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Abstract
Speaker Identification (SI) is the task of identifying an unknown speaker of an utterance by 
comparing the voice biometrics of the unknown speaker with previously stored and known 
speaker models. Although deep learning algorithms have been successful in different speech 
and speaker recognition systems, they are computationally expensive and require consider-
able run-time resources. This paper approaches this issue by proposing an optimized text-
independent SI system based on convolutional neural networks (CNNs) that not only deliv-
ers accuracies on par with state-of-the-art benchmarks but also demands significantly fewer 
trainable parameters. The proposed system integrates an Enhanced Multi-Active Learner 
framework, which distributes the complexity of the learning task among an array of learners, 
with a novel SI approach in which speakers are identified based on a single sound segment 
of voice biometrics. Here, experiments were conducted with all 1881 VoxCeleb 1 and TIMIT 
speakers, and results were compared with the SI systems reported in the literature that were 
assessed on the same speakers’ data. Results indicate that first, the proposed system outper-
formed the benchmark systems’ performances by delivering up to 2.43% better top-1 accu-
racy, and second, it reduced the number of deep learning trainable parameters by up to 95%. 
The proposed SI could bring offline, large-scale speaker identification to low-end computing 
machines without specific deep learning hardware and make the technology more affordable.

Keywords Automatic Speaker Identification · MFCC · Deep neural networks · 
Optimization

1 Introduction

Speaker Recognition (SR) is the process of identifying speakers based on vocal features 
(aka voice biometrics) of their given speech samples, whereas speech recognition con-
fines to the content recognition process rather than the speaker [29]. SR tasks include 
speaker verification, speaker diarization [1], speaker de-identification, etc., in which 
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using SR to identify an unknown speaker from a set of stored, known speaker models is 
called Speaker Identification (SI). Mainly, SI is the process of comparing unknown user 
voice biometrics against many known biometric profiles and finding the best or exact 
match. Among the most prominent applications of speaker identification are mail auto-
mation tasks, automated labeling of speakers of a conversation, user identification and 
authorization, and acoustic forensics.

Deep learning advances have enabled Deep Neural Networks (DNNs) to produce 
accurate speech and speaker recognition systems. However, neural network-based 
models require adjusting and processing many neural weights and bias parameters that 
make them computationally expensive and complicated, requiring high-end comput-
ing machines with powerful processing units [33]. Hence, their applications for lower-
capacity smart devices are limited because of the required run-time resources when 
large-scale applications are intended. One solution is to implement the SI DNN engine 
on a powerful server and deliver its services via the cloud or over a network (i.e., online 
SI), or employ other SI engines that require less memory and computation footprint, 
such as rapid i-vectors [42]. The problems with the first solution are the additional cost 
of the server, the availability of the network, and security and privacy concerns with 
respect to transmitting the authentication data over the network. Likewise, the second 
solution does not benefit from DNNs’ strong generalization capabilities. On the other 
hand, an offline DNN-based SI with a small memory and computation footprint that still 
delivers high accuracies can address these shortcomings.

Most traditional approaches to SI include modeling all speaker voice biometrics via 
one classifier (aka learner), meaning that the learner is responsible for storing and pro-
viding all speaker models [17]. In active learning theory, this is known as the Single-
Learner (SL) paradigm. A supervised active learning framework called Multi-Learner 
was proposed by [39] that recommended accuracy improvements for pattern recognition 
tasks comprising two or more views. An example of views is describing an image by its 
visual features (i.e.,  view1) and the words surrounding it (i.e.,  view2) in a web image 
retrieval system. Another example is web page classification, where a page can be classi-
fied by the words on the page and the words on other pages linked to this page, where the 
former is considered  view1 and the latter  view2. If there are several learners to approxi-
mate the views, the learning theory is known as Multi-View Multi-Learner (MVML).

Multi-learner frameworks consider additional views as supplementary data to help 
improve the performance of the main view (i.e., the first view in the examples above). 
They employ these additional views as meta-data to provide more information about the 
main view. It is pertinent to note that the primary objective of multi-learners remains 
approximating the first view, while the additionally created views are only considered 
to improve this objective. Nevertheless, incorporating such extra views by multi-learner 
frameworks makes the approximation task more complicated as there is more infor-
mation for the learner(s) to process and learn. Considering DNNs as learners means 
MVML requires additional DNNs in order to model the supplementary views to assist 
in approximating the main DNN; this increases the required computational resources 
significantly, but superior approximation accuracy can be achieved in comparison to 
Multi-View Single-Learner (MVSL) models.

An improvement to multi-learner, Enhanced Multi-Active Learner (EMAL), redefines 
views and describes how they are perceived and modeled via several learners [32]. Con-
trary to MVML, in which the objective is to improve the approximation of the main view 
by considering other views and modeling them via supplementary learners, EMAL aims 
to distribute the complexity of the main view among several learners. Via EMAL, each 
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learner is responsible for learning an aspect of the main view without increasing the size, 
number, or complexity of the view or function. EMAL achieves this by breaking down the 
main view into smaller, less complex views and then distributing the modeling of these 
new views among the learners.

In terms of DNNs, the EMAL simplification of the main view may also streamline the 
DNN structural and computational complexity since the overall simulation/approximation 
task assigned to each DNN in the network is also simplified; hence, the DNN requires 
fewer parameters as the result of dealing with less approximation complexity. This archi-
tectural simplification can help to rectify issues of long training time and high computa-
tional complexity associated with DNNs. Nevertheless, EMAL applications in SI have 
remained unknown as the traditional MVSL approaches profoundly dominate the SI 
research community.

Furthermore, the common SI approach employs a combination of acoustic features 
extracted from sequential sounds to present the speakers’ voice biometrics. Notably, 5 to 
10 sound segments are stacked to form the input before and after the current segment [28]. 
Stacking sound segments is particularly important for speech recognition technologies as 
words are broken down into sounds (or phonemes and phones), and successful identifica-
tion of each word depends on recognizing the previous sounds. Nevertheless, the discrimi-
native acoustic information used to identify a speaker is mostly embedded in how speech 
is uttered and not necessarily in the content of speech [15]. Likewise, the objective of text-
independent SI is to identify the speaker and not the content of speech. Thus, our proposed 
system assumes the distinctive speaker features in an acoustic sound segment contain 
enough speaker-distinguishable information to identify the speaker regardless of the previ-
ously uttered sounds. Identifying a speaker using a single-sound segment instead of a stack 
of sounds can further reduce the complexity of DNN learner(s) as the input dimension can 
significantly be reduced, which means the classifier requires to learn a smaller number of 
acoustic features. While our initial study shows the single sound SI approach has merits for 
smaller scale, straightforward SI tasks [34], it is essential to investigate the effects of such 
reduction of input dimensions on a larger scale, realistic and challenging SI tasks.

The objectives of this paper are to propose an optimized system for text-independent, 
closed-set speaker identification based on Convolutional Neural Networks (CNNs) that lev-
erages both EMAL and single sound approach and benchmark its performance and DNN 
computational complexity. We intend to simplify the complexity of SI yet utilize the pow-
erful knowledge discovery and generalization capabilities of CNNs so that not only an 
accurate SI is achieved but also the smaller and fewer complex CNNs reduce the computa-
tional costs associated with deep learning-based SI systems. The proposed system applies 
the EMAL approach to SI to improve the efficiency of speaker identification tasks and 
integrates the single-sound segment SI approach to decrease the SI complexity. Its perfor-
mance and DNN computational complexity were measured when it was applied to identify 
630 speakers whose utterances were provided by Texas Instruments/Massachusetts Insti-
tute of Technology (TIMIT) Acoustic-Phonetic Continuous Speech Corpus [14], and 1251 
celebrities provided by VoxCeleb [25]. Here, the number of trainable deep learning param-
eters is considered the metric to measure the computation complexity of the proposed SI 
system. A comparative performance study with DNN-based SI systems that employed the 
same datasets is also provided.

The rest of the paper is organized as follows: Section 2 reviews the related SI works. 
The proposed system is explained in Section 3, and Section 4 describes the experiments. 
Finally, Section 5 discusses the results and presents the comparative study, while Section 6 
concludes the paper.
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2  Related work

A typical speaker identification system goes through an enrollment procedure in which speaker 
models are created and stored by the learner, and a matching procedure that explores the mod-
eled speakers for a match [15]. Both enrollment and matching procedures are initiated by 
receiving the speech input signals, extracting acoustic features that represent the speech param-
eters in a form understandable by the system, and then these features are fed to the learner/clas-
sifier. Hence, the feature extractor and learner are the two primary components of SI systems.

As an acoustic feature extraction approach, Mel-Frequency Cepstral Coefficient 
(MFCC) is a practical approach to decomposing an acoustic signal into its phone or sounds 
and presenting them via frames of acoustic features that can be modeled via various 
machine learning algorithms. MFCC features have been widely applied in various speech 
processing tasks, such as impaired speech recognition and heart anomaly detection [19]. 
Regarding SI, MFCC and its variations are the most frequently applied feature extraction 
approach. Current speaker identification systems, especially those that leverage deep learn-
ing algorithms to store and model the speakers, employ a combination of stacked acoustic 
features extracted from sequential acoustic frames to present the speakers’ voice biomet-
rics, as explained in the previous section.

2.1  i‑vector based Speaker Identification

In terms of the SI learner, Gaussian Mixture Models (GMMs) were traditionally one of the 
most popular methods in different speaker recognition tasks. The first published application 
of GMM in SI is [27] in which GMMs were used to provide a multi-classification statisti-
cal model of speakers’ data by modeling the distribution of the speaker’s MFCCs. Recent 
improvements to GMM-based SI systems are i-vector based approaches that employ 0th, 
first, and second-order statistics produced by GMMs.

Today, one of the most successful classes of learning algorithms in speech processing 
is deep learning. Recent deep learning implementations for SR highlight that the complex-
ity involved in SR requires special attention compared to traditional pattern recognition 
problems [28]. In terms of SI, deep learning-based SI approaches have outperformed other 
traditionally popular ones on large-scale applications, such as i-vector based approaches 
[40, 43]. This is because deep neural nets learn features discriminatively instead of the gen-
erative approach that GMM/i-vector frameworks apply [35]. For example, Chen et al. [8] 
proposed a bilevel SI framework that used sparse coding with no gaussian assumption to 
improve i-vectors, and employed a softmax and linear Support Vector Machine. Evaluated 
on VoxCeleb 1 dataset, the authors achieved the highest top-1 accuracy of 67.2%, which is 
lower than the DNN performances reported in the literature on the same dataset.

2.2  Deep learning based speaker identification

An example of employing deep learning in SI is utilizing Restricted Boltzmann Machines 
(RBM) to assist feature extraction in a hybrid noise-robust SI model proposed by [46]. The 
study evaluated the model by providing speech data infected by factory noise, destroyer 
engine room noise, and speech shape noise. Three sets of models based on gammatone fea-
tures, gammatone frequency cepstral coefficients, and MFCCs were generated for speakers 
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selected from the NIST Speaker Recognition corpus and reported that MFCC-based models 
achieved the best benchmarks in most experiments. An investigation into the effects of depth 
and layered-wise training using deep autoencoders (DAEs) in SI was also conducted in [41].

Recently, deep CNN approaches to identify speakers have proven to be very useful because 
of CNNs’ effectiveness in modeling real-world, noisy data without any requirements of specific 
features engineering [16, 38]. In this respect, [2] proposed a SI system using a deep CNN that 
was verified using connected speech samples provided by TIMIT. The network employed 32 
and 64 filters for its convolutional layers, each followed by another layer to perform max-pool-
ing, and the outputs of these filters were fed to two dense layers. Similarly, Nagrani et al. [25] 
adopted VGG-M CNN architecture [7] and designed a closed-set SI model verified on noisy 
speech samples collected from 1251 celebrities in the VoxCeleb 1 corpus. Another example of 
large-scale CNN-based SI is [4] in which VGG and Residual Neural Networks were studied.

2.3  Hybrid and ensemble‑based speaker identification

Ali and his colleagues [2] presented a hybrid SI approach that employed different learners to 
perform different tasks in the SI pipeline. Particularly, feature extraction was done by applying a 
Deep Belief Network (DBN) to extract unsupervised features and then combined with MFCCs. 
Principal Component Analysis (PCA) was applied for the linear transformation of features. Then, 
the features were pipelined through multiple learning algorithms, including RBMs, K-Means, 
and Support Vector Machines (SVMs), and finally mapped to different speaker models. Simi-
larly, a DBN-GMM SI was proposed and verified on a custom corpus by [40]. Another hybrid 
approach is [36] in which a GMM-DNN SI approach was proposed to improve the performance 
of identifying speakers’ emotions. The authors delivered better performance than conventional 
perceptron neural networks when they applied their solution to a customized Arabic dataset.

Based on document classification’s hierarchical attention network (HAN) [44], Yanper 
et al. [37] proposed another hybrid SI called H-Vectors. This approach aimed to find which 
segments of an utterance contribute more towards identifying the speaker. The proposed 
HAN architecture was composed of three components: (1) a frame-level encoder and atten-
tion layer consisting of a CNN, a Gated RNN (GRU) [9], and an MLP, (2) a segment-
level encoder that includes another CNN and MLP, and (3) a dense fully connected DNN 
with two layers. They verified this architecture with NIST SRE 2008 part1 (SRE08), Call 
Home American English Speech (CHE), and Switchboard Cellular Part 1 (SWBC) datasets 
achieving accuracies of up to 98.5%, 92.8%, and 86.2% for each dataset respectively.

An ensemble neural networks approach to SI using Probabilistic Neural Networks 
(PNNs), General Regression Neural Networks (GRNNs), and RBFs was studied by [3] 
in which each neural net was responsible for probing the data differently to fit the train-
ing audio features. In particular, one network was trained on all the data, the other net-
work was only trained on the data showing a margin of error, and the other was trained 
using the data with no error margin. The model was evaluated on GRID speech corpus 
and showed improvements in recognition time and accuracy over traditional approaches. 
Section 5 provides a performance comparison of the SI systems mentioned above.

The literature does not report any EMAL implementation of speaker identification, 
where the single-learner concept remains the dominant approach among SI research-
ers. Thus, it is important to investigate whether EMAL benefits are achievable in SI and 
what advantages EMAL active learning offers.

It is also essential to highlight the difference between SI approaches that use differ-
ent types and numbers of learners to perform different views or tasks in the SI pipeline 
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(for example, [2, 27]), or repeat modeling the same view(s) using different variations of 
learners (such as Bagging ensemble learning [26]), and EMAL based SI systems. EMAL 
systems use a network of learners to improve the performance of learning the main view 
by distributing the main view’s complexity among several learners. Notably, each learner 
in an EMAL-based SI has a specific responsibility that is different from other learners 
(i.e., no redundancy of views) and contributes towards performing a different aspect of 
the overall task, whereas in bagging ensemble learning each view is modeled several 
times using a different machine learning algorithm. To put it differently, EMAL stores 
only one model of each view, but ensemble learning stores several models of each view. 
The literature usually refers to ensemble methods as the collection of learners that are 
variations of the same learner. Likewise, a broader category is known as multi-classifica-
tion systems in which the hybridization of different learners is considered [12].

As an illustration, the example above of using ensemble learning in SI [3] applied 
three different types of neural networks, while each neural net represented all speaker 
models (i.e., all of the views); thus, there were three variations of speaker models. 
Given an utterance, the final SI outcome was calculated by majority voting (bagging), 
where the speaker model that obtained 2/3 of the votes was selected as the identified 
speaker. The next section explains EMAL SI in detail.

Regarding single-sound segment SI, we recently investigated whether this approach 
to SI is feasible and to identify the best parameters and MFCC configuration [34]. We 
showed that speaker identification systems could operate by relying on the distinctive 
acoustic features that an individual segment of speech presents (such as an MFCC frame) 
without relying on previous speech segments. In our previous study, we conducted more 
than one hundred experiments in which small MVSL SI systems were created using dense, 
fully connected neural networks considering different SI parameters. The initial results 
indicated that speaker identification using one sound segment is possible, and results are 
on par with the traditional stack-based SI approaches where the number of speaker models 
is small. We applied the previous study’s findings to set the acoustic feature parameters in 
the present study, as stated in the next section. Nevertheless, the neural network used in 
the previous study and MVSL active learning provided poor results when speech samples 
of all TIMIT speakers were given. Thus, the present study focused on transferring the 
knowledge from the previous experience to design an EMAL single-sound segment SI 
system that can handle complex SI tasks yet reduces DNN trainable parameters.

3  The proposed system

3.1  Formulating speaker identification

Suppose the speaker identification task is declared as a function approximating speaker mod-
els S by receiving a speech sample x ∈ X , i.e., x is one of the input speech signals from set X. 
Based on the number of speakers to be identified, S is composed of multiple speaker models:

where n is the number of speakers, and si is the ith speaker model (i = 1 to n). Given a 
speech sample x obtained from one of S speakers, speaker identification S* can be defined 
as the mappings of X to individual speaker models in Eq. 1 by finding the most probable 
match as stated by Eq. 2:

(1)S = {s1, s2,⋯ , sn}
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3.2  Features extraction

The first step in speaker identification is to prepare the input signals X and extract their dis-
tinctive acoustic features in a feature extraction process. In either enrolment (aka training) 
or matching phase (aka inference), the speech samples must be pre-processed to remove 
speech frames representing silence since such frames may confuse the learners. Silence 
frames tend to be similar regardless of speakers and do not contain discriminative speaker-
dependent data. The proposed system uses 20ms segments (aka frames); thus, any silence 
data equal to or greater than 20ms should be removed from input utterances. Alternatively, 
an additional speaker model can be created to model silence segments.

It is important to select a features extraction method that best presents the acoustic character-
istics of signals X because S* refers to these features to associate X with each speaker model si. 
Among different acoustic features extraction methods, MFCC is constructed using frequencies 
of the vocal track and present acoustic signals in the cepstral domain that employs FFT to repre-
sent windowed short signals as the real cepstrum of X. MFCCs are inspired by our natural audi-
tory perception mechanism; hence MFCC frequency bands are spaced equally on Mel scale [5]. 
Although MFCCs ignore some acoustic information, they still preserve sufficient distinguish-
able data [10]. This attribute of MFCCs has been widely used in speech and speaker recognition 
tasks making them one of the most popular acoustic feature extraction methods.

Applying MFCCs to an input speech signal x results in a 2D tensor of Acoustic Features 
AF where columns are frames representing sound segments, and rows are MFCC coeffi-
cients for each frame. Thus, S* becomes the mapping of AF to speaker models S:

3.3  The single‑sound segment approach

Acoustic Features AF in Eq. 3 is a 2-dimensional matrix of sequential sound segments extracted 
from x that are represented as frames (aka segments) of MFCC features; each segment is a row 
in AF matrix that may present a sound or phone. Although this 2D representation of utterance x 
is vital to identify its content and requires processing multiple segments, identifying speech con-
tent is not the objective of speaker identification. Thus, the single-sound segment SI approach 
assumes one frame of speech features (i.e., features corresponding to an individual sound seg-
ment) contains enough information to distinguish between speaker models S [34]. Hence, in 
the proposed system, the feature extraction process presents the speaker’s voice biometrics as a 
single MFCCs frame AF′, which means speaker identification S* relies only on the information 
provided by AF′ to approximate speaker models S without considering the frames before or after 
AF′. As such, the proposed system redefines speaker identification as given by Eq. 4:

It is important to note that AF′ in Eq. 4 is a 1D tensor in comparison to 2D tensor AF, and 
its dimension is considerably smaller, as stated by Eq. 5:

(2)S∗ = argmax
S

P(S|X)

(3)S∗ = argmax
S

P(S|AF)

(4)S∗ = argmax
S

P(S|AF)
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In this study, each speech frame contains 60 MFCCs, meaning each AF′ tensor is com-
posed of 60 coefficients.

3.4  Enhanced multi‑active learner

The approximation task in Eq. 4 can be done by one or many learners L:

where m is the number of learners. The traditional neural net-based SI approaches employ 
a single learner (i.e., m = 1) to approximate S* by applying a single-learner paradigm. The 
complexity of this task requires a neural net with many neurons and parameters to learn the 
acoustic features of all speaker models si. On the other hand, by applying EMAL, the com-
plexity of S* can be distributed among a network of learners by setting m > 1. This distribu-
tion decreases the complexity of the required neural network learners and may also improve 
the classification performance as the number of positive-response acoustic features being 
modeled by a learner can be reduced. A positive response for the ith speaker refers to any 
acoustic frame AF′ that was extracted from any speech signal x uttered by speaker si.

Suppose:

where AF′

i,j
 is the jth acoustic segment for speaker model si extracted from a speech signal 

uttered by the ith speaker, and contains the 60 extracted MFCC features. AF′ contains many 
samples of AF′i,j to present how the ith speaker pronounces different sounds, as shown by Eq. 8:

where p is the total number of sound samples for the ith speaker, and D
(
af ′

i,jy

)
 is the num-

ber of all possible yth MFCC coefficients (y = 1 to 60) extracted from the ith speaker’s jth 
sound segment. In simple terms, D(AF�

i
) is the number of all MFCC features extracted from 

all sound samples that S* requires processing to approximate speaker model si in Eq. 4, and 
D(AF�

) is the same but for all speaker models S from Eq. 1.
In an EMAL approach to SI, a network of learners L is used to learn AF′ where each learner 

li is responsible for approximating si. Hence, li only needs to learn features presented in AF′i for 
its positive responses, whereas single-learner SI systems use one learner l1 to learn AF′. It is per-
tinent to note that D(AF�

i
) for positive responses is considerably smaller than D(AF�

) because 
the number of learnable speech features per si is less than S as denoted by Eq. 9:

To put it differently, each learner in an EMAL-based speaker identification system only 
learns acoustic features directly associated with one speaker instead of all speaker features. 
Combining the reduction in the number of learnable coefficients provided by Eqs. 5 and 9, it can 

(5)|AF| = |AF|
k

, k = the number of AF soundsegments

(6)L =
(
l1, l2,⋯ , lm

)

(7)AF�

i,j
= (af �

i,j1
, af �

i,j2
,… , af �

i,j60
)

(8)D(AF�

i
) = D

(
af �

i,j1

)
× D(af �

i,j2
) ×⋯ × D

(
af �

i,j60

)

for i = 1 to n, and j = 1 to p
,

(9)D(AF�

i
) =

D(AF�)

o

o = the number of sounds samples associated with si
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be concluded that each EMAL learner li needs to process significantly fewer speaker-dependent 
features belonging to its class than a single-learner SI. In particular, each neural network li acts 
as a binary classifier that decides whether a given AF′ vector is associated with speaker si (that 
is responsible to model) since it only needs to map the input frame vector to si instead of S.

3.5  The single‑sound EMAL‑based system

Figure  1 depicts the proposed system in which n = m (n is the number of speaker mod-
els, and m is the number of learners), meaning each speaker is modeled by an individual 
learner. After silence segments are removed from X (when necessary), each utterance is 
presented by several sound segments of 60-dimensional MFCCs indicated by AF′. Each 
AF′

i,j
 (Eq. 7) needs to be appropriately labeled with its associated speaker si and stored to 

be used for training. The proposed system employs a network of CNN learners L to learn 
the voice biometrics of speakers where each li associates itself with one of si speakers, 
which means for n number of speaker models, n learners are required.

Since each learner performs a binary classification, it only needs one sigmoid output 
neuron that calculates the probability of the given AF′

i,j
 representing speaker model si. Dur-

ing the training phase, each AF′

i,j
 is individually given to all learners; the learner that is 

responsible for the speaker in which her voice biometrics frame is given has its output neu-
ron set to one (ymax) while the remaining learners receive a zero (ymin) for the output neuron 
to show that the given sound segment does not belong to the speaker they represent.

Particularly, let us assume i = 1 in Fig. 1, which means AF′

1,j
 is one of the sound seg-

ments representing the first speaker model s1. In this case, the target vector for l1 is set to 

Fig. 1  The proposed system
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one (positive response), while the rest of the li learners (i≠1) receive a zero for their target 
vectors (negative response) while speaker enrollments are being performed. Next, i = 2 
meaning that AF′

2,j
 is a sound associated with s2, so l2 receives a one for its target vector 

and zero for the remaining learners. This process continues by providing each sound sam-
ple for each i and j per training epoch.

Nevertheless, this labeling strategy results in an imbalanced training dataset used 
to train CNN li because there are only 1

n
 positive training samples against n−1

n
 nega-

tive samples (n is the number of speaker models). This problem can be resolved by 
increasing the class weight of positive-response training samples and assigning smaller 
weights to other samples during speaker enrollment (i.e., training), as explained in 
[11]. This approach instructs the li optimizer to pay increased attention to sound seg-
ments extracted from speech samples uttered by the ith speaker.

Once the training procedure is complete, given an unforeseen speech frame (with all 
silence traces removed, if required), the EMAL-SI should be able to highlight speaker-
distinguishable acoustic features presented by an unforeseen sound segment and relate 
them to one of the speaker models. This is done by feeding the unidentified sound seg-
ment to all learners and querying them to relate the data to the speaker model they pre-
sent. Each CNN output is the likelihood that the given sound segment is uttered by the 
speaker the CNN is responsible for. The learners’ outputs are then given to a softmax 
function to be squashed as probability distributions. By finding the maximum of the soft-
max function results, it can be determined which CNN provides the highest probability.

Given the proposed system is a closed-set speaker identification system, it requires 
all speakers/users to be enrolled in the system in advance. In case there are new speak-
ers, new learners have to be added to L to match the number of learners with the number 
of speakers, and all learners need to be re-trained following the process explained here.

4  Experimental setup and results

This section describes the experimental setup, evaluation methodology, and results.

4.1  Datasets

Our experiments were conducted over two corpora. The first corpus was TIMIT which 
contains phonetically rich, clean speech samples obtained from 630 speakers in which 
ten utterances of each speaker are provided. The research community has widely used 
the dataset in different speech processing tasks. We considered speech materials from 
all 630 TIMIT speakers to verify the proposed system. All ten utterances per speaker 
were employed, of which eight were used to provide the training sound segments and 
the remaining two for extracting the test segments. Conducting 10-fold repeated ran-
dom sub-sampling validation [6], the training and testing utterances were changed for 
each fold randomly.

The second dataset, VoxCeleb 1 [25], contains more than 153 K gender-balanced utter-
ances collected from 1251 celebrities captured from videos uploaded to YouTube. Overall, 
the dataset contains 352 h of speech. The participants in this dataset were 55% male, and 
speech samples were collected from speakers with a diverse range of ethnicities, profes-
sions, ages, and accents. The audio samples reflect real-world environments, including 
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utterances with background chatter and music, room reverberations, laughter, etc. There 
are an average of 116 utterances per speaker, and the average length of each sample is 8.2 s.

Similar to the baseline experiment conducted on this dataset [9], we used around 145 K 
utterances for training and 8 K for testing, including all speakers provided in the corpus. 
We did not consider any cross-validation procedure similar to the baseline system since 
any experiment considering VoxCeleb full dataset is significantly resource-consuming.

Comparing TIMIT and VoxCeleb 1, the latter increases the complexity of speaker iden-
tification because (1) VoxCeleb audio samples include different types of background noise 
profiles, and (2) the number of speakers is almost twice larger than TIMIT.

4.2  Evaluation criteria

The performance of the proposed system was measured using two criteria. The first cri-
terion was speaker identification accuracy (aka top-1 accuracy), as the proportion of cor-
rect identification of speakers based on the testing sound segment data. Accuracy con-
veys the practicality of S* to identify speakers based on the given acoustic sound segment 
during testing.

The second criterion was Normalized Root Mean Squared Error (NRMSE):

where ymax and ymin were one and zero, respectively, as explained in Section 3. NRMSE was 
considered to measure the system’s error rate in terms of how close the results generated by 
the SI were to the target results. In particular, lower NRMSE implies S* is more capable of 
making precise predictions. It is pertinent to note that NRMSE was calculated based on the 
results obtained from all sigmoid output neurons and before the softmax function was applied.

4.3  Experimental setup

All experiments were implemented in Python. Feature extraction was done via Python 
Speech Feature Extraction library [24], and the CNN learners were implemented on Goog-
le’s TensorFlow framework.

For TIMIT experiments, another Python library called Pydub [11] was used to auto-
matically remove any trace of silence from speech utterances before feature extraction was 
performed. The silence threshold was set according to Decibels Relative to the Full Scale 
of each utterance. Silence removal was not necessary for the VoxCeleb experiment as the 
audio samples in the dataset did not include traces of silence.

4.4  CNN architecture

The convolution setup of the CNNs was inspired by [23], also used in [23]. Each CNN 
li comprised two convolutional layers with 32 and 64 filters, respectively, followed by a 
max-pooling layer for down-sampling the feature maps after the individual convolution 

(10)NRMSE =
Root MSE

ymax − ymin
=

√
MSE

1 − 0
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layers. Nevertheless, we did not apply the standard 2D windows on feature maps since the 
input sound segments were 1D tensors of 60 MFCCs rather than the 2D tensors of multi-
frame MFCCs. In particular, both convolution layers applied a 3⋅1 window to the feature 
maps, and down-sampling was done by a kernel of size 4⋅1. The convolutional layers had 
no strides (i.e., 1⋅1), while max-pooling strides were 2⋅2.

Identifying the dense layers hyperparameters, initial experiments on a small subset of 
the dataset (20 TIMIT speakers - ten females, ten males) were conducted in advance. Next, 
the hyperparameters were tuned and selected by a grid search algorithm [20], where 2 to 
4 dense layers with 32, 64, and 128 neurons and different activations were trialed. Then, 
the EMAL CNN architecture that provided the best accuracy was selected and applied to 
the full datasets. As a result of the grid search algorithm, each CNN li architecture was 
selected, as shown in Fig. 2 - the remaining hyperparameters are provided in Table 1.

During the TIMIT experiment, the training data were shuffled after every run to apply 
cross-validation, and batch training was stopped when a loss lower than 0.05 or 300 epochs 
were achieved. EMAL SI needed 630 of the CNNs shown in Fig. 2 to model TIMIT and 

Fig. 2  CNN li architecture 60 MFCCs
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1251 CNNs to model VoxCeleb 1, one per si, and they all followed the same architecture 
and hyperparameters. Accordingly, each CNN needed to adjust 22,913 trainable param-
eters. In order to avoid overfitting, dropout regularization with a relatively high drop rate of 
50% was applied to each fully connected layer of the CNNs.

4.5  Results

The evaluation results of experimenting with the proposed SI system are shown in Table 2. 
Please be noted that the training loss in each row is the average value obtained from all 630 
CNNs in that fold for the TIMIT experiments.

5  Discussion

Accuracy and NRMSE standard deviations for the TIMIT experiments were 0.26% and 
0.94%, respectively. According to Table  2, the accuracies and NRMSEs obtained dur-
ing these experiments followed normal distribution since 70% of the observations were 
between one standard deviation above or below the mean, and all observations fell between 

Table 1  DNN architecture and hyperparameters

Layers Activation Function Dropout Other parameters

Conv layers Relu NA Optimizer: Adam
Learning rate α: 0.0001
Loss Function: Binary Cross Entropy
Mini-batch: 256

Dense 1: 64 neurons Elu 50%
Dense 2: 64 neurons Elu 50%
Output: one neuron sigmoid (to perform 

binary classification)
NA

Table 2  The proposed SI system experimental results

Italic are mean and medain values, and bold are the best results achieved

Corpus Folds Training 
Loss
(cross-entropy)

Testing accuracy
(%)

Testing NRMSE
(%)

 TIMIT 1 0.0476 98.46 11.02
2 0.0661 97.80 13.31
3 0.0565 98.21 11.89
4 0.0653 97.82 13.19
5 0.0429 98.48 10.91
6 0.0374 98.61 10.40
7 0.0567 98.23 12.29
8 0.0506 98.30 11.61
9 0.0399 98.52 10.79
10 0.0496 98.31 11.55
Mean 0.0452 98.27 11.69
Median 0.0452 98.30 11.58

 VoxCeleb NA 0.1092 82.93 18.26
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positive or negative two standard deviations concerning the mean. Normal distribution 
confirms the reliability of the results obtained.

The low NRMSEs in Table 2 show the proposed SI predictions were close to the targets 
that imply the robustness of using a single sound segment to identify speakers. Similarly, the 
high accuracies indicate the applicability of using a single sound to perform complex SI tasks.

5.1  Comparative study

To highlight the advantages of the proposed system, a comparative study with state-of-
the-art neural network-based speaker identification systems published in the literature is 
presented in Table 3. Additionally, we selected the SI systems explained in [23] and [25], 
highlighted in Table 3, for direct benchmarking since they both adopted a deep CNN-based 
approach, reported results based on the same corpora, and considered the same number of 
speakers we used in our experiments. This selection enables us to benchmark our proposed 
SI system with theirs directly. The rest of the shown SI systems employed a significantly 
smaller number of speakers or were applied to different datasets. Reducing the number 
of speakers decreases the complexity of the SI task; hence a direct accuracy comparison 
of large- and small-scale SI systems is not fair since they belong to different complexity 
classes.

It is pertinent to note that deep learning-based speaker verification (SV) systems were 
not included in this table for two reasons. First, the objectives of SV and SI are different. 
Mainly, SV’s objective is to apply voice biometrics to verify users’ claimed identity, while 
SI intents to find the closest match of an unlabeled speech sample to a set of stored speaker 
models [15]. Although the enrollment process is similar in both tasks, testing is different, 
as explained in [42]. Second, a direct comparison of SV and SI systems is impossible as 
they use different performance indicators. In particular, using Equal Error Rate (EER), a 
metric that looks at false positive and negative ratios, is mostly considered to measure the 
performance of speaker verification systems, whereas accuracy is the typical performance 
indicator for speaker identification systems [15].

In the first baseline system [23], TIMIT speech data were presented to a CNN as one-
second spectrograms of 128 ⋅ 100 pixels. The CNN consisted of two convolutional layers 
with 32 and 64 filters, respectively (similar to the CNNs used in our study), each followed 
by a max-pooling layer (pooling size was 4⋅ 4 and stride was 2 ⋅ 2). The convolutional 
layers were stacked into two dense layers with 6300 and 3150 neurons. The output layer 
consisted of 630 softmax neurons (one neuron per speaker). Similar to our study, 20% of 
each speaker’s data was used for testing and the rest for training. The CNN delivered 97% 
accuracy, but no cross-validation was applied. Such CNN requires more than 279 million 
trainable parameters with large memory and computational footprint. In comparison, as 
shown in Table 2, our proposed EMAL SI achieved a minimum accuracy of 97.80% and 
a maximum of 98.61% on TIMIT cross-validation folds 2 and 6 experiments, respectively. 
This is an improvement of up to 1.61% that was achieved via significantly less complicated 
CNNs, as explained in the next section.

The CNN used in the second baseline system [25] adopted a different convolutional 
architecture than [23]. VoxCeleb provides significantly more training data than TIMIT and 
imposes more complexity, includes more speakers, and contains different types of back-
ground noises, which resulted in the lower accuracy reported for this dataset. The Vox-
Celeb 1 CNN was composed of five convolutional layers, four pooling layers, and two 
dense layers with 4096 and 1024 neurons, respectively, that received speech spectrograms 
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of size 512⋅300 pixels as input. This neural network architecture translates into approxi-
mately 106 million trainable parameters. Similar to our experiment on the same corpus, the 
authors used around 8 K of the utterances for testing and the rest for training. Our proposed 
EMAL SI delivered 2.43% better accuracy over this benchmark.

5.2  Optimization and parameter explosion

Using a single sound facilitates the SI task as the dimension of the data DNN learners 
process decreases significantly; this means deep learning models with fewer parameters are 
required compared to traditional SI approaches that use a chain of acoustic sounds. Simi-
larly, training SI systems using a sound segment is more convenient than the traditional 
approaches, where a minimum of three minutes of utterances from each speaker is recom-
mended to achieve an acceptable level of accuracy, according to [22]. On the other hand, in 
our experience, high accuracy was achieved based on only around 25 s of training speech 
samples per speaker, which means around 87% fewer speech data was needed.

Concerning EMAL, it can be argued that using several CNNs may result in parameter 
explosion, but our experiments prove otherwise. In particular, each CNN comprising the 
proposed SI requires significantly fewer parameters as EMAL facilities the learning task 
by distributing it among several learners. In our experiments, an EMAL CNN dealt with 
only 22,913 trainable parameters meaning that the proposed SI needed overall 14 M train-
able parameters to model all TIMIT speakers (22,913 parameters per CNN ⋅ 630 CNNs) in 
comparison to the benchmark CNN with more than 279 M trainable parameters, and 28 M 
parameters (22,913 ⋅ 1251) compared to VoxCeleb 1 benchmark CNN with over 106 M 
parameters. Consequently, the EMAL SI optimization resulted in around 95% reduction in 
the number of DNN trainable parameters over the TIMIT benchmark SI and 78% over the 
VoxCeleb 1 benchmark SI, and yet the proposed SI system improved the performance over 
both benchmark systems. This complexity optimization of SI resulting from integrating the 
single sound-based SI concept and EMAL can potentially enable devices within the lower-
end processing power spectrum to perform accurate and offline speaker identification.

To put it differently, employing a deep learning model with hundreds of millions of 
parameters could be very challenging for any low-end processor, but the same processor 
can train and apply each CNN in the proposed SI sequentially, meaning that at any point 
in time, it deals with a considerably smaller CNN. Likewise, a lower amount of memory is 
required. In our experiments, we did not use any computer with GPUs; instead, we trained 
the proposed SI using three typical laptops by structuring them to train a range of EMAL 
CNNs in parallel.

5.3  Summary of contributions

The contributions of this study can be summarized as follows:

1. Speaker Identification using a single acoustic sound frame decreases the complexity of 
large SI and facilitates it since SI learners require to learn a fewer number of acoustic 
features in comparison to the traditional stacked-based approaches.

2. Single-frame SI requires shorter speech data.
3. EMAL framework decreases the SI structural complexity due to the reductions in train-

able parameters.
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4. The optimizations offered by the proposed system make SI more affordable since less 
expensive hardware may be required.

5. The proposed SI system offers state-of-the-art accuracies with considerably smaller 
CNNs, even over noisy speech data.

The proposed approach is open source and available from [31].

6  Conclusion

This paper proposed an optimized speaker identification system that integrates Enhanced 
Multi-Active Learners and the single sound segment approach. A text-independent speaker 
identification system that employed a network of CNNs to learn the speaker models and 
distribute the complexity of speaker identification was proposed and evaluated. The 
speaker models were formed according to the speakers’ voice biometrics in a single sound 
segment presented by an acoustic frame of 60-dimensional MFCCs. Overall, we conducted 
experiments with 1881 CNNs, including 630 CNNs for each TIMIT speaker and 1252 
CNNs for VoxCeleb 1 speakers, during which a standalone CNN was considered for each 
speaker model. Compared with similar CNN-based speaker identification systems trained 
and tested on the same speakers, the proposed system delivered comparable performance 
but significantly reduced the number of DNN trainable parameters. In particular, the pro-
posed speaker identification system reduced the number of trainable parameters by up to 
95% while delivering the top-1 accuracy of 98.61%.

Combining the reduction of the number of trainable parameters as the result of 
EMAL SI with the reduction of input dimension due to using a single sound segment, 
it can be concluded that the proposed SI system optimizes the complexity of chal-
lenging SI tasks. In other words, in an EMAL-based speaker identification system, 
each learner focuses solely on the acoustic features related to one speaker rather than 
encompassing all speaker features. Likewise, using a single sound approach, only one 
frame of acoustic features is fed to the learners in contrast to multiple stacked sequen-
tial frames, which means the input length is considerably smaller, as shown by formula 
5. This may enable large-scale, offline speaker identification for devices without spe-
cific neural chips or GPUs, making SI more affordable. Finlay, we can highlight the 
novelty of the proposed approach as follows:

1. The applications of EMAL in SI.
2. Large-scale speaker identification using a single sound segment.
3.  Implementation of a CNN-based SI system that benefits from (1) and (2).

The source code of the proposed approach is available from [31].
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