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Abstract
Energy efficiency is treated as a challenging problem in Wireless Sensor Networks (WSNs) 
which involves limited non-replaceable and non-rechargeable inbuilt batteries. Optimal 
utilization of available energy in the sensor nodes is an effective way to improve the life-
time of the WSN with assured quality of service (QoS). Clustering can be employed as an 
efficient approach for enhancing network lifetime and scalability. Since clustering is con-
sidered an NP-hard problem, several metaheuristic algorithms are utilized for accomplish-
ing energy efficiency. With this motivation, this study proposes an energy-aware cluster-
ing protocol utilizing a chaotic gorilla troops optimization algorithm (EACP-CGTOA) for 
WSN. The proposed EACP-CGTOA model derives a CGTOA by replacing the population 
initiation with circle chaotic mapping to explore the solutions with a high convergence rate 
and sensitivity. The CGTOA helps to increase the population diversity and overall perfor-
mance of the optimization algorithm. Besides, the EACP-CGTOA model derives a fitness 
function involving three input parameters namely distance to neighbours (DTN), distance 
to base station (DBS), and energy ratio (ER). To ensure the enhanced performance of the 
EACP-CGTOA technique, a wide range of simulations were carried out and the outcomes 
are examined under several aspects. The experimental results ensured that the network life-
time and energy efficiency are considerably improved by the EACP-CGTOA model over 
the existing methods.
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1 Introduction

Wireless sensor networks (WSN) consist of multiple wireless sensor nodes that are 
deployed in a field to gather information [19]. They are armed with sensor devices that 
have wireless communication capabilities and limited processing power. WSN is the better 
option to monitor and observe the environment and security purposes [2]. WSN has been 
widely used and greatly developed in transportation systems, industry, medical industry, 
agriculture, smart home, environmental monitoring, etc. [20], due to numerous benefits of 
WSN namely low cost, easy deployment, unattended operation, and self-configure abil-
ity. With the current advancement, sensors to supply energy are still based on low-power 
batteries. As well, due to the employment of WSNs in an inaccessible environment, it can 
be impossible to replace or recharge the battery of sensors [3]. However, there is a major 
constraint that the deployed sensors are constrained by computational capability, memory, 
energy, and bandwidth. Amongst others, the energy limitation of the sensors plays an 
important part in affecting the network lifetime. Furthermore, the communication cost of 
the network overtakes the computation and sensing costs [23]. Therefore, the energy of the 
node i.e., available for access needs to be efficiently utilized for lessening the transmission 
cost and for augmenting the lifetime of networks. The clustering method is a crucial tech-
nology in handling the energy constraint of the sensors. Figure 1 illustrates the structure of 
WSN.

Layered architecture cut down the energy utilization of the network, particularly a 
huge WSN [4]. Clustering is a typical layered architecture. Nodes are classified as dis-
tinct clusters, and all the clusters have a node named cluster head (CH) which gathers 
information from another node in the cluster. CH aggregates information beforehand 
transmitting them to BS since the information from nodes in the cluster is the same [9]. 
The clustering approach reduces the network load by data aggregation which leads to a 
long network lifetime [10]. Numerous studies provide a system for selecting CHs. The 
CH selection is of great importance. Some choose the CH according to the backpropaga-
tion technique of ANN to enhance the robustness and network energy efficacy [18]. Oth-
ers choose Energy Effective Quad Clustering to enhance the efficiency of WSN in terms 
of network lifespan [5].

WSNs comprise massive nodes, which can make it difficult to cluster the nodes 
effectively. New clustering protocols can be designed to improve the scalability of 
WSNs, enabling them to handle larger numbers of nodes. Since the CH selection pro-
cess can be considered as a Non-Deterministic Polynomial (NP)-hard optimization 
problem to select m optimum CHs amongst n sensors giving nCm possibility. There-
fore, metaheuristic optimization algorithms can be used for clustering and CH selec-
tion in WSN. Metaheuristic optimization algorithms can search the solution space 
proficiently, resulting in high-quality clustering solutions to enhance the performance 
of WSNs. By using metaheuristic optimization algorithms, clustering protocols can 
potentially achieve better cluster formation, cluster head selection, and data aggre-
gation, resulting in improved network throughput, reduced energy consumption, and 
extended network lifetime.

This study proposes an energy-aware clustering protocol using a chaotic gorilla troops 
optimization algorithm (EACP-CGTOA) for WSN. The proposed EACP-CGTOA model 
derives a CGTOA by replacing the population initiation with circle chaotic mapping to 
explore the solutions with a high convergence rate and sensitivity. In addition, the EACP-
CGTOA model derives a fitness function (FF) involving three input parameters namely 
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distance to neighbours (DTN), distance to base station (DBS), and energy ratio (ER). For 
ensuring the improved performance of the EACP-CGTOA model, a wide range of simula-
tions were carried out and the outcomes are investigated in various aspects.

2  Literature review

In [11], an effectual CH selection (CHS) process was created by the established Taylor-
Spotted Hyena Optimization (Taylor-SHO) that combines the Taylor series with SHO. The 
presented technique was utilized for the effectual CHS procedure utilizing fitness meas-
ures dependent upon delay, energy, and distance. Next, the data routing was completed 
by the modified k-Vertex Disjoint Path Routing (mod-kVDPR) technique that is developed 
by mod-kVDPR employing the parameters namely throughput and link reliability. In [17], 
a hybrid grey wolf and crow search optimization algorithm-based optimal CHS (HGWC-
SOA-OCHS) technique is presented to improve the lifespan probability of the network by 

Fig. 1  Structure of WSN
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focusing on minimized delay, minimized distance amongst nodes, and energy stabilisation. 
This hybridization of GWO and CSO technique from the procedure of CHS continues the 
trade-off amongst the exploitation as well as exploration degrees under the searching space.

In [7], a whale optimization algorithm (WOA) based technique was presented for 
expanding the lifespan of the system. Besides, a novel FF was determined to reduce the 
energy consumption (ECM) of networks, load balancing (LB), and node coverage. The 
clustering was completed unequally; it represents that CHs neighbouring to BS are fur-
ther energy to data relay. During this case, to decrease the count of messages, the cluster-
ing phase is more at the start of the meta-round. Wang et al. [21] optimized the APTEEN 
routing protocol by integrating GA with the fruit-fly optimization algorithm (FFOA). With 
adding residual energy (RE), distance from the node to BS, distance from the node to the 
geometric centre of entire networks, node degree, and other selective features from CHS, 
the GA and FFOA are utilized for CHS to the primary time, and the secondary time of 
CHS dependent upon density adaptive technique.

Kotary et al. [12] examined the many-objective WOA (MaOWOA) for handling robust 
distributed clusters from WSN. Primarily, a swarm-based MaOWOA was discussed in 
which a reference point-based leader selective process was employed to upgrade the solu-
tion rather than grid-based leader selective as in a multi-objective approach. Bhushan et al. 
[6] presented a Fuzzy Logic-based Energy Adequate Clustering (FLEAC), a clustering pro-
tocol which generates utilize of the fuzzy if-then rule to choose suitable CH on the funda-
mental of 5 fuzzy descriptors such as compaction degree, node history, RE, average intra-
cluster distance, and packet drop probability. In addition, the presented protocol assumes 
the selection of relay nodes (RNs) to alleviate extreme ECM of CHs. Improved GOA was 
utilized to select suitable RNs.

In [8], an effectual technique named Tunicate Swarm Butterfly Optimization Algo-
rithm (TSBOA) was established to choose CH for accomplishing effectual data broadcast 
amongst the sensor node. The presented TSBOA was resultant of the integration of the 
Tunicate Swarm Algorithm and BOA correspondingly. Reddy et al. [16] presented a novel 
cluster-based routing method by choosing the optimum CH. Furthermore, a novel tech-
nique called grey wolf upgrade WOA was established. At this point, a novel multi-objec-
tive function has been determined in terms of distinct constraints such as delay, energy, 
distance, and security correspondingly. Raslan et  al. [15] presented a new technique for 
selecting optimum CHs from the IoT-WSN. The new technique is named as Improved Sun-
flower Optimization Algorithm (ISFO). During the ISFO, it integrates the SFO with the 
lèvy flight (LF) function. Such appeal is the balance of the diversification and intensifica-
tion procedures of the presented technique and avoids being trapped from a local minimum.

3  The proposed model

In this study, a novel EACP-CGTOA model has been developed for lifetime maximi-
zation and maximum energy efficiency in WSNs. Initially, the nodes in the WSN are 
randomly deployed in the target region and then the initiation process takes place. The 
BS broadcast a beacon signal to the whole network. All the nodes in the network receive 
the beacon signal and determine its estimated distance to BS based on RSSI. Followed 
by, the nodes transmitting a handshaking message in its communication radius to collect 
data regarding the neighbouring nodes. The handshaking message comprises node ID, 
remaining energy level, and its distance to BS. For instance, Once a neighbouring node 
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j receives a handshaking message from node i, it stores the received details and replies 
with its information to node i. Now, node i will update its node degree by one as well 
as calculates the distance to its neighbouring node j using the node j’s distance to BS 
and stores the information of node j. Likewise, node i will get information from each 
of the other nearby nodes and then the distance to neighbours can be computed. Using 
this procedure, every node gathers information about its neighbours as well as updates 
its information and then the clustering process will be initiated. Then, the BS executes 
the proposed model for the effective selection of CHs. The proposed EACP-CGTOA 
model derives a CGTOA by replacing the population initiation with circle chaotic map-
ping to explore the solutions with a high convergence rate and sensitivity. In addition, 
the EACP-CGTOA model derives a FF involving three input parameters namely DTN, 
DBS, and ER. Figure 2 depicts the block diagram of the EACP-CGTOA technique. The 
nodes with maximum fitness value will be chosen as CH and transmit CH_WON to the 
nearby nodes. A node may get multiple CH_WON from its nearby nodes. In those situ-
ations, it sends a CH_JOIN message and joins to the nearer CH. When the clusters are 
constructed and then the data transmission process takes place between nodes and BS 
via CHs.

Fig. 2  Block diagram of EACP-CGTOA technique
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3.1  Energy model

The first-order radio energy model developed in [3] has been employed. By guarantee-
ing a reasonable signal-to‐noise ratio, the energy utilization for the node transmitting 
information is given below.

Whereas n represents the number of bits transferred, d indicates the communication 
distance, Eelec denotes the energy utilization to send or receive 1-bit information, �fs sig-
nifies the coefficient of energy utilization to amplify radio at free-space mode, �mp repre-
sents the coefficient of energy utilization to amplify radio at multi-fading mode, and 
d0 =

√
�fs∕�mp denotes the threshold value of distance.

The energy utilization for data received by the node can be denoted as follows.

The data fusion from the cluster assumes that CH receives n-bit information trans-
mitted by all the CMs and accumulates them into n-bit information nevertheless of the 
node count in the cluster.

Whereas EDA (nJ/bit) denotes the energy utilization for fusing 1-bit data.

3.2  Design of CGTOA

GTOA is a newly presented nature-inspired and gradient‐free optimization approach 
that emulates the gorilla lifestyle [1]. They live in a group named Troop, which 
is comprised of adult male gorillas named Silverback, many adult female gorillas, 
and posterity. Generally, gorilla tends to migrate from one place to another. But 
some male gorilla continues to follow the silverback and choose to stay in the initial 
troop. When the silverback dies, this male might engage in a brutal battle for mat-
ing with adult females and dominance of the group. From the abovementioned, the 
arithmetical expression for the GTOA has been proposed. Like all other techniques, 
GTOA comprises initialization, global exploration, and local exploitation that are 
thoroughly explained in the following [22]:

3.2.1  Initialization phase

Assume that there are N gorillas in the D-dimension. The location of the i‐th gorilla is 
represented by Xi = (xi,1, xi,2,⋯ , xi,D), i = 1,2,⋯ ,N . This can be expressed in the fol-
lowing equation:

(1)ETx(n, d) =

{
nEelec + n𝜀fsd

2, d ≤ d0,

nEelec + n𝜖mpd
4, d > d0,

(2)ERx(n) = nEelec

(3)EFx(n, d) = nEDA

(4)XN×D = rand(N,D) × (ub − lb) + lb



23859Multimedia Tools and Applications (2024) 83:23853–23871 

1 3

Whereas ub and lb represent the upper and lower limits, rand (N,D) represents the 
matrix with D columns and N rows, whereby all the elements are in an arbitrary value 
within [0, 1].

3.2.2  Exploration phase

For precisely simulating the migration behaviour, the location update formula for the 
exploration phase has been developed by applying three distinct algorithms involving mov-
ing to other groups, migrating towards unknown positions, and migrating around familiar 
locations as follows [22]:

Whereas t denotes the present iteration, X(t) signifies the existing location of the indi-
vidual gorilla, and GX(t + 1) represents the candidate location of the searching agent from 
the following iteration. In addition, r1, r2, r3 and r4 represent the arbitrary numbers within 
[0,1. XA(t) and XB(t) denote the arbitrarily chosen gorilla position in the existing popula-
tion. p indicates a constant. Z represents a row vector from the problem dimension within 
[−C,C]. Also, the variable C can be estimated as follows.

In which cos(⋅) indicates the cosine function, r5 represents an arbitrary value within 
[0,1], and Maxiter designates the maximal iteration. The variable L can be calculated by 
the following equation:

In which l indicates an arbitrary value within [1, 1].
Based on the completion of exploration, the fitness value of the recently gener-

ated candidate GX(t + 1) solution is computed. Given that GX is superior to X that is, 
F(GX) < F(X) , whereas F indicates the FF for a specific problem, it can be preserved and 
replace the original solution X(t) . Additionally, the optimum solution at this period has 
been chosen as the silverback Xsilverback.

3.2.3  Exploitation phase

Once the troop was developed, the silverback is healthy and powerful, whereas the other 
males are still young. Also, the silverback grows older and dies at the end, with the young 
blackback in the troop may be included in a violent conflict with the other male gorillas to 
mate with the leadership and the adult females. From the abovementioned, competing for 
adult female gorillas and two behaviours of the silverback are modelled in the exploitation 
stage. Simultaneously, the variable W is presented for controlling the switch among them-
selves. Once the value of C is larger than W , the initial model of following the silverback is 
selected. It can be mathematically expressed in the following:

(5)GX(t + 1) =

⎧⎪⎨⎪⎩

(ub − lb) × r2 + lb r1 < p�
r3 − C

�
× XA(t) + L × Z × X(t) r1 ≥ 0.5

X(t) − L ×
�
L ×

�
X(t) − XB(t)

�
+ r4 ×

�
X(t) − XB(t)

��
r1 < 05

(6)C =
(
cos

(
2 × r5

)
+ 1

)
×
(
1 −

t

Max iter

)

(7)L = C × l
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Whereas L can be estimated by Eq. (7) Xsilverback denotes the optimal solution, and X(t) 
indicates the existing location. Additionally, the variable M is evaluated by the following 
equation:

Now N denotes the population size, and X(t) signifies the location of the gorilla in the 
existing iteration. When C < W , it represents that the last model is selected, in such cases, 
the position of the gorilla is upgraded by the following equation:

where X(t) represents the existing location and Q denotes the impact force, r6 represents 
an arbitrary number within [0,1]. Furthermore, the coefficient A utilized for mimicking the 
violence intensity in the competition in which � indicates a constant and the values of E 
are allocated. Where r7 denotes an arbitrary value from 0 to 1. When r7 ≥ 0.5,E is deter-
mined by a 1D array of standard distribution arbitrary numbers, and D indicates the spatial 
dimension. When r7 < 0.5,E is equivalent to the stochastic value which follows the stand-
ard distribution [14].

Likewise, during the exploitation stage, the fitness value of recently generated candidate 
GX(t + 1) solutions are evaluated. When (GX) < F(X) , the solution GX can be retained and 
participated in the succeeding optimization, whereas the optimum solution with each indi-
vidual can be determined by the silverback Xsilverback.

3.2.4  Improvement of GTOA using chaotic mapping

Generally, it is stated that the quality of the individual primary population has a consid-
erable effect on the efficacy of the present metaheuristic algorithm. Although this tech-
nique is accessible to perform, still suffers from insufficient ergodicity and is extremely 
based on the likelihood distribution that could not assure that the population initialization 
is distributed uniformly from the searching space, thus deteriorating the convergence rate 
and solution precision [22]. Chaotic mapping is a complex dynamic technique founded in 
a non-linear system with ergodicity, unpredictability, and randomness properties in com-
parison with random distribution, chaotic mapping enables the individual initial population 
for exploring the solution space in detail with sensitivity and high convergence rate such 
that it is extensively adapted to enhance the optimization accuracy of the algorithm. The 
experimental result depicts that the presented method has greater performance if compared 
to the widely employed Tent chaotic mapping and Logistic chaotic mapping. Therefore, to 

(8)GX(t + 1) = L ×M ×
(
X(t) − Xsilverback

)
+ X(t)

(9)M =

(||||
∑N

i=1

Xi(t)

N

||||
2L
) 1

2L

(10)GX(t + 1) = Xsilverback − (Xsilverback × Q − X(t) × Q) × A

(11)Q = 2 × r6 − 1

(12)A = � × E

(13)E =

{
N1, r7 ≥ 0.5

N2, r7 < 0.5
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increase the population diversity and make optimal use of the data in the solution space, 
the presented method aims to enhance the initialization mode of the fundamental GTOA 
using circle chaotic mapping, called CGTOA. Also, it can be mathematically expressed in 
the following equation:

Whereas a = 0.5 and b = 0.2 . In the same free independent parameter, the Circle map-
ping and random searching process are carefully chosen to perform individually. In addi-
tion, the attained outcome can be given as follows. Therefore, the presented CGTOA 
method has a strong global exploration capability afterwards integrating Circle chaotic 
mapping.

3.3  Application of CGTOA for clustering process

The idea of the EACP-CGTOA method is for selecting a further amount of sensor nodes 
nearby the BS before being distant in BS. This procedure of selective of CHs helps to the 
creation of clusters under the cluster formation phase. Assume, f1 be a function of distance 
in the neighbour sensor node. This means require for selection of the CHs that are a mini-
mal distance from their neighbour sensor. Require for minimizing f1 to optimum CH selec-
tion (CHS).

DTN It is the minimal distance from their neighbours, i.e., dis(CHj, si) . During the com-
munication procedure, every sensor utilizes some part of the energy for sending data to its 
respective CH. Reducing the energy utilization, require minimizing the distance from their 
neighbours. In this way, require for selecting the CHs that are nearby the arbitrarily initial-
izing CHs [14].

DBS It can be the distance between a CH CHj and BS, i.e., is(CHj,BS) . The BS distance 
roles are an essential play in the selection of a further amount of CHs nearby BS. This pro-
cedure helps to create of small size cluster nearby the BS.

ER It is the ratio of energy utilized by CH CHj to RE of CHj . When the CH CHj utilizes 
minimum energy under the sensing, communication, and computation and further the RE 
and is minimum energy ratio.

At this point, it can utilize a weighted aggregation manner for minimizing every objec-
tive, since these objectives aren’t strongly conflicting with every other. Thus, utilize the 
subsequent FF:

(14)Zk + 1 = zk + b −
a

2�
⋅ sin(2�z)mod(1), z ∈ (0,1)

(15)Minimize f1 =

m∑
j=1

dis(CHj, si)

(16)Minimize f2 =

m∑
j=1

dis(CHj,BS)

(17)Minimize f3 =

m∑
j=1

Ec

(
CHj

)

ER

(
CHj

)
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The purpose is for minimizing the fitness value. The lesser fitness value, an optimum is 
the particle place, viz., an optimum is the CHS.

3.4  Cluster construction process

The CGTOA derives the fitness values of the nodes in the network and the nodes with 
maximum fitness will be considered as CHs. Once the CHs are chosen, the advertisement 
process takes place where the nodes are aware of the CHs with their fitness value. Then, 
the nodes in the nearby region reply to the CH advertisement message to indicate the will-
ingness of CM under the specific CH. In addition, the CMs can turn off their transmitter 
to save energy in case of no data is available for transmission. During the setup phase, the 
receiver of the CHs gets data from CMs and then the aggregation process is carried out. 
Lastly, the aggregated data will be transferred to BS via CHs.

4  Experimental validation

The proposed EACP-CGTOA model is simulated using the MATLAB tool. The param-
eter settings are given in Table  1 and the results are examined under distinct rounds of 
operations.

Table  2; Fig.  3 investigate the comparative number of alive nodes (NOAN) inspec-
tion of the EACP-CGTOA technique with existing models [13]. The experimental results 
highlighted the betterment of the EACP-CGTOA model with maximum NOAN under all 
rounds. For instance, with 100 rounds, the EACP-CGTOA model has resulted in a higher 
NOAN of 99.73% whereas the HABC-MBOA, FFCGWO, FFOCR, and HAS-PSO mod-
els have obtained lower NOAN of 98.46%, 98.46%, 96.68%, and 96.43% respectively. 
Likewise, with 700 rounds, the EACP-CGTOA model has resulted in a higher NOAN of 
96.17% whereas the HABC-MBOA, FFCGWO, FFOCR, and HAS-PSO methodologies 
have reached a minimal NOAN of 84.98%, 52.67%, 44.27%, and 32.31% correspondingly. 
Similarly, with 1000 rounds, the EACP-CGTOA algorithm has resulted in a higher NOAN 
of 78.36% whereas the HABC-MBOA, FFCGWO, FFOCR, and HAS-PSO models have 
achieved minimal NOAN of 44.53%, 24.43%, 17.56%, and 9.93% correspondingly.

(18)Fitness = �1 × f1 + �2 × f2 + �3 × f3

Table 1  Simulation settings Simulation parameters Values

Node count 1000
Target regions 400*400 square meters
Count of rounds 2000
Initial energy 0.5 Joules
Packet length (bits) 4096 bits
Node deployment Random
Energy used for data aggregation 5 nJ/bit/signal
Energy used for transmission 50 pJ/bit/square meters
Energy used for power amplification 10 pJ/bit/square meters
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A detailed number of dead nodes (NODN) examinations of the EACP-CGTOA model 
with recent models are provided in Table 3; Fig. 4. The simulation results pointed out that 
the EACP-CGTOA model has accomplished an enhanced lifetime of WSN with minimum 
NODN under every round. For instance, with 100 rounds, the EACP-CGTOA model has 
provided decreased NODN of 0.27% whereas the HABC-MBOA, FFCGWO, FFOCR, 

Table 2  NOAN analysis of EACP-CGTOA technique with recent approaches under distinct rounds

No. of alive nodes (%)

No. of rounds EACP-CGTOA HABC-MBOA FFCGWO FFOCR HAS-PSO

100 99.73 98.46 98.46 96.68 96.43
200 98.72 98.46 98.46 95.41 93.37
300 98.21 97.95 96.43 93.63 89.56
400 97.44 96.43 90.07 82.43 79.63
500 97.44 94.39 78.62 67.93 58.26
600 97.19 89.05 65.39 51.65 43.25
700 96.17 84.98 52.67 44.27 32.31
800 90.32 72.26 42.24 32.06 23.66
900 83.70 65.39 35.11 21.88 12.47
1000 78.36 44.53 24.43 17.56 9.93
1200 66.91 32.06 13.74 3.31 0.51
1400 58.77 23.66 8.40 0.77 0.00
1600 42.24 14.76 2.29 0.00 0.00
1800 32.06 0.77 0.00 0.00 0.00
2000 17.81 0.00 0.00 0.00 0.00

Fig. 3  NOAN analysis of EACP-CGTOA technique with recent approaches
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and HAS-PSO models have accomplished increased NOAN of 1.54%, 1.54%, 3.32%, and 
3.57% respectively. Along with that, with 1000 rounds, the EACP-CGTOA method has 
provided decreased NODN of 21.64% whereas the HABC-MBOA, FFCGWO, FFOCR, 
and HAS-PSO algorithms have accomplished an increased NOAN of 55.47%, 75.57%, 

Table 3  NODN analysis of EACP-CGTOA technique with recent approaches under distinct rounds

No. of dead nodes (%)

No. of rounds EACP-CGTOA HABC-MBOA FFCGWO FFOCR HAS-PSO

0 0.52 0.78 1.28 1.54 1.79
100 0.27 1.54 1.54 3.32 3.57
200 1.28 1.54 1.54 4.59 6.63
300 1.79 2.05 3.57 6.37 10.44
400 2.56 3.57 9.93 17.57 20.37
500 2.56 5.61 21.38 32.07 41.74
600 2.81 10.95 34.61 48.35 56.75
700 3.83 15.02 47.33 55.73 67.69
800 9.68 27.74 57.76 67.94 76.34
900 16.30 34.61 64.89 78.12 87.53
1000 21.64 55.47 75.57 82.44 90.07
1200 33.09 67.94 86.26 96.69 99.49
1400 41.23 76.34 91.60 99.23 100.00
1600 57.76 85.24 97.71 100.00 100.00
1800 67.94 99.23 100.00 100.00 100.00
2000 82.19 100.00 100.00 100.00 100.00

Fig. 4  NODN analysis of EACP-CGTOA technique with recent approaches
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82.44%, and 90.07% respectively. In line, with 1200 rounds, the EACP-CGTOA system has 
provided decreased NODN of 33.09% whereas the HABC-MBOA, FFCGWO, FFOCR, 
and HAS-PSO models have accomplished increased NOAN of 67.94%, 86.26%, 96.69%, 
and 99.49% respectively.

Table  4; Fig.  5 investigate the comparative average throughput (ATHRPT) inspec-
tion of the EACP-CGTOA model with existing models. The experimental results high-
lighted the betterment of the EACP-CGTOA algorithm with maximum ATHRPT under 
all rounds. For instance, with 100 rounds, the EACP-CGTOA approach has resulted in 
a higher ATHRPT of 8.40Mbps whereas the HABC-MBOA, FFCGWO, FFOCR, and 

Table 4  Average throughput analysis of EACP-CGTOA technique with recent approaches under distinct 
rounds

Average throughput (Mbps)

No. of rounds EACP-CGTOA HABC-MBOA FFCGWO FFOCR HAS-PSO

100 8.40 6.93 4.00 3.37 1.90
200 12.38 9.66 7.35 4.84 4.21
300 15.95 13.01 9.03 6.51 4.42
400 18.67 15.95 10.92 8.82 6.93
500 23.29 20.56 14.06 10.92 8.40
600 29.16 24.75 17.42 14.06 9.45
700 34.40 29.58 21.61 16.37 12.59
800 40.27 36.71 23.71 18.05 15.32
900 47.40 43.21 28.95 21.40 18.05
1000 57.67 53.90 31.67 27.27 20.77

Fig. 5  ATHRPT analysis of EACP-CGTOA technique with recent approaches
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HAS-PSO models have obtained lower ATHRPT of 6.93Mbps, 4Mbps, 3.37Mbps, 
and 1.90Mbps correspondingly. In addition, with 700 rounds, the EACP-CGTOA 
algorithm has resulted in a maximal ATHRPT of 34.40Mbps whereas the HABC-
MBOA, FFCGWO, FFOCR, and HAS-PSO models have obtained lower ATHRPT of 
29.58Mbps, 21.61Mbps, 16.37Mbps, and 12.59Mbps correspondingly. Similarly, with 
1000 rounds, the EACP-CGTOA technique has resulted in a superior ATHRPT of 
57.67Mbps whereas the HABC-MBOA, FFCGWO, FFOCR, and HAS-PSO methodolo-
gies have obtained a minimum ATHRPT of 53.90Mbps, 31.67Mbps, 27.27Mbps, and 
20.77Mbps correspondingly.

Table 5  IIRE analysis of EACP-CGTOA technique with recent approaches under distinct rounds

Improvement in remaining energy (%)

No. of rounds EACP-CGTOA HABC-MBOA FFCGWO FFOCR HAS-PSO

100 24.34 22.68 16.22 12.58 9.85
200 22.18 20.53 14.82 11.42 8.69
300 20.86 19.37 12.58 9.85 7.78
400 19.04 17.63 10.84 8.03 6.79
500 17.71 16.55 9.60 7.04 5.96
600 17.38 15.40 8.61 5.63 4.30
700 16.14 13.08 7.62 4.55 3.31
800 14.49 12.66 6.54 3.39 2.40
900 13.24 11.67 5.79 2.32 1.41
1000 11.51 9.85 4.88 1.49 0.50

Fig. 6  IIRE analysis of EACP-CGTOA technique with recent approaches
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Table 5; Fig. 6 demonstrate the comparative improvement in remaining energy (IIRE) 
inspection of the EACP-CGTOA method with existing models. The experimental results 
highlighted the betterment of the EACP-CGTOA system with maximum IIRE under all 
rounds. For instance, with 100 rounds, the EACP-CGTOA algorithm has resulted in a 
higher IIRE of 24.34% whereas the HABC-MBOA, FFCGWO, FFOCR, and HAS-PSO 
models have obtained lower IIRE of 22.68%, 16.22%, 12.58%, and 9.85% correspond-
ingly. Likewise, with 700 rounds, the EACP-CGTOA model has resulted in a higher 
IIRE of 16.14% whereas the HABC-MBOA, FFCGWO, FFOCR, and HAS-PSO mod-
els have obtained lower IIRE of 13.08%, 7.62%, 4.55%, and 3.31% correspondingly. In 

Table 6  IINLT analysis of EACP-CGTOA technique with recent approaches under distinct rounds

Improvement in network lifetime (%)

No. of rounds EACP-CGTOA HABC-MBOA FFCGWO FFOCR HAS-PSO

100 38.69 35.96 30.09 26.05 21.10
200 35.70 32.70 27.75 21.36 18.76
300 32.57 30.35 25.27 18.63 15.63
400 30.48 27.62 23.32 17.06 13.55
500 29.05 26.44 21.23 14.98 11.59
600 26.58 24.49 20.19 13.68 9.64
700 24.88 22.80 18.89 11.72 7.68
800 23.45 21.23 17.85 10.55 5.60
900 22.41 20.71 16.02 9.12 4.30
1000 21.62 19.15 13.94 7.81 3.38

Fig. 7  IINLT analysis of EACP-CGTOA technique with recent approaches
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addition, with 1000 rounds, the EACP-CGTOA approach has resulted in a higher IIRE 
of 11.51% whereas the HABC-MBOA, FFCGWO, FFOCR, and HAS-PSO techniques 
have attained minimum IIRE of 9.85%, 4.88%, 1.49%, and 0.50% correspondingly.

Table 6; Fig.  7 examine the comparative improvement in network lifetime (IINLT) 
inspection of the EACP-CGTOA algorithm with existing models. The experimen-
tal results highlighted the betterment of the EACP-CGTOA algorithm with maximum 
IINLT under all rounds. For instance, with 100 rounds, the EACP-CGTOA system has 
resulted in a higher IINLT of 38.69% whereas the HABC-MBOA, FFCGWO, FFOCR, 
and HAS-PSO models have obtained lower IINLT of 35.96%, 30.09%, 26.05%, and 
21.10% respectively. In addition, with 700 rounds, the EACP-CGTOA system has 
resulted in a higher IINLT of 24.88% whereas the HABC-MBOA, FFCGWO, FFOCR, 
and HAS-PSO algorithms have obtained lower IINLT of 22.80%, 18.89%, 11.72%, 
and 7.68% respectively. Besides, with 1000 rounds, the EACP-CGTOA approach has 
resulted in a higher IINLT of 21.62% whereas the HABC-MBOA, FFCGWO, FFOCR, 
and HAS-PSO models have obtained lower IINLT of 19.15%, 13.94%, 7.81%, and 
3.38% respectively.

Table  7; Fig.  8 investigate the comparative Decrease in Communication Overhead 
(DICOD) inspection of the EACP-CGTOA methodology with existing models. The 
experimental results highlighted the betterment of the EACP-CGTOA technique with 
maximal DICOD under all rounds. For instance, with 100 rounds, the EACP-CGTOA 
approach has resulted in a superior DICOD of 34.86% whereas the HABC-MBOA, 
FFCGWO, FFOCR, and HAS-PSO models have attained lesser DICOD of 31.16%, 
26.27%, 20.46%, and 15.84% respectively.

In addition, with 500 rounds, the EACP-CGTOA approach has resulted in a higher 
DICOD of 24.82% whereas the HABC-MBOA, FFCGWO, FFOCR, and HAS-PSO mod-
els have obtained lower DICOD of 22.05%, 18.61%, 14.12%, and 9.11% correspondingly. 
Likewise, with 1000 rounds, the EACP-CGTOA algorithm has resulted in a superior 
DICOD of 13.20% whereas the HABC-MBOA, FFCGWO, FFOCR, and HAS-PSO mod-
els have obtained lower DICOD of 11.22%, 9.24%, 5.01%, and 3.16% correspondingly. 
After examining the above results and discussion, it can be ensured that the EACP-CGTOA 
model has resulted in a maximum lifetime and energy efficiency in WSN.

Table 7  DICOD analysis of EACP-CGTOA technique with recent approaches under distinct rounds

Decrease in communication overhead (%)

No. of rounds EACP-CGTOA HABC-MBOA FFCGWO FFOCR HAS-PSO

100 34.86 31.16 26.27 20.46 15.84
200 31.95 28.91 23.50 19.01 13.60
300 29.97 26.54 21.52 17.95 11.88
400 27.07 24.29 20.59 16.37 10.56
500 24.82 22.05 18.61 14.12 9.11
600 22.31 19.93 16.76 13.33 8.05
700 20.59 17.95 13.46 10.69 6.60
800 17.43 14.52 11.35 8.97 5.28
900 15.44 12.54 9.77 7.39 3.96
1000 13.20 11.22 9.24 5.01 3.16
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5  Conclusion

In this study, a novel EACP-CGTOA model has been developed for lifetime maxi-
mization and maximum energy efficiency in WSNs. Initially, the nodes in the WSN 
are randomly deployed under the target region and then the initiation procedure 
takes place. Then, the BS executes the proposed model for the effective selection 
of CHs. The proposed EACP-CGTOA model derives a CGTOA by replacing the 
population initiation with circle chaotic mapping to explore the solutions with a 
high convergence rate and sensitivity. In addition, the EACP-CGTOA model derives 
a FF involving three input parameters namely DTN, DBS, and ER. For ensuring the 
enhanced performance of the EACP-CGTOA method, a wide range of simulations 
are carried out and the outcomes are examined in several aspects. The experimen-
tal results ensured that the network lifetime and energy efficiency are considerably 
improved by the EACP-CGTOA model over the existing methods. Therefore, the 
EACP-CGTOA approach was employed as an effectual tool to lengthen the life-
time of WSNs. In future, the performance of the EACP-CGTOA is enhanced by 
the design of a multi-hop routing process. In addition, the proposed model does 
not support two important network characteristics such as heterogeneity and mobil-
ity. Therefore, based on real-world network environments of different WSN appli-
cations, future work focuses on the design of clustering techniques that support 
mobility and heterogeneity needs more attention. In addition, new encryption and 
authentication techniques can be developed for secure data transmission, as well as 
investigating methods to detect and prevent attacks on the CHs and BS. Finally, new 
techniques can be explored to reduce the communication overhead of the protocol, 
such as data compression or adaptive duty cycling.

Fig. 8  DICOD analysis of EACP-CGTOA technique with recent approaches
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