cn.

Xiao Qinkun was born in 1974. He is a Ph.D. and a professor in Xi’an
Technological University. He obtained doctor degree from Northwest-
ern Polytechnic University in 2007, and from 2007 to 2009, he is
postdoctoral in Tsinghua University. His research interests include
object recognition and information retrieval, dynamic Bayesian net-
work, image processing and brain-computer interface.
E-mail: 65369952@qq.com.

123

45767Multimedia Tools and Applications (2023) 82:45747–45767


	EEG temporal information-based 1-D convolutional neural network for motor imagery classification
	Abstract
	1 Introduction
	2 Related works
	3 Method
	3.1 Core block
	3.2 The framework of MI classification system
	3.3 EEG preprocessing and data augmentation
	3.4 Model Learning

	4 Experiment and results
	4.1 Description of EEG datasets
	4.2 Experimental setup
	4.3 Statistical analysis and performance evaluation
	4.4 Performance comparison

	5 Discussion
	6 Conclusion
	Acknowledgements
	References


